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Preface to the second edition

There is no perfect time to write a textbook for a field in its infancy. Act too
early and the theory might not have the cohesive structure it will eventually
develop, but act too late and you might miss an opportunity to encourage new
collaborators to enter and shape the area. The first edition of this book was
timed to strike a balance between these two extremes: after a sufficient frame-
work for analytic combinatorics in several variables had been developed, but
during a time when fundamental results were still being discovered and incor-
porated.

As a consequence of this choice, the first edition of the text, while influential
and put to use by many others in enumerative combinatorics, was presented in
a way that many end users found difficult to follow. Having been given the
opportunity to create a second edition of this text, after a decade of further
development, we are now able to improve both the content and presentation of
the field. We have been conscious in this rewriting of making the book more
useful for a variety of readers having different motivations, including making
it easier to look up and cite desired asymptotic results.

For the second edition, the original authors welcome our active collabo-
rator Stephen Melczer, whose own introductory book on this topic [Mel21]
was published recently, and who has rejuvenated the entire enterprise. In con-
trast to [Mel21], which skips much of the advanced topological and geomet-
ric approach to ACSV to focus more on elementary arguments and explicit
computation, this text remains dedicated to developing the theory in its most
general, and most powerful, form. The field of ACSV has flourished since the
publication of the first edition, including numerous workshops, seminars, sum-
mer school courses, and many publications exploring applications of the the-
ory [Wil15; dALN15; MM16; Pan17; Vid17; Kov19; Mis19; MW19; RWZ20;
GE20; Geo21; GFS21; KLM21; GWW21; Len+23].

Over the last ten years, we have gained an improved understanding of the
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viii Preface to the second edition

technical parts of the theory. Perhaps the largest change is to give ACSV a
rigorous foundation using stratified Morse theory, whereas in the first edition
Morse-theoretic arguments were used to motivate constructions that were then
verified with other techniques. In addition to fixing numerous typographical
and other errors in the first edition, some the fault of the authors and some of
the publisher, the following content changes have been made to improve the
book.

• The chapters in Parts I (Combinatorial Enumeration) and II (Mathemati-
cal Background) have mainly kept their general structure, however much of
their discussion has been rewritten. Of particular note, Section 2.4 has been
revised to better explain how ACSV for rational functions extends to alge-
braic functions via diagonal embeddings, and Section 5.4 has been revised
to better explain the proof of Theorem 5.3 (formerly Theorem 5.4.8). Chap-
ter 6 in the first edition has also been moved after the former Chapters 7
and 8 so that Part II now ends in Chapter 6 (which was Chapter 7 in the first
edition).

• Part III (Multivariate Enumeration) begins with Chapter 7, which has been
completely overhauled and is almost entirely new. The second edition is
constructed to put the large majority of the topological and homological
arguments in this chapter and the appendices. The main output of the chapter
is an expression for coefficient asymptotics as a finite integer sum of saddle-
point-like integrals, and those wanting to skip the homological material can
simply assume this decomposition in later chapters.

• Chapter 8, which is a complete re-imagining of Chapter 6 in the first edition,
discusses how to compute the quantities needed for an asymptotic analysis
in a computer algebra system. In contrast to the first edition, we now put ad-
ditional focus on computing the quantities needed for ACSV — this explains
its postponement until Part III.

• Chapters 9 – 11 have been reworked to begin from the decomposition de-
scribed in Chapter 7, streamlining their presentation, and to have more ex-
plicit results that can be easily cited. Section 11.4 has also been expanded
to include a worked example of solving a connection problem via creative
telescoping.

• The appendices have been revised and enlarged to be more self-contained,
and to give readers a more complete explanation of the constructions they
will need for ACSV.

• We have greatly increased the number of exercises and examples, and added
many more signposts and guides so that readers with different motivations
can find what they are looking for. Exercises have been split into in-text
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(shorter and more straightforward, meant to help the reader think over the
material) and end of chapter (more challenging) problems. We have also
listed open problems and ongoing research in Chapter 13.

• Finally, we have created Sage worksheets that cover most of the examples
in the book, and some of the exercises.

Supplementary material, including Sage worksheets and a maintained list of
errata, are available from the book website

http://acsvproject.org/acsvbook

More general resources for the ACSV project are available at

http://acsvproject.org

The authors thank our colleagues who helped with proofreading and other-
wise checking the manuscript, including Nick Beaton, Jeremy Chizewer, Jacob
Cordeiro, William Dugan, Stephen Gillen , Kaitian Jin, Alexander Kroitor, Ge-
offrey Pritchard, Stephan Ramon Garcia, and Josip Smolčić . We thank the
anonymous reviewers consulted by the publisher, and in particular one re-
viewer who set us straight on the inner workings of Thom’s Isotopy Theorem.
We thank Herman Gluck for help with topology and Frank Sottile for con-
siderable help with computational algebra. A special word of thanks is due to
Yuliy Baryshnikov . Not only did we learn most of the recent material from
him or with him, but he has remained available for consultation during the en-
tire production of the second edition. The authors each thank their families for
their patience and support.

http://acsvproject.org/acsvbook
http://acsvproject.org


Preface to the first edition

The term “Analytic Combinatorics” refers to the use of complex analytic meth-
ods to solve problems in combinatorial enumeration. Its chief objects of study
are generating functions [FS09, page vii]. Generating functions have been used
for enumeration for over a hundred years, going back to Hardy and, arguably,
to Euler. Their systematic study began in the 1950’s [Hay56]. Much of the im-
petus for analytic combinatorics comes from the theory of algorithms, arising
for example in the work of Knuth [Knu06]. The recent, seminal work [FS09]
describes the rich univariate theory with literally hundreds of applications.

The multivariate theory, as recently as the mid-1990’s, was still in its in-
fancy. Techniques for deriving multivariate generating functions have been
well understood, sometimes paralleling the univariate theory and sometimes
achieving surprising depth [FIM99]. Analytic methods for recovering coef-
ficients of generating functions once the functions have been derived have,
however, been sorely lacking. A small body of analytic work goes back to
the early 1980’s [BR83]; however, even by 1995, of 100+ pages in the Hand-
book of Combinatorics devoted to asymptotic enumeration [Odl95], multivari-
ate asymptotics received fewer than six.

This book is the result of work spanning nearly 15 years. Our aim has been
to develop analytic machinery to recover, as effectively as possible, asymp-
totics of the coefficients of a multivariate generating function. Both authors
feel drawn to this area of study because it combines so many areas of modern
mathematics. Functions of one or more complex variables are essential, but
also algebraic topology in the Russian style, stratified Morse theory, computa-
tional algebraic methods, saddle point integration, and of course the basics of
combinatorial enumeration. The many applications of this work in areas such
as bioinformatics, queueing theory and statistical mechanics are not surprising
when we realize how widespread is the use of generating functions in applied
combinatorics and probability.
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The purpose of this book is to pass on what we have learned, so that others
may learn it and use it before we forget it. The present form of the book grew
out of graduate-level mathematics courses that developed, along with the the-
ory, at the University of Wisconsin, Ohio State University, and the University
of Pennsylvania. The course was intended to be accessible to students in their
second year of graduate study. Because of the eclectic nature of the required
background, this presents something of a challenge. One may count on students
having seen calculus on manifolds by the end of a year of graduate studies, and
some complex variable theory. One may also assume some willingness to do
some outside reading. However, some of the more specialized areas on which
multivariate analytic combinatorics must draw are not easy to get from books.
This includes topics such as the theory of amoebas [GKZ08] and the Leray-
Petrovsky-Gårding theory of inverse Fourier transforms. Other topics such as
saddle point integration and stratified Morse theory exist in books but require
being summarized in order not to cause a semester-long detour.

We have dealt with these problems by summarizing a great amount of back-
ground material. Part I contains the combinatorial background and will be
known to students who have taken a graduate-level course in combinatorial
enumeration. Part II contains mathematical background from outside of com-
binatorics. The topics in Part II are central to the understanding and execution
of the techniques of analytic combinatorics in several variables. Part III con-
tains the theory, all of which is new since the turn of the millennium and only
parts of which exist in published form. Finally, there are appendices, almost
equal in total size to Part II, which include necessary results from algebraic
and differential topology. Some students will have seen these but for the rest,
the inclusion of these topics will make the present book self-contained rather
than one that can only be read in a library.

We hope to recruit further researchers into this field, which still has many in-
teresting challenges to offer, and this explains the rather comprehensive nature
of the book. However, we are aware that some readers will be more focused
on applications and seek the solution of a given problem. The book is struc-
tured so that after reading Chapter 1, it should be possible to skip to Part III,
and pick up supporting material as required from previous chapters. A list of
papers using the multivariate methods described in this book can be found on
our website: http://acsvproject.org.

The mathematical development of the theory belongs mostly to the two au-
thors, but there are a number of individuals whose help was greatly instrumen-
tal in moving the theory forward. The complex analysts at the University of
Wisconsin-Madison, Steve Wainger, Jean-Pierre Rosay and Andreas Seeger,
helped the authors (then rather junior researchers) to grapple with the prob-

http://acsvproject.org
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lem in its earliest incarnation. A similar role was played several years later by
Jeff McNeal. Perhaps the greatest thanks are due to Yuliy Baryshnikov, who
translated the Leray-Petrovsky theory and the work of Atiyah-Bott-Gårding
into terms the authors could understand, and coauthored several papers. Frank
Sottile provided help with algebra on many occasions; Persi Diaconis arranged
for a graduate course while the first author visited Stanford in 2000; Richard
Stanley answered our numerous miscellaneous queries. Thanks are also due to
our other coauthors on papers related to this project, listed on the project web-
site linked from the book website. Alex Raichev and Torin Greenwood helped
substantially with proofreading and with computer algebra implementations of
some parts of the book. All software can be located via the book website.

On a more personal level, the first author would like to thank his wife, Diana
Mutz, for encouraging him to follow this unusual project wherever it took him,
even if it meant abandoning a still productive vein of problems in probability
theory. The sentiment in the probability theory community may be otherwise,
but the many connections of this work to other areas of mathematics have been
a source of satisfaction to the authors. The first author would also like to thank
his children, Walden, Maria and Simi, for their participation in the project via
the Make-A-Plate company (see Figure 0.1).

Figure 0.1 Customized “asymptotics of a multivariable generating function” din-
ner plates.

The second author thanks his wife Golbon Zakeri, children Yusef and Yahya,
and mother-in-law Shahin Sabetghadam for their help in carving out time for
him to work on this project, sometimes at substantial inconvenience to them-
selves. He hopes they will agree that the result is worth it.

Dedication

To the memory of Philippe Flajolet, on whose shoulders stands all of the work
herein.
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1

Introduction

Consider an array1 of complex numbers{
ar : r ∈ Nd

}
:=

{
ar1,...,rd : r1, . . . , rd ∈ N

}
where, as in the rest of this book, we include zero in the set N = {0, 1, 2, . . .}.
The numbers ar usually come with a story — a reason they are interesting.
Often, they count a class of objects parametrized by r. For example, it could
be that ar is the multinomial coefficient ar =

(
|r|

r1 ··· rd

)
, in which case ar counts

sequences of elements in {1, . . . , d} with r1 occurrences of 1, r2 occurrences
of 2, and so forth up to rd occurrences of the symbol d. Another frequent
source of these arrays is probability theory, where the numbers ar ∈ [0, 1]
are probabilities of events parametrized by r. For example, ars might be the
probability that a simple random walk of r steps in {−1, 1} ends at the integer
point s.

Definition 1.1 (running notation). Throughout this text we use d to denote the
dimension of an arbitrary array, and often employ r, s and t as synonyms for
r1, r2 and r3, respectively, so as to avoid subscripts in low-dimensional exam-
ples. We also use the notation |r| :=

∑d
j=1 |r j| for any vector r, which helps us

normalize in a way convenient for combinatorial examples.

How might one understand an array of numbers? In some cases there may
be a simple explicit formula, for instance the multinomial coefficients are given
by a ratio of factorials. When a formula of such brevity exists, we don’t need
fancy techniques to describe the array. Unfortunately, this rarely happens. Of-
ten, if a formula exists at all, it will not be in closed form but will include in-
definite summation. As Stanley [Sta97, Ex.1.1.4] notes in his foundational text
on enumeration, “There are actually formulas in the literature (nameless here
1 To simplify our presentation in this introduction we consider arrays indexed by vectors of

natural numbers, while later in the text we generalize to arrays indexed by integer vectors.

19



20 Introduction

forevermore) for certain counting functions whose evaluation requires listing
all of the objects being counted! Such a ‘formula’ is completely worthless.”
Less egregious are the formulae containing functions that are rare or compli-
cated and whose properties are not immediately familiar to us. It is not clear
how much good comes from this kind of formula.

Another way of describing arrays of numbers is via recursions. The simplest
examples are finite linear recurrences, such as the recurrence ar,s = ar−1,s +

ar,s−1 for the binomial coefficients ar,s =
(

r+s
r

)
. A recursion for ar in terms of

values {as : s ≺ r} whose indices precede r in the coordinatewise partial order
may be unwieldy, perhaps requiring evaluation of a complicated function of all
as with s ≺ r, but if the recursion is of bounded complexity then it can give an
efficient algorithm for computing ar. Still, we will see that even in the case of
simple recursions the estimation of ar may not be straightforward. Thus, while
we look for recursions to help us understand number arrays, and for efficient
methods of computation, they rarely provide definitive descriptions.

A third way of understanding an array of numbers is via an estimate. For
instance, Stirling’s formula, which approximates

n! ≈
nn

en

√
2πn

for large n, yields an approximation(
r + s

r

)
≈

( r + s
r

)r ( r + s
s

)s
√

r + s
2πrs

(1.1)

for the binomial coefficients when r and s are large. If number-theoretic prop-
erties of the binomial coefficients are required then we are better off sticking
with a ratio of factorials; when their approximate size is paramount, the esti-
mate (1.1) is better.

A fourth way to understand an array of numbers is to encode it algebraically.
The generating function (often abbreviated GF) of the array {ar} is the formal
series F(z) :=

∑
r∈Nd arzr. Here z is a d-dimensional vector of indeterminates

(z1, . . . , zd) and we use the notation zr := zr1
1 · · · z

rd
d . In our running example of

multinomial coefficients, we have the generating function

F(z) =
∑
r∈Nd

(
|r|

r1 · · · rd

)
zr1

1 · · · z
rd
d =

1
1 − z1 − · · · − zd

,

where the final expression can be viewed either as a multiplicative inverse
in a formal power series ring, or as an analytic function over an appropriate
domain of Cd. Stanley calls the generating function “the most useful but the
most difficult to understand” method for describing a sequence or array.
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The algebraic form of a generating function is intimately related to recur-
sions – and exact formulae – for its coefficient sequence ar, as well as combi-
natorial decompositions for the objects enumerated by ar. In a complementary
manner, the analytic properties of a generating function correspond to esti-
mates of ar.

1.1 Generating functions and asymptotics

In this text we are chiefly concerned with the asymptotic behavior of ar as
r → ∞ in certain directions. To discuss the behavior of sequences as their
indices go off to infinity, we introduce some standard asymptotic notation.

Definition 1.2 (asymptotic notation). If f and g are real-valued functions then
we write

• f = O(g) if and only if lim sup
x→x0

| f (x)/g(x)| < ∞,

• f = o(g) if and only if lim
x→x0

f (x)/g(x) = 0,

• f ∼ g if and only if lim
x→x0

f (x)/g(x) = 1,

• f = Ω(g) when g = O( f ), and
• f = Θ(g) when both f = O(g) and g = O( f ),

for some value x0 understood in context, typically 0 or +∞.
As n → ∞ the function f (n) is said to be rapidly decreasing if f (n) =

O
(
n−K

)
for every K > 0, exponentially decaying if f (n) = O(e−cn) for some

c > 0, and super-exponentially decaying if f (n) = O(e−cn) for every c > 0.

Remark. An alternative definition is that f = O(g) when there exists C > 0
and an open neighborhood N of x such that f (x) ≤ Cg(x) for all x ∈ N. In this
case C is called an implied constant. One may increase C and decrease N and
still maintain the inequality, so implied constants are not unique, even if they
are chosen to give a tight inequality.

Example 1.3. As n→ ∞ the function f (n) = 1/n! decays super-exponentially,
while 2−n decays exponentially and e−

√
n approaches zero but does not decay

exponentially. ◁

An asymptotic scale is a sequence {g j : j ∈ N} of functions satisfying g j+1 =

o(g j) for all j ≥ 0. An asymptotic expansion (also called asymptotic series or
asymptotic development)

f ≈
∞∑
j=0

c jg j
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for a function f in terms of an asymptotic scale {g j : j ∈ N} and constants
c j ∈ C is said to hold if

f −
M−1∑
j=0

c jg j = O(gM) (1.2)

for every M ≥ 1.

Remark. It is possible that c j = 0 for all j. For example, this will happen if
g j(n) = n− j and f is exponentially decaying. In this case there is no leading
term in the expansion. Otherwise, the leading term of an asymptotic expan-
sion is the first non-zero term ckgk in the expansion.

Example 1.4. Stirling’s famous approximation to the factorial can be refined
to give an asymptotic series

n! ≈
(n

e

)n √
2πn

∑
ℓ≥0

cℓn−ℓ

with coefficient sequence {cℓ} beginning 1, 1/12, 1/288,−139/51840, . . . . ◁

Example 1.5. Let f ∈ C∞(R) be a smooth real function defined on a neigh-
borhood of zero, so that cn = f (n)(0)/n! is the nth term in its Taylor expansion.
If f is not analytic then this expansion may not converge to f , and may even
diverge for all nonzero x, but Taylor’s theorem with remainder always implies

f (x) =
M−1∑
n=0

cnxn + cMξ
M

for some ξ > 0 bounded close to the origin. This proves that

f ≈
∑
n≥0

cnxn

is always an asymptotic expansion for f near zero. ◁

Remark. Following Poincaré, many authors use the symbol ∼ to denote both
asymptotic equivalence of functions and asymptotic series expansions. How-
ever, this overloading of notation can lead to inconsistencies. We thus follow
texts such as [dBru81] in using ≈ for asymptotic expansions.

Exercise 1.1. Let f (x) = ex. Prove that f (x) ∼ 1 as x → 0 but f (x) ̸≈ 1 as an
asymptotic expansion in powers of x at x = 0.

All these notations hold in the multivariate case as well, except that if the
limit value z0 is infinity then a statement such as f (z) = O(g(z)) must also
specify how z approaches the limit. A direction is a ray in Rd defined by all
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positive multiples of a fixed non-zero vector, which can also be viewed as
an element of (d − 1)-dimensional real projective space RPd−1. Often we will
parametrize directions of interest by taking r → ∞ while fixing or bounding
the normalized vector r̂ := r/|r|, where, as introduced above,

|r| = |r1| + |r2| + · · · + |rd |.

Sometimes we shall loosely refer to “the direction r”, by which we mean the
direction parametrized by r̂, or the ray determined by r.

Definition 1.6. A multivariate asymptotic expansion

fr ≈
∞∑
j=0

c jg j(r)

holds on a compact set of directions D ⊆ RPd−1 if each c j ∈ C, each g j =

o(g j+1) and fr −
∑M−1

j=0 g j(r) = O(gM) for each M as r → ∞ with r̂ ∈ D. This
asymptotic expansion is a uniform asymptotic expansion on D if the implied
constants can be chosen independently of the sequence r as long as r̂ ∈ D.

Example 1.7. In Chapter 9 we shall derive the result(
r + s

s

)
∼

(r + s)(r+s)

rr ss

√
r + s
2πrs

for all r, s > 0 as (r, s) → ∞ with r/(r + s) and s/(r + s) remaining bounded
and away from 0. This gives the first term of an asymptotic series which is
uniform provided r/s and s/r are bounded away from 0, with all terms in the
series varying smoothly with direction. Because of our restrictions on r/s, this
asymptotic series can be expressed in terms of the asymptotic scale

g j(r, s) =
(r + s)(r+s)

rr ss

√
r + s

rs
(r + s)− j ,

an asymptotic scale involving decreasing powers s− j of s, or an asymptotic
scale involving decreasing powers r− j of r. Note that this multivariate asymp-
totic approximation is not uniform for all real directions: for instance, if r = 0
then

(
r+s

s

)
= 1 for all s. ◁

Remark. Throughout this book, we typically use f (z) and an instead of F(z)
and ar when dealing with the univariate case.

As we will see in Chapter 3, the generating function f (z) for a univariate
sequence {an : n ∈ N} leads, almost automatically, to asymptotic estimates for
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an as n → ∞. To estimate an when its generating function f is known, we
begin with Cauchy’s integral formula

an =
1

2πi

∫
C

z−n−1 f (z) dz . (1.3)

Equation (1.3) represents an by a complex contour integral on a sufficiently
small circle C around the origin, and one may apply complex analytic methods
to obtain an asymptotic estimate. The necessary knowledge of residues and
contour shifting may be found in an introductory complex variables text such
as [Con78b; BG91], with a particularly nice treatment of univariate saddle
point integration found in [Hen88; Hen91]. In particular, the singularities of
f (z) play a large role in characterizing asymptotic behavior.

The situation for multivariate arrays is nothing like the situation for uni-
variate arrays. In 1974, when Bender published his review article [Ben74] on
asymptotic enumeration, the literature on asymptotics of multivariate generat-
ing functions was in its infancy. Bender’s concluding section urges research in
this area:

Practically nothing is known about asymptotics for recursions in two variables even
when a generating function is available. Techniques for obtaining asymptotics from
bivariate generating functions would be quite useful.

In the 1980s and 1990s, a small body of results was developed by Bender,
Richmond, Gao and others, giving the first partial answers to asymptotic ques-
tions for multivariate generating functions. The first paper to concentrate on
extracting asymptotics from multivariate generating functions was [Ben73], al-
ready published at the time of Bender’s survey, but the seminal paper is [BR83].
The authors work under the hypothesis that F has a singularity of the form
A/(zd − g(x))q on the graph of a smooth function g, for some real exponent
q, where x denotes (z1, . . . , zd−1). They show, under appropriate further hy-
potheses on F, that the probability measure µn one obtains by renormalizing
{ar : rd = n} to sum to 1 converges to a multivariate normal distribution when
appropriately rescaled. Their method, which we call the GF-sequence method,
is to break the d-dimensional array {ar} into a sequence of (d−1)-dimensional
slices and consider the sequence of (d − 1)-variate generating functions

fn(x) =
∑

r:rd=n

arxr .

They show that, asymptotically as n→ ∞,

fn(x) ∼ Cng(x)h(x)n (1.4)
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and that sequences of generating functions obeying (1.4) satisfy a central limit
theorem and a local central limit theorem.

The GF-sequence method is limited to the single, though important, case
where the coefficients ar are nonnegative and possess Gaussian (central limit)
behavior. The work of [BR83] has been greatly expanded upon, but always
in a similar framework. For example, it has been extended to matrix recur-
sions [BRW83] and, in [GR92; BR99], from algebraic to algebraico-logarithmic
singularities of the form F ∼ (zd −g(x))q logα(1/(zd −g(x))). The difficult step
under these hypotheses is deducing asymptotics from the quasi-power hypoth-
esis (1.4).

1.2 New multivariate methods

The research presented in this book grew out of several problems encoun-
tered by the first author, concerning bivariate and trivariate arrays of probabil-
ities. One might have thought, based on the situation for univariate generating
functions, that there would be well-known, neatly packaged results yielding
asymptotic estimates for the probabilities in question. At that time, the most
recent and complete reference on asymptotic enumeration was a 1995 survey
of Odlyzko [Odl95]. As mentioned in the preface, only six of the over one hun-
dred pages of the survey are devoted to multivariate asymptotics, mainly to the
GF-sequence results of Bender et al., and its section on multivariate methods
closes with a call for further work in this area. Evidently, a general asymp-
totic method was not known in the multivariate case, even for the simplest
non-trivial class of rational functions.

This stands in stark contrast to the univariate theory of rational functions,
which is trivial in combinatorial applications (see Chapter 3). The relative dif-
ficulty of the problem in higher dimensions is perhaps unexpected, but connec-
tions to other areas of mathematics such as Morse theory are quite intriguing.
These connections, as much as anything else, have caused us to pursue this
line of research long after the urgency of the original motivating problems had
faded.

Odlyzko [Odl95] describes why he believes multivariate coefficient estima-
tion to be difficult. First, generating function singularities are no longer iso-
lated, but generally form (d−1)-dimensional hypersurfaces, so even multivari-
ate rational functions have an infinite set of singularities. Second, the multivari-
ate analogue of the one-dimensional residue theorem is the considerably more
difficult theory of Leray residues [Ler59]. This theory is fleshed out in the text
of Aizenberg and Yuzhakov [AY83], who also spend a few pages [AY83, Sec-
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tion 23] on generating functions and combinatorial sums. Further progress in
using multivariate residues to evaluate coefficients of generating functions was
made by Bertozzi and McKenna [BM93], though at the time of Odlyzko’s sur-
vey none of the papers based on multivariate residues such as [Lic91; BM93]
had resulted in any kind of systematic application of these methods to enumer-
ation. It is interesting to note that several of these early works, such as [BM93;
KY96], are centred on queuing theory applications.

The focus of this book is a more recent vein of research, begun in [PW02],
continued in its infancy in [PW04; Lla03; Wil05; Lla06; RW08; RW11; PW08;
DeV10; PW10], and now comprising a stable and ever-growing component
of enumerative combinatorics. This research extends ideas that are present to
some degree in [Lic91; BM93; KY96], using complex methods that are gen-
uinely multivariate to evaluate coefficients via the multivariate Cauchy formula

ar =
(

1
2πi

)d ∫
T
z−r−1F(z) dz , (1.5)

where T is a suitable product of circles in each variable. We hope that by
avoiding the symmetry-breaking decompositions of the GF-sequence method
we will obtain methods that are more universally applicable. In particular,
much of this past work can be viewed as instances of a more general result
estimating the Cauchy integral via topological reductions of the cycle T of
integration. These topological reductions, while not fully automatic, are algo-
rithmically decidable in many cases. The ultimate goal, now well on its way
to fruition [Mel21, Chapter 7], is to develop software to automate all of the
computation.

We can by no means say that the majority of multivariate generating func-
tions fall prey to these new techniques. Nevertheless, as illustrated in this
text and a steadily increasing number of papers, we can treat a large num-
ber of combinatorially interesting examples. The class of functions to which
the methods described in this book may be applied is larger than the class of
rational functions, but similar in spirit: the function must have singularities,
and the singularities dictating asymptotics must be poles. This translates to the
requirement that the function be meromorphic in a neighborhood of a certain
polydisk, which means that it has a representation, at least locally, as a quotient
of analytic functions.

Throughout this book, we reserve the symbols F, P, and Q for a meromor-
phic function F expressed as the quotient P/Q of analytic functions with a
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convergent series expansion

F(z) =
P(z)
Q(z)

=
∑
r

arz
r .

Although this introduction has focused on power series expansions, we will
develop the theory for convergent Laurent expansions, allowing the index r to
range over Zd. The set V of singularities of F, which is crucial to the asymp-
totic analysis, is known as its singular variety. For instance, if P and Q are
coprime polynomials then the singular variety is the algebraic set V = {z ∈
Cd : Q(z) = 0}.

We now briefly describe the ACSV approach to computing multivariate
asymptotics. A more detailed overview is provided in Chapter 7.

(i) Use the multidimensional Cauchy integral (1.5) to express ar as an inte-
gral over a d-dimensional torus (product of circles) T in Cd.

(ii) Observe that T may be replaced by any cycle homologous to [T ] in
Hd(M), whereM is the domain of analyticity of the integrand.

(iii) Deform the cycle T to lower the modulus of the integrand as much as
possible. Morse-theoretic arguments imply that local maxima are char-
acterized by the set critical(r) of critical points of V, which depend
only on the direction r̂ of r as r → ∞ and are saddle points for the
magnitude of the integrand.

(iv) Use algebraic methods to encode the elements of critical(r) by a finite
collection of equalities and inequalities (defined by polynomials when F
is rational).

(v) Use topological methods to find certain minimax cycles C(w) near each
critical point w, termed quasi-local cycles, such that the homology class
[T ] can be represented by a sum

∑
w nwC(w) with each nw ∈ Z.

(vi) Refine the set of critical points to the set contrib(r) of contributing
points that maximize the modulus of the Cauchy integrand among the
critical points w with nw , 0. In the vast majority of cases for which we
have explicit asymptotic results, it is the case that nw ∈ {0,±1}.

(vii) Asymptotically approximate integrals over the C(w) as w ranges over
the set of contributing points, using a combination of residue and saddle
point techniques.

When successful, this approach leads to an asymptotic representation of the
coefficients ar that is uniform as r varies on the interior of finitely many cones
that partitionRd. As r̂ varies over compact subsets in the interior of such cones,
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the elements of contrib(r) ⊆ V vary smoothly with r̂ and there exist asymp-
totic series {Φw(r) : w ∈ contrib(r)} whose terms can be computed explic-
itly such that

ar =
1

(2πi)d

∫
[T ]

zr−1F(z) dz

=
∑

w∈critical(r)

nw
(2πi)d

∫
C(w)

zr−1F(z) dz (1.6)

=
∑

w∈contrib(r)

nwΦw(r) .

The first line in this chain of equalities reflects steps (i) and (ii) of our program
above, while the second is the result of steps (iii)–(v), and the final line comes
from steps (vi) and (vii). The set critical(r) is algorithmically computable
in reasonable time, while determining membership in the subset contrib(r)
can be extremely challenging. The explicit formulae Φw(r) in the last line are
sometimes relatively easily to compute (see Chapter 9) and sometimes more
difficult (see Chapter 10 and especially Chapter 11).

1.3 Outline of the remaining chapters

This book is divided into three parts, of which the third part is the heart of the
subject: deriving asymptotics in the multivariate setting once a meromorphic
generating function is known. Nevertheless, some discussion is required on
how generating functions are obtained, how to interpret them, what the chief
motivating examples and applications are, and what we knew how to do be-
fore the line of research described in Part III. These topics also make the book
into a self-contained reference, and allow one to obtain asymptotics by deriv-
ing new forms of a generating function, turning an intractable analysis into
a tractable one by changing variables, re-indexing, aggregating, and so forth.
Consequently, the first three chapters comprising Part I form a crash course
in univariate analytic combinatorics. Chapter 2 explains generating functions
and their uses, introducing formal power series, their relation to combinatorial
enumeration, and the combinatorial interpretation of rational, algebraic and
transcendental operations on power series. Chapter 3 is a review of univariate
asymptotics, much of which serves as mathematical background for the multi-
variate case. While some excellent sources are available in the univariate case,
for example [dBru81; Wil06; FS09], none of these is concerned with provid-
ing the brief yet reasonably complete summary of analytic techniques that we
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provide here. It seems almost certain that someone trying to understand the
main subject of this text will profit from a review of the essentials of univariate
asymptotics.

Carrying out the multivariate analyses described in Part III requires a fair
amount of mathematical background. Most of this is at the level of graduate
coursework, ideally already known by practising mathematicians but in reality
often forgotten, never learned, or not learned in sufficient depth. The required
background is composed of small to medium-sized chunks taken from many
areas: undergraduate complex analysis, calculus on manifolds, saddle point in-
tegration (both univariate and multivariate), algebraic topology, computational
algebra, and Morse theory. Many of these background topics would require a
full semester’s course to learn from scratch. That is too much material to in-
clude here, but we also want to avoid the scenario where a reference library is
required each time a reader picks up this book. Accordingly, we have included
substantial background material.

This background material is separated into two pieces. The first piece is
the three chapters that comprise Part II, which contains material that we feel
should be read or skimmed before the central topics are tackled. The topics in
Part II have been sufficiently pared down that it is possible to learn them from
scratch if necessary. Chapters 4 and 5 describe how to asymptotically evalu-
ate saddle point integrals in one and several variables, respectively. Familiar-
ity with these results is needed for the final steps in the analyses in Part III
to make sense. Most of the results in these chapters can be found in a refer-
ence such as [BH86]; the treatment here differs from the usual sources in that
Fourier and Laplace type integrals are treated as instances of a single complex-
phase case. Working in the holomorphic setting, analytic techniques (contour
deformation) are used whenever possible, after which comparisons are given
to the corresponding C∞ approach (which uses integration by parts in place
of contour deformation). Chapter 6 covers domains of convergence of mul-
tivariate power series and Laurent series, the notion of polynomial amoebas,
and results relating amoebas to domains of convergence of Laurent series. We
also note that much of Chapter 8, which recalls several tools from polynomial
system solving such as Gröbner bases, morally belongs with the background
material in Part II; we have placed it in Part III so that we can compute quan-
tities appearing in our multivariate analyses that are introduced in Chapter 7.
It is possible to skip Chapter 8, if one wants to understand the theory and does
not care about computation; however, few users of analytic combinatorics live
in a world where computation does not matter.

The remaining background material is relegated to the four appendices, each
of which contains a reduction of a semester’s worth of material. It is not ex-
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pected that the reader will go through these in advance. Rather, they serve as
references so that frequent library visits will not be necessary. Appendix A
presents for beginners all relevant knowledge about calculus on manifolds and
algebraic topology. Manifolds and tangent and cotangent vectors are defined,
differential forms in Rn are constructed from scratch, and integration of forms
is developed. The appendix ends with a short treatment of complex differential
forms. Appendix B reviews the essentials of algebraic topology: chain com-
plexes, homology and cohomology, relative homology, Stokes’s Theorem, and
some important exact sequences. Appendix C summarizes classical Morse the-
ory — roughly the first few chapters of Milnor’s classic text [Mil63] — after
which Appendix D introduces the notion of stratified spaces and describes
stratified Morse theory as developed by Goresky and MacPherson [GM88].
Part I I and the appendices also have a second function: some of the results
used in Part III are often quoted in the literature from sources that do not pro-
vide a proof. On more than one occasion, when organizing the material in this
book, we found that a purported reference to a proof ultimately led to nothing.
Beyond serving as a mini-reference library, therefore, the background sections
provide some key proofs and corrected citations to eliminate ghost references
and the misquoting of existing results.

The heart of this book, Part III, is devoted to new results in the asymptotic
analysis of multivariate generating functions. Chapter 7 sets out the theory
by which multivariate asymptotics are derived, greatly expanding the outline
given in Section 1.2. The internal structure of Chapter 7 is described at length
in the beginning of the chapter. Because some of the material in this long chap-
ter relies on specialized topological knowledge, it is possible to take a concep-
tual off-ramp after most sections, which get progressively more general as the
chapter proceeds. We begin with extended examples in Section 7.1, before de-
scribing the argument in the simpler case when V is a smooth manifold in
Section 7.2. Section 7.3 covers the general case, ultimately deriving the fun-
damental result of the chapter: a decomposition (7.2) for ar as an integer sum
of quasi-local cycles near critical points, without any specification of the set
contrib(r) or the asymptotic series Φz .

Having reduced the computation of ar to saddle point integrals with com-
putable parameters, plugging in results on saddle point integration yields the-
orems for the end user. These break into several types. Chapter 9 discusses the
case when the singular variety V is smooth near the contributing points. This
case is simpler than the general case in several respects: the residues are more
straightforward, so multivariate residue theory is not always needed, and only
classical Morse theory is required. Chapter 10 discusses the case where V
is locally the union of smooth hypersurfaces near contributing points, which
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is also a case that is reasonably well understood. Finally, we discuss ratio-
nal functions with singularities having nontrivial monodromy. In this case our
knowledge is limited, but some known results are derived in Chapter 11. This
chapter is not quite as self-contained as the preceding ones; in particular, some
results from [BP11] are quoted without proof. This is because the technical
background for these analyses exceeds even the relatively large space we have
allotted for background. The paper [BP11], which is self-contained, already
reduces by a significant factor the body of work presented in the celebrated
paper [ABG70], and further reduction is only possible by quoting key re-
sults. Chapter 12 works out a large number of examples following the theory
in Chapters 9 – 11. Finally, Chapter 13 is devoted to further topics, includ-
ing higher order asymptotics, algebraic generating functions, diagonals, and a
number of open problems.

Notes

The overall viewpoint on enumeration discussed here is heavily influenced
by [Sta97] and [FS09]. The two, very different, motivating problems alluded
to in Section 1.2 were the hitting time generating function from [LL99] and
the Aztec Diamond placement probability generating function from [JPS98].
The first versions of the seven step program at the end of Section 1.2 that were
used to obtain multivariate asymptotics involved expanding a torus of integra-
tion until it was near a critical point on the boundary of the domain of conver-
gence of the series under consideration, and then doing some surgery to isolate
the main asymptotic contribution as the integral of a univariate residue over
a complementary (d − 1)-dimensional chain. This was carried out in [PW02;
PW04] and was brought to the attention of the authors by several analysts at
Wisconsin, among them S. Wainger, J.-P. Rosay and A. Seeger. Although their
names do not appear in any bibliographic citations associated with this project,
they are acknowledged in these early publications and should be credited with
useful contributions to this enterprise.

Additional exercises

Exercise 1.2. (asymptotic expansions need not converge) Find an asymptotic
expansion f ≈

∑∞
j=0 g j for a function f as x ↓ 0 such that

∑∞
j=0 g j(x) is not

convergent for any x > 0. Conversely, suppose that f (x) =
∑∞

j=0 g j(x) for
x > 0 and g j+1 = o(g j) as x ↓ 0 — does it follow that

∑∞
j=0 g j is an asymptotic

expansion of f at the origin?
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Exercise 1.3. Prove or give a counterexample: if g is a continuous function
and for each λ we have ars = g(λ) + O

(
(r + s)−1

)
as r, s → ∞ with r/s → λ,

then ars ∼ g(r/s) when r, s→ ∞ as λ varies over a compact interval in R+.

Exercise 1.4. (Laplace transform asymptotics) Let A be a smooth real function
in a neighborhood of zero and define its Laplace transform by

Â(τ) :=
∫ ∞

0
e−τxA(x) dx .

Writing A(x) =
∑

n≥0 cnxn with cn = A(n)(0)/n! and integrating term by term
using ∫ ∞

0
xne−τx dx = n!τ−n−1

suggests the series ∑
n≥0

A(n)(0)τ−n−1 (1.7)

as a possible asymptotic expansion for Â. Although the term by term integra-
tion is completely unjustified, show that the series (1.7) is a valid asymptotic
expansion of Â in decreasing powers of τ as τ→ ∞.

Exercise 1.5. Recall Stirling’s approximation from Example 1.4. Use a com-
puter algebra system to experiment, for 1 ≤ m ≤ 5, with the mth order approx-
imation for n = 1, . . . , 50. For each such value of n, find the best value m at
which to truncate the asymptotic series. For each n, what is the best relative
error in the approximation to n! that we can obtain in this way?

Exercise 1.6. Use a computer algebra system to experiment for 1 ≤ m ≤ 20
with the error in the mth order Stirling approximation to n! when n = 1. After
which value of m does the error become noticeably bad?
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Generating functions

This chapter provides a crash course on generating functions and their uses
in enumeration. For a more lengthy introduction, we recommend [Wil06] —
other standard references include [FS09, Chapters I – III], [vLW01, Chap-
ter 14], [Sta97, Section 1.1], and the comprehensive treatment in [GJ04].

Throughout this book, we use the notation [n] := {1, . . . , n} and write δ j for
the vector of length d with a 1 in its jth coordinate and a 0 elsewhere.

2.1 Power series

Generating functions impose an algebraic structure on arrays of complex num-
bers, which analogous to (and thus most easily expressed using the same nota-
tion as) convergent power series. To that end, let z = (z1, . . . , zd) be a vector of
indeterminates and consider the set of formal expressions

C[[z]] = C[[z1, . . . , zd]] :=

∑
r∈Nd

arzr : ar ∈ C for all r ∈ Nd

 .

If F(z) =
∑

r frzr ∈ C[z] then f is called a formal power series, the co-
efficient of zr in F is [zr]F(z) := fr, and we also single out the constant
coefficient F(0) := [z0]F(z) = f0. The set C[[z]] becomes the ring of formal
power series by defining addition term-wise

[zr]
(
F(z) +G(z)

)
:= [zr]F(z) + [zr]G(z)

and multiplication by convolution

[zr]F(z)G(z) :=
∑
s∈Nd

[zs]F(z) · [zr−s]G(z) ,

33
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where [zr−s]G(z) is defined to be zero if r − s has a negative coordinate (so
the sum in the convolution is always finite). The generating function of the
array {ar : r ∈ Nd} is the formal power series

∑
r∈Nd arzr ∈ C[[z]].

The additive identity in C[[z]] is the series 0 (where every coefficient is
zero) and the multiplicative identity is the series 1 (which has a coefficient of
zero for every index vector r , 0).

Exercise 2.1. Prove that F(z) ∈ C[[z]] has a multiplicative inverse if and only
if F(0) , 0.

Exercise 2.1 implies C[[z]] is a local ring, meaning that it has a unique
maximal ideal m that, in this case, consists of all non-units. Local rings come
equipped with a notion of convergence: a sequence of elements Fn(z) ∈ C[[z]]
converges to F(z) ∈ C[[z]] if and only if for every k ∈ N the difference
Fn(z) − F(z) lies in mk for all sufficiently large n. An easier way to say this
is that Fn(z) → F(z) if and only if for any r ∈ Nd there exists Nr ∈ N such
that [zr]Fn(z) = [zr]F(z) for all n ≥ Nr. In other words, each coefficient
eventually stabilizes.

For 1 ≤ k ≤ d we write ∂k for the formal partial derivative operator which
takes f (z) =

∑
r∈Nd arzr and returns

(∂k f )(z) =
∂

∂zk
f (z) :=

∑
r∈Nd

rkarzr−δk .

Powers ∂r
k of ∂k denote repeated differentiation, with (∂0

k f )(z) = f (z), and a
monomial ∂r = ∂r1

1 · · · ∂
rd
d represents repeated differentiation with respect to

each variable. We also use the shorthand fzr (z) and f (r)(z) for (∂r f )(z) =
(∂|r| f /∂r1

z1 · · · ∂
rd
zd )(z).

Although formal power series are simply algebraic objects, we often con-
sider them as representing convergent series expansions, and thus analytic
functions, in certain subsets of Cd. The (open) polydisk centered at p ∈ Cd

with polyradius b ∈ Rd
>0 is the set

Db(p) := {z ∈ Cd : |z j − p j| < b j for 1 ≤ j ≤ d},

and a neighborhood of a point p ∈ Cd is any polydisk containing p. The torus
centered at p ∈ Cd with polyradius r ∈ Rd

>0 is the set

Tp(r) := {z ∈ Cd : |z j − p j| = r j for 1 ≤ j ≤ d}.

To ease notation we write T (r) for a torus centered at the origin p = 0, and for
every w ∈ Cd

∗ (here C∗ = C \ {0} is the set of nonzero complex numbers) we
define

T(w) = T (|w1|, . . . , |wd |) = {z ∈ Cd : |z j| = |w j| for 1 ≤ j ≤ d}.
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Let N be a neighborhood of the origin and suppose that F,G ∈ C[[z]] are
the generating functions of the sequences { fr} and {gr}. If

∑
r∈Nd | frwr | and∑

r∈Nd |grwr | are finite for all w ∈ N then F and G are absolutely convergent
series on N , meaning they represent analytic functions, and taking the sum
F(z) +G(z) or product F(z)G(z) as formal series or analytic functions gives
the same result. If f represents an analytic function on a neighborhood of Cd

then every partial derivative of f does as well.
Since a finite intersection of neighborhoods of the origin is a neighborhood

of the origin, the collection of series that converge in some neighborhood of the
origin is a proper subring C{z} of C[[z]], called the ring of germs of analytic
functions. The interior D ⊂ Cd of the domain on which the formal power
series F converges is the union of open polydisks, and is hence characterized
by its intersection DR with Rd. The domain D is in fact log-convex, meaning
that the set {x ∈ Rd : (ex1 , . . . , exd ) ∈ DR} is convex; see Chapter 6 for further
details and generalizations.

Because there are formal power series that fail to converge in any open poly-
disk centered at the origin, to which we cannot apply analytic methods, it can
be convenient to work with a rescaled series

∑
r∈Nd

ar
g(r)z

r for a judiciously
chosen function g. In combinatorial contexts, it is often useful to let g(r) be
a product of factorials ri!, and a generating function normalized in this way
is called an exponential generating function. In addition to facilitating conver-
gence of power series, exponential generating functions also have important
combinatorial interpretations (see Section 2.5 below).

Remark. In examples we often write (x, y, z) for (z1, z2, z3), and (r, s, t) for
(r1, r2, r3), to remove the need for subscripts.

Exercise 2.2. Which of the following formal power series lie in C{x}?

(a)
∞∑

n=0

n!xn

(b)
∞∑

n=0

n2xn

(c)
∞∑

n=1

xn

n
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2.2 Rational operations on generating functions

A combinatorial class (in d variables) is a setA together with a partition ofA
into finite sets {Ar : r ∈ Nd} encoded by the weight map ϕ of the class, which
takes x ∈ A to the unique index ϕ(x) = r ∈ Nd with x ∈ Ar. In one variable,
we have a disjoint union A = ∪∞n=0An and call the weight function ϕ(x) the
size of x ∈ A, so thatAn contains the number of elements inA of size n.

Exercise 2.3. Prove that the objects in any combinatorial class form a (possi-
bly finite) countable set.

The generating function of the combinatorial class A is the formal power
series

A(z) =
∑
x∈A

zϕ(x) =
∑
r∈Nd

|Ar |z
r ∈ C[[z]],

and we say that A enumeratesA under the weighting ϕ.
Arithmetic operations in the ring of formal power series were defined so

as to correspond to existing operations on analytic power series. However, it
is instructive to interpret these operations combinatorially. We begin with a
list of set-theoretic interpretations for rational operations; the combinatorial
wealth of these interpretations helps explain why there are so many rational
generating functions in combinatorics.

Equality corresponds to bijection

Equality between two generating functions A and B corresponds to bijective
correspondence between the classes A and B that they enumerate, because
A(z) = B(z) as formal series if and only if |Ar | = |Br | for all r ∈ Nd.

Multiplying by z j corresponds to re-indexing

In the univariate case, the product zF(z) enumerates the right-shifted sequence
0, a0, a1, a2, . . .. More generally, the product z jF(z) enumerates the right-shifted
array {ar−δ j }, where ar−δ j is defined to be zero if any coordinate of r − δ j

is negative. Conversely, the left-shifted sequence {ar+δ j } is enumerated by
(F(z) − F j(z))/z j, where F j(z) = [z0

j ]F(z) is obtained from F by taking only
the terms that are free of z j.

Sum corresponds to disjoint union

If A(z) and B(z) enumerate classes A and B, respectively, then A(z) + B(z)
enumerates the disjoint union class C = A⊔B where Cr is the disjoint union
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of Ar and Br (so that objects from A are always considered distinct from
objects in B).

The combinatorial interpretations of equality, multiplication by variables
and disjoint union are fairly simple, but already yield interesting examples.

Example 2.1 (binary sequences with no repeated 1s). Let An be the set of
sequences of 0s and 1s of length n that do not begin with 1 and have no two
consecutive 1s. Each such sequence ends either in 0 or in 01, and the previous
terms can be any sequence in An−1 or An−2, respectively. Thus, stripping off
the last one or two symbols yields a bijective correspondence betweenAn and
the disjoint union An−1 ⊔ An−2. At the generating function level, this would
translate to A(z) = zA(z) + z2A(z), except the correspondence fails for n = 0 (it
works for n = 1 if we takeAn to be empty for n < 0). If we considerA to have
a single object of size zero (the empty string) then correcting for this base case
gives the equation

A(z) = 1 + zA(z) + z2A(z) .

Formal power series manipulations then allow us to rearrange and divide by
1 − z − z2 to obtain the generating function

A(z) =
1

1 − z − z2 = 1 + z + 2z2 + 3z3 + 5z4 + · · ·

enumerating binary sequences with no repeated 1s. One may recognize A(z) as
the (shifted) generating function for the Fibonacci numbers. ◁

Example 2.2 (binomial coefficients). Let Ar,s be the set of colorings of the
set [r + s] = {1, . . . , r + s} for which r elements are red and s are green.
Decomposing according to the color of the last element, Ar+s is in bijective
correspondence with the disjoint union of Ar−1,s and Ar,s−1. This is a com-

binatorial interpretation of the identity
(
r + s

r

)
=

(
r + s − 1

r

)
+

(
r + s − 1

r − 1

)
and

holds as long as r + s > 0. It follows that F(x, y)− 1 = xF(x, y)+ yF(x, y) , and
solving for F gives the generating function

F(x, y) =
1

1 − x − y
=

∑
r,s≥0

(
r + s

r

)
xrys

of the binomial coefficients. ◁

Product corresponds to convolution

Let A(z) and B(z) enumerate classes A and B, respectively. The definition of
multiplication of power series shows that A(z)B(z) enumerates the product
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class C = A × B defined by letting Cr be the disjoint union of Cartesian
productsAs×Br−s over all s ∈ Nd that are coordinatewise less than or equal to
r. This is the canonical definition of product in any category of graded objects.

Students of probability theory will recognize the product class as a convolu-
tion. Suppose that F and G are any power series with nonnegative coefficients
whose sets of coefficients both sum to 1. Then F is the probability generating
function for a probability distribution on Nd that gives mass [zr]F(z) to the
points r ∈ Nd, and the analogous result holds for G. The series coefficients
in the product FG characterize the convolution of these distributions, which is
the distribution of the sum of independent picks from the two given distribu-
tions. Thus the study of sums of independent, identically distributed random
variables taking values in Nd is subsumed by the study of powers of generating
functions. The laws of large numbers in probability theory may be derived via
generating function analyses, and the central limit theorem is usually proved
this way. In Chapter 12, versions of these laws are proved for coefficients of
generating functions beyond powers of probability generating functions.

Example 2.3 (enumerating partial sums). Let A(z) enumerate a class A and
let B(z) = 1/(1−z) enumerate the class Bwith |Bn| = 1 for all n. Then A(z)B(z)
enumerates the class C where Cn is the disjoint union ⊔n

j=0A j of objects in A
with size at most n, and the coefficients of C(z) = A(z)/(1 − z) form the partial
sum sequence cn =

∑n
j=0 a j. ◁

Quasi-inverse corresponds to finite tuples

Let B be a combinatorial class with B0 = ∅. Then we can construct the se-
quence classA = SEQ(B) containing all finite tuples of elements of B, where
Ar consists of all tuples (x1, . . . , xk) ∈ Bk (of any length k) with ϕ(x1) +
· · · + ϕ(xk) = r. For instance, in the univariate case An contains all finite
tuples of elements in B whose sizes sum to n. SinceA is the disjoint union of
the empty sequence, the class of singleton sequences, the class of sequences
of length 2, and so forth, we have the generating function equation A(z) =
1+ B(z)+ B(z)2 + · · · = 1/(1− B(z)), where convergence in the ring of formal
power series follows from the fact that B(0) = |B0| = 0.

Example 2.4 (binary strings by zeros and ones). Consider the class A of bi-
nary strings in Example 2.1 enumerated by the number of zeros and the num-
ber of ones they contain, rather than by total length. Any such sequence can be
uniquely decomposed into a finite sequence of the blocks 0 and 01. If B is the
combinatorial class containing these blocks, with weight function ϕ(0) = (1, 0)
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and ϕ(01) = (1, 1) encoding the blocks by the number of zeros and ones they
contain, then B has generating function x + xy. The generating function forA
is therefore A(x, y) = 1/(1 − x − xy). Note that setting x = y = z recovers the
univariate generating function A(z, z) = 1/(1− z− z2) counting these strings by
total length. ◁

Example 2.5 (prefix codes). This example illustrates the use of prefix codes
to encode messages over an arbitrary alphabet using binary strings. Fix a finite
rooted planar binary tree T with at least two vertices such that every vertex has
exactly zero or exactly two children. We label each non-root vertex v of T with
the binary string obtained by taking the unique path from the root of T to v
and recording a 0 whenever we move to the left and a 1 whenever we move to
the right. Thus, the elements in T of distance d from the root are labeled with
binary strings of length d (we can consider the root itself to have the empty
string as its label).

Any binary string may be uniquely decomposed into blocks by repeatedly
stripping off the left-most substring that corresponds to a label of a leaf in T ,
where the decomposition may end with a partial block corresponding to an
internal node of T . Let B be the class of binary sequences enumerated by their
length and the number of blocks they have under this decomposition. If L(x)
is the univariate generating function enumerating the number of leaves in T by
depth (i.e., distance to the root of T ) then the subclass of B containing strings
consisting of a single block under this decomposition has generating function
yL(x). If I(x) is the univariate generating function enumerating the internal
vertices in T by depth then 1 + y(I(x) − 1) enumerates the possible partial
blocks that a binary string can end with under our decomposition, including
having no partial block. As an arbitrary binary string can be uniquely split
into a sequence of blocks followed by a (possibly empty) partial block, the
generating function B(x, y) enumerating B is

B(x, y) =
1 + y(I(x) − 1)

1 − yL(x)
.

To use a prefix code over the alphabet A one creates a binary tree T whose
leaves correspond to the symbols in A and parses a binary string into a word
over A using the block decomposition described above. The generating func-
tion B(x, y) encodes how many different messages can be transmitted through
binary strings of a fixed length (in applications one would like to pick the tree
T to maximize this quantity, perhaps under some constraints). ◁

The field of lattice path enumeration also yields a large and well studied
class of examples.
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Example 2.6. Let S be a finite subset of Nd \ {0}, let x0 = 0 and let A be
the class of finite tuples σ = (x0,x1, . . . ,xℓ) with elements in Nd such that
xk − xk−1 ∈ S for all 1 ≤ k ≤ ℓ. The elements of A are the lattice paths
with steps in S (starting at the origin). The name lattice path comes from
concatenating the vectors xk of σ in the plane, giving a path of steps from the
origin to the endpoint ϕ(σ) =

∑ℓ
k=0 xk.

The polynomial S (z) =
∑

r∈S zr enumerates S by the endpoint of its steps,
so the generating function of A with respect to endpoint is A(z) = 1/(1 −
S (z)). Many other combinatorial classes can be studied in the context of lattice
path enumeration, for instance the multinomial coefficient

(
|r|

r1,...,rd

)
=

(r1+···+rd)!
r1!···rd!

counts the number of paths ending at r with the step set S = {e1, . . . , ed} of
standard basis vectors, giving the generating function 1/(1 −

∑d
j=1 z j) for the

multinomial coefficients. ◁

Example 2.7 (Delannoy numbers). IfA is the class of lattice paths inN2 using
the steps North (0, 1), East (1, 0) and Northeast (1, 1) enumerated by endpoint
then the counting sequence ar = |Ar | defines the Delannoy numbers [Com74,
Exercise I.21]. The generating function x + y + xy for the set of steps leads to
the Delannoy generating function

F(x, y) =
1

1 − x − y − xy
.

◁

Example 2.8 (no gaps of size 2). For any n ∈ N let Bn be the collection
of all subsets of [n] where no two consecutive members are absent. One can
enumerate Bn by mapping bijectively to Example 2.1. In [CLP04] an estimate
was required on the number of such sets that were mapped into other sets of
the same form by a random permutation. That paper showed that in order to
compute the second moment of this random variable it suffices to count the
pairs (S ,T ) ∈ B2

n where the parameters n, |S |, |T | and |S ∩ T | are fixed. To
that end, let F(x, y, z,w) be the 4-variable generating function for the class F
of all pairs (S ,T ) ∈ B2

n for any n ∈ N, using the weight function ϕ(S ,T ) =
(n, |S |, |T |, |S ∩ T |).

We may derive F by investigating what happens between consecutive ele-
ments of S ∩ T . Identify (S ,T ) ∈ B2

n with a sequence

α ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}n
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where

α j =


(1, 1) if j ∈ S ∩ T

(1, 0) if j ∈ S \ T

(0, 1) if j ∈ T \ S

(0, 0) if j < S ∪ T .

If j and j + r are positions of consecutive occurrences of (1, 1) in α then the
possibilities for the string α j+1 · · ·α j+r are as follows.

(i) If α j+1 = (1, 1) then the only possibility is r = 1.

(ii) If α j+1 = (0, 0) then the only possibility is r = 2 and α j+1 · · ·α j+r =

((0, 0), (1, 1)).

(iii) If α j+1 = (1, 0) then r ≥ 2 may be arbitrary and α j+1 · · ·α j+r alternates
between (1, 0) and (0, 1) until the final (1, 1).

(iv) If α j+1 = (0, 1) then r ≥ 2 may be arbitrary and α j+1 · · ·α j+r alternates
between (0, 1) and (1, 0) until the final (1, 1).

We will build an element of F uniquely from blocks of one of these four types.
In the first case, the generating function G1(x, y, z,w) for a single block is sim-
ply xyzw, while in the second case we obtain G2(x, y, z,w) = x2yzw. In the third
case, we can write the block as either ((1, 0)) or ((1, 0), (0, 1)), followed by zero
or more alternations of length two; decomposing this way shows the generat-

ing function to be G3(x, y, z,w) = xyzw
xy + x2yz
1 − x2yz

. Similarly, in the fourth case

we obtain G4(x, y, z,w) = xyzw
xz + x2yz
1 − x2yz

. Summing these four cases gives the

generating function

G(x, y, z,w) = xyzw
(1 + x)(1 − x2yz) + xy + xz + 2x2yz

1 − x2yz

that enumerates all possible configurations of one block.
Stringing together blocks of the four types gives all elements of F that end

in (1, 1), and this subclass thus has generating function 1/(1−G(x, y, z,w)). An
element (S ,T ) ∈ B2

n of this subclass must have n ∈ S ∩ T , and by removing
n we obtain a bijection of such pairs to B2

n−1, except that when n = 0 it is not
possible to delete n. Applying this bijection reduces the weight of each pair in
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F by (1, 1, 1, 1), ultimately giving

F(x, y, z,w) =
(

1
1 −G(x, y, z,w)

− 1
)
/ (xyzw)

=
(1 + x)(1 − x2yz) + xy + xz + 2x2yz

1 − x2yz − xyzw[(1 + x)(1 − x2yz) + xy + xz + 2x2yz]
.

◁

Exercise 2.4. Fix a natural number n.

(a) What is the generating polynomial for the number of strictly increasing
sequences of length k chosen from [n]?

(b) Let S be the set of sequences of symbols from {0}∪[n] starting with a 0 and
such that the subsequence between any two consecutive zeros is strictly
increasing. Find the bivariate generating function counting elements of S
by their length and number of zeros.

Transfer matrices and restricted transitions

Suppose we want to count words (finite sequences) on an alphabet V such
that consecutive pairs of letters must come from a fixed set E. Allowed words
of length n are equivalent to paths of length n in the directed graph whose
vertices are identified by the elements of V and whose edges are identified
by the elements of E. To count such paths by number of steps, let M be the
adjacency matrix of (V, E): the square matrix indexed by V with Mvw = 1 if
(v,w) ∈ E and Mvw = 0 otherwise. The number of allowed paths of length
n from v to w is (M n)vw. If we wish to enumerate paths by length we must
sum (zM )n over n, so the generating function counting finite paths from v to
w weighted by their length is

Fvw(z) =
∞∑

n=0

((zM )n)vw =
[
(I − zM )−1

]
vw
.

This approach, known as the transfer matrix method, is quite versatile. For
instance, to count all allowed paths by length we may sum in v and w, giving
the generating function F(z) = trace((I − zM )−1J ) where J is the |V | × |V |
square matrix of 1s. More generally, we can enumerate by the number of each
type of transition: if E = {p1, . . . ,pr} and M̃vw = zk if pk = (v,w) and M̃vw = 0
if (v,w) < E then F̃vw(z) = [(I − M̃ )−1]vw enumerates paths from v to w by
the number of each transition, and F̃(z) = trace((I − M̃ )−1J ) enumerates all
paths by the number of each transition.
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Example 2.9 (binary strings revisited). The transfer matrix method may be
used to re-derive the generating function in Example 2.1. Let V = {0, 1} and
E = {(0, 0), (0, 1), (1, 0)} contain all directed edges except (1, 1). Then

M =

[
1 1
1 0

]
so the entries of

Q = (I − zM )−1 =
1

1 − z − z2

[
1 z
z 1 − z

]
enumerate binary strings without consecutive ones, depending on their starting
and ending symbols. The paths from 0 to 0 having n ≥ 0 transitions are in one
to one correspondence, via stripping off the last 0, to the words in Example 2.1
of length n. Thus, the generating function for the class in Example 2.1 is the
(0, 0)-entry of Q, namely 1/(1 − z − z2). ◁

Composition corresponds to block substitution

Let F(z) be a d-variate formal power series and G1, . . . ,Gd be d formal power
series in any number of variables, all with vanishing constant terms. We define
the formal composition F(G1, . . . ,Gd) as a limit in the formal power series
ring,

F(G1, . . . ,Gd) := lim
n→∞

∑
|r|≤n

arG(z)r . (2.1)

The degree of the term G(z)r := G1(z)r1 · · ·Gd(z)rd is at least |r| =
∑d

j=1 r j

by the assumption that G j(0) = 0 for all j, hence the coefficients of degree at
most δ in the sum in (2.1) do not change once n > δ, and the limit exists in the
formal power series ring.

Remark. Even if some G j has a non-zero constant term, it may still happen
that the sum converges in the ring of analytic functions, meaning that the in-
finitely many contributions to all coefficients are absolutely summable. The
composition exp(1− x) is not formally allowed in C[[x]] because, for instance,
the constant term cannot be computed in a finite number of operations, but
exp(1 − x) = e

∑∞
n=0

(−x)n

n! represents the composition as a convergent series for
all x ∈ C, meaning it belongs to C{x}.

A slightly unwieldy combinatorial interpretation of composition is given
in [GJ04, Section 2.2.20]. Suppose A = Φ(S) where Φ is a specification built
from the combinatorial sum, product and sequence operations described above
and S = {s1, . . . , sd} is a class with d distinct elements such that ϕ(sk) is
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the elementary basis vector ek. If B1, . . . ,Bd are combinatorial classes with no
objects of weight zero, then the composition classA◦(B1, . . . ,Bd) enumerated
by A(B1, . . . , Bd) is the class obtained fromA by replacing each occurrence of
sk by an element of Bk in all possible ways.

Example 2.10 (queries). Queries from a database have integer computation
times associated with them. Suppose we have a database such that for each
k ≥ 1 there are bk different queries that take k time units, and the protocol in
use does not allow two large queries in a row, where a large query is one of
size greater than some fixed number M. How many query sequences are there
of total time n?

The sequences of queries are bijectively equivalent to the composition A ◦
(B1,B2), where A is the class from Example 2.9, counted by numbers of 0s
and 1s, and B1 and B2 are respectively the short queries and the long queries,
counted by computation time. Thus,

A(B1, B2) =
1

1 − B1(z) − B1(z)B2(z)

enumerates query sequences in this model by length, where B1(z) =
∑M

k=1 bkzk

and B2(z) =
∑

k>M bkzk. ◁

Our next example may seem a natural candidate for the transfer matrix
method, but is simpler to analyse from the viewpoint of compositions.

Example 2.11 (Smirnov words). LetA be the class of Smirnov words on the
alphabet [d], which are words where no consecutive repetition of any symbol is
allowed. The definition immediately implies that there are d · (d − 1)n−1 words
of length n, and we now perform a more refined enumeration tracking each
symbol.

Let A(z) enumerate Smirnov words and B(z) enumerate the class B of all
words on the alphabet [d], both weighted by the number of occurrences of each
symbol. Starting with x ∈ A and substituting an arbitrary non-empty string of
the symbol j for every occurrence of j in x produces each element of B in

a unique way. The generating function for a nonempty string of js is
z j

1 − z j
,

whence

B(z) = A
(

z1

1 − z1
, . . . ,

zd

1 − zd

)
.

We can solve for A by setting y j = z j/(1 − z j) in this equation, since inverting
the substitution gives z j = y j/(1 + y j) and thus

A(y) = B
(

y1

1 + y1
, . . . ,

yd

1 + yd

)
.
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Since B(z) = 1/(1 −
∑d

j=1 z j) we ultimately obtain

A(z) =
1

1 −
∑d

j=1
z j

1+z j

.

◁

In probability theory, the study of branching processes is almost always dealt
with by means of analytic generating functions.

Example 2.12 (Galton-Watson process). Let f (z) be a probability generating
function supported on N, meaning that f (z) =

∑∞
n=0 pnzn with pn ≥ 0 and∑∞

n=0 pn = 1. A branching process with offspring distribution f is a random
tree with one vertex in generation 0 where each individual in each generation
has a random number of children, and the numbers of children born to the
individuals in a generation are independent and equal to n with probability pn.
If Zn is the random variable tracking the number of individuals in generation
n then we can compute the probability generating function gn(z) =

∑
k≥0 pn,kzk

for Zn inductively, where pn,k is the probability that Zn = k.
Indeed, the probability generating function for Z1 is simply f (z). In a con-

figuration with Zn = k, the next generation is composed of a sequence of k
families, each independently having size j with probability p j. The probabil-
ity generating function for such a sequence is f (z)k, whence gn+1 = gn ◦ f .
Inductively then, gn = f ◦ · · · ◦ f is the n-fold composition of f with itself.
Observe that, unless p0 = 0 (no extinction), this composition is not defined in
the formal power series ring, but since all functions involved are convergent on
the unit disk, the compositions are well defined analytically. ◁

Example 2.13 (branching random walk). Associate to each particle in a branch-
ing process a real number, which we interpret as the displacement in one di-
mension between its position and that of its parent. If these are independent of
each other and of the branching, and are identically distributed, then one has
the classical branching random walk. A question that has been asked several
times in the literature, for instance in [Kes78], is how to determine when there
exists a line of descent from a single particle at position 1 that remains to the
right of the origin for all time. Here we consider the simplest non-trivial case,
where the branching process is deterministic binary splitting (p2 = 1) and the
displacement distribution is a random walk that moves one unit to the right
with probability p < 1/2 and one unit to the left with probability 1 − p.

If we modify the process so that particles stop moving or reproducing when
they hit the origin, then p < 1/2 implies an infinite line of descent to the
right of the origin is equivalent to infinitely many particles reaching the origin.
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To analyse the process we thus let X be the number of particles to ever hit
the origin, beginning with a single particle at 1, and let ϕ be the probability
generating function

ϕ(z) =
∞∑

n=0

anzn where an = P(X = n).

If the initial condition is changed to a single particle at position 2, then the
number of particles ever to reach the origin will have probability generating
function ϕ ◦ ϕ. To see this, apply the analysis of Example 2.12, noting that the
number of particles ever to reach 1 before any ancestor has reached 1, together
with their collections of descendants who ever reach 0, form two generations
of a branching process with offspring distribution the same as X. If the ini-
tial condition is changed to a single particle at position 0 then the generating
function is z.

Each of the two children in the first generation is located at 0 with probabil-
ity 1 − p and at 2 with probability p, so the probability generating function for
the contribution to X of each child is (1− p)z+ pϕ(ϕ(z)). The two contributions
are independent so their sum is a convolution, whose probability generating
function is therefore the square of this. Thus, we have the identity

ϕ(z) = [(1 − p)z + pϕ(ϕ(z))]2 . (2.2)

While this does not produce an explicit formula for ϕ, it is possible from this
to derive asymptotics for ϕ(t) as t ↑ 1, allowing us to use so-called Tauberian
theorems to recover asymptotic information about an. See Example 3.17 for
more information. ◁

Derivation corresponds to marking an atom

If A(z) =
∑

n≥0 anz
n enumerates the class A then the definition of the for-

mal derivative implies that zA′(z) =
∑

n≥1 nanz
n. Thus, zA′(z) can be viewed

combinatorially as the generating function of a new class obtained from A by
taking each object and marking, in all possible ways, one of the atomic pieces
it is composed of. Similarly, if A(z) is a multivariate generating function then
(zk∂kA)(z) can be interpreted as the generating function of a combinatorial
class obtained by marking pieces defining the parameter of A tracked by the
variable zk.

Exercise 2.5. Let f (z) =
∑∞

n=0 pnzn be the probability generating function
for the probability that a randomly chosen household in some town consists
of n people. Let g(z) = z f ′(z)/ f ′(1). Show that g is a probability generating
function and determine what sampling probability it represents.
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2.3 Algebraic generating functions

A formal power series F(z) is called an algebraic power series if there ex-
ists a polynomial P(z, y) ∈ C[z, y] such that P(z, F(z)) = 0. Algebraic series
are often considered to be the second simplest class of generating functions,
after rational series, to arise frequently in combinatorics. The main reason al-
gebraic series arise often is that a decomposition of the elements in a combi-
natorial class into products or disjoint unions involving smaller elements from
the same class yields an algebraic equation satisfied by the generating function
of the class. Perhaps the most famous example of a (non-rational) algebraic
generating function is the following.

Example 2.14 (binary trees and Catalan numbers). Let C be the class of planar
rooted binary trees, defined recursively by saying that the empty tree lies in C
and every element of C with n ≥ 1 vertices is formed by a root vertex together
with a left subtree L ∈ C and a right subtree R ∈ C such that the number of
vertices in L and R sum to n − 1. The counting sequence cn = |Cn| defines the
Catalan numbers; Stanley [Sta15] lists 214 combinatorial classes enumerated
by the Catalan numbers.

The recursive definition for the elements of C gives a bijection of combina-
torial classes between C and Υ⊔R×C×C, where Υ is the combinatorial class
containing only the empty tree (to account for the case n = 0) and R is the
class containing only the tree with one node (corresponding to a root vertex).
At the generating function level, this bijection yields the algebraic equation

F(z) = 1 + zF(z)2 , (2.3)

which has a formal power series solution corresponding to the generating func-
tion C(z) of C. To solve (2.3) in the ring of formal power series we first find
solutions in the ring of germs of analytic functions, since we can perform our
usual algebraic operations. The quadratic formula yields two solutions

F±(z) =
1 ±
√

1 − 4z
2z

.

The solution F+(z) is not analytic at the origin, as its denominator vanishes
when z = 0 but its numerator does not, so the generating function of C is

C(z) = F−(z) =
1 −
√

1 − 4z
2z

= 1 + z + 2z2 + 5z3 + · · · .

From this explicit expression, the generalized binomial theorem yields the
closed form cn =

1
n+1

(
2n
n

)
. ◁
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Exercise 2.6. Define the class of d-ary until the end trees by altering the defi-
nition in Example 2.14 so that each vertex has at most d children unless all the
children are leaves, in which case an arbitrary number is permitted. Adapt the
argument from Example 2.14 to compute the generating function enumerating
these trees by their number of vertices.

The kernel method

We now give an account of the kernel method, one of the most prolific sources
of algebraic generating functions in combinatorics. The kernel method is a
means of producing a generating function for an array {ar} satisfying a linear
recurrence

ar =
∑
s∈E

csar−s (2.4)

for some constants {cs : s ∈ E} defined over a finite set E ⊂ Zd, except
when r lies in a set of boundary conditions to be made precise. We will see
in Lemma 2.16 below that this recursion is well-founded whenever the convex
hull of E does not intersect the non-positive orthant Rd

≤0.
If the index set E ⊆ Nd then Example 2.6 generalizes to show that F(z) =∑
r∈Nd arzr is rational. The kernel method is of interest to this text because it

often produces generating functions which, even though they are not rational,
satisfy the meromorphicity assumptions that allow us to compute their asymp-
totics. It is shown in [BP00] that the complexity of F increases with the number
of coordinates in which points of E are allowed to take negative values: just as
allowing no negative coordinates in E causes F(z) to be rational, it turns out
that allowing only one negative coordinate in E causes F(z) to be algebraic
whenever the generating function encoding its initial conditions is algebraic.
When E contains points with two different negative coordinates it is possible to
have very pathological behavior (including sequences whose generating func-
tions do not satisfy polynomial differential equations). Our presentation of the
kernel method draws heavily on [BP00].

Example 2.15 (a random walk game). Suppose two players play a game, mov-
ing their respective tokens along a track of squares by flipping a fair coin at
each time step to see who moves forward one square. The second player starts
behind the first player and the game ends as follows: if the second player passes
the first player, the second player wins; if the first player reaches a fixed goal
square, the first player wins; if both players are on the square immediately
preceding the goal, then it is a draw.

Let ars be the probability of a draw, when the players start at respective
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distances 1 + r and 1 + r + s from the goal. For convenience we set a00 = 1
and extend our sequence to have integer indices by defining ars = 0 if at least
one of r or s is negative. Conditioning on which player moves first yields the
recursion

ars =
ar,s−1 + ar−1,s+1

2
,

which is valid for all (r, s) with nonnegative coordinates except for (0, 0). Be-
cause shifting indices corresponds to multiplication of the generating func-
tion by monomials, this recurrence suggests that we multiply the generating
function F(x, y) =

∑
arsxrys for {ars} by 1 − (1/2)y − (1/2)(x/y). Clearing de-

nominators, we let Q(x, y) = 2y − y2 − x and note from the recurrence that
all coefficients of Q(x, y)F(x, y) vanish with two exceptions: the coefficient
[x0y1]Q(x, y)F(x, y) = 2a0,0 − a0,−1 − a−1,1 = 2, because the recursion does not
hold at (0, 0), and the coefficients [x jy0]Q(x, y)F(x, y) = 2a j,−1 − a j,−2 − a j−1,0

with j ≥ 1 do not vanish because only the third term is nonzero. In other words,

Q(x, y)F(x, y) = 2y − h(x) (2.5)

where h(x) =
∑

j≥1 a j−1,0x j = xF(x, 0) will not be known until we solve for F.
This generating function is in fact a simpler variant of the one derived in

[LL99] for the waiting time until the two players collide, which is needed in the
analysis of a sorting algorithm. Their solution is to observe that there is an ana-
lytic curve in a neighborhood of the origin on which Q vanishes. Solving Q = 0
for y yields two solutions, with the solution y = ξ(x) = 1 −

√
1 − x vanishing

at the origin. Since ξ(x) is analytic at the origin we also have Q(x, ξ(x)) = 0 at
the level of formal power series, and substituting y = ξ(x) in (2.5) gives

0 = Q(x, ξ(x))F(x, ξ(x)) = 2ξ(x) − h(x) .

Thus, h(x) = 2ξ(x) and

F(x, y) = 2
y − ξ(x)
Q(x, y)

=
2

1 +
√

1 − x − y
.

◁

An explanation of the kernel method

Let p be the valley of E, defined as the coordinatewise minimum of the points
in E ∪ {0} and define

Q(z) = z−p
1 −∑

s∈E

cszs

 ,
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where the normalization by z−p guarantees that Q is a polynomial but not
divisible by any z j. We assume p , 0, since we already understand how when
p = 0 the recursion leads to a rational generating function. A set of boundary
locations is any set B ⊆ Nd closed under the coordinatewise partial-order ≤,
with a corresponding set of boundary values {br : r ∈ B}. We study the initial
value problem with initial conditions

ar = br for all r ∈ B (2.6)

where the recursion (2.4) holds for all r ∈ Nd\B (summands with r−s < Nd are
defined to be zero). Our goal here is to take the set of shifts E, the polynomial
Q, and the sets of boundary locations and boundary values, and determine
the generating function enumerating {ar}. Figure 2.1 shows an example setup
where E = {(2,−1), (−1, 2)} and B is the y-axis. We encode the terms in each
polynomial that appears by their Newton diagrams, the set of vectors defined
by the exponents of their monomials.

Figure 2.1 Left: The set E and its convex hull (dashed). Right: A Newton dia-
gram of K (marked by +), U (marked by ■), and B (marked by ⋄). The quantities
K,U, B, r, s and p are defined below.

Let Z = Nd \ B and decompose F(z) = FZ(z) + FB(z) where

FZ(z) =
∑
r∈Z

arzr

is the generating function for the indices where the recursion (2.4) holds and

FB(z) =
∑
r∈B

brzr

enumerates the boundary conditions. Following the method of Example 2.15,
to apply the kernel method we study the product Q(z)FZ(z). Examining this
product shows that there are two types of terms with non-zero coefficients.
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• First, for every pair (r, s) with r ∈ Z, s ∈ E and r − s ∈ B there is a
coefficient

[zr−p]Q(z)F(z)︸               ︷︷               ︸
0

− [zr−p]Q(z)FB(z)︸                ︷︷                ︸
−csbr−s

= csbr−s ,

where the first extraction is zero because r ∈ Z implies the recurrence (2.4)
holds, and the second extraction is computed directly. Let

K(z) =
∑

r∈Z,s∈E
r−s∈B

csbr−szr−p

enumerate such terms. The K stands for known, because the coefficients of
K are determined by the known boundary conditions, which are specified in
the problem. The example in Figure 2.1 marks the terms of K in the first two
rows and columns of Z.

• Second, for every pair (r, s) with r < Z, s ∈ E and r − s ∈ Z, direct
expansion shows that

[zr−p]Q(z)FZ(z) = −csar−s,

reflecting the fact that the recursion does not hold at r. Let

U(z) =
∑

r<Z,s∈E
r−s∈Z

csar−szr−p

enumerate such terms. The U stands for unknown, because these coefficients
are not explicitly determined from the boundary conditions. In the example
from Figure 2.1, U has one row and one column of terms. The value of r
leading to the xy3-term of U is pictured.

We now give a sufficient condition for the recurrence (2.4) to be well-founded,
and prove that the series FZ and U are unique.

Lemma 2.16 ([BP00, Theorem 5]). Let E be a finite subset ofNd whose convex
hull does not intersect the non-positive orthant, let {cs : s ∈ E} be constants,
let p be the valley of E, let B ⊆ Nd be closed under the coordinatewise partial
order ≤ with complement Z = Nd \ B, let {bs : s ∈ B} be constants and let

K(z) =
∑

r∈Z,s∈E
r−s∈B

csbr−szr−p.

Then there is a unique set of values {ar : r ∈ Z} such that (2.4) holds for all
r ∈ Z and ar = br for all r ∈ B. Consequently, there is a unique pair of formal
power series FZ and U such that

Q(z)FZ(z) = K(z) − U(z) .
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Furthermore, if K is analytic in a neighborhood of the origin, then so are FZ

and U.

Proof The convex hull of E and the closed non-positive orthant are disjoint
convex polyhedra so there is a hyperplane that separates them and meets nei-
ther. The normal vector may be perturbed slightly to obtain a rational vector v
such that v · s > 0 for all s ∈ E and v · s < 0 for all s , 0 in the non-positive
orthant. The vector v must have positive coordinates and, clearing denomina-
tors, we may assume v has integer coordinates. Linearly order Nd by the value
of the dot product with v, breaking ties arbitrarily, to produce a well ordering
⪯ of Nd.

If m ∈ Z is fixed then s ∈ E and r ≺m implies r − s ≺m. Consequently,
the validity of (2.4) for all r ≺ m depends only on values ar with r ≺ m. In
particular, if there is a unique set of values of {ar : r ≺m} such that (2.4) holds
for r ≺ m then setting r = m in (2.4) uniquely specifies am. Existence and
uniqueness thus follows by induction, with the base case the minimal vector
v ∈ Z under ⪯.

To show analyticity of U and FZ , let γ′ = log
∑

s∈E |cs|. By analyticity of
K we may choose γ′ ≥ γ such that |ar | = |br | ≤ exp(γ r · v) for any r ∈ B.
Furthermore, for r ∈ Z we have by induction that

|ar | ≤

∑
s∈E

|cs|

 sup
s∈E
|ar−s|

≤ eγ sup
m·v<r·v

|am|

≤ eγeγ (r·v − 1)

= eγr·v ,

establishing an exponential bound on |ar | for all r ∈ Nd. Analyticity of FZ(z)
follows directly, which then implies analyticity of U(z) = K(z) − Q(z)FZ(z).

□

The previous lemma is based on a formal power series approach. Another
way of thinking about this is that FZ is trying to be the power series K/Q
but, since Q vanishes at the origin, one must subtract some terms from K to
cancel whatever factor of Q vanishes at the origin. The kernel method turns this
intuition into a precise statement, when the boundary locations are specified
using the coordinatewise partial order ≥ on Nd.

Theorem 2.17 ([BP00, Theorem 13]). Let d ≥ 2 be arbitrary and suppose
the boundary locations B are of the form {r : r ≱ s} for some s ∈ Nd. If the
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coordinates of the valley p satisfy p1, . . . , pd−1 ≥ 0 > pd and the boundary
generating function K(z) is algebraic then F is algebraic.

Proof Suppose r < Z and r − s ∈ Z with s ∈ E. If s′ is the vector whose first
d − 1 coordinates match s but s′d = 0 then r < Z implies r − s′ < Z because
the complement of Z is closed under coordinatewise ≤ and the hypothesis on
p implies the first d − 1 coordinates of any point in E are nonnegative. Thus,
sd − pd < rd ≤ sd and it follows that U is a polynomial of degree at most pd −1
in zd.

The polynomial Q is equal to zpd
d −

∑
s∈E cszpd

d zs. It is convenient to regard
this as a polynomial in zd of degree at least pd, over the field of algebraic func-
tions in z1, . . . , zd−1. We denote the roots of this polynomial by ξi(z1, . . . , zd−1)
and note that pd of the roots, counted with multiplicities, vanish at the origin
since (0, . . . , 0, j) < E for any j < 0 implies Q(0, . . . , 0, zd) has multiplicity pd

at zd = 0.
If the pd roots of Q vanishing at the origin are distinct then the equation

QFZ = K − U evaluated at each ξi leads to pd equations U(ξi) = K(ξi). The
Lagrange interpolation formula [PS98, Section V1.9] produces a polynomial
P given its values y1, . . . , yk at any k points x1, . . . , xk,

P(x) =
n∑

j=1

y j

∏
i, j

x − xi

x j − xi
. (2.7)

Over any field of characteristic zero, and in particular over the field of algebraic
functions in x1, . . . , xd, this is the unique polynomial of degree at most k −
1 passing through the k points. Applying (2.7) to the pd equations U(ξi) =
K(ξi) thus uniquely determines the polynomial U. In particular, U is a rational
function of algebraic quantities, and is thus also algebraic.

If the ξi are not distinct, one has instead the pd equations

U(ξi) = K(ξi), U′(ξi) = K′(ξi), . . . ,U(mi−1)(ξi) = k(mi−1)(ξi)

where mi is the multiplicity of the root ξi. One may replace the Lagrange in-
terpolation formula by the Hermite interpolation formula [IK94, Section 6.1,
Problem 10], which again gives U as a rational function of each K(ξi) and its
derivatives. □

Restricting to d = 2 and B = {0} gives a more explicit formula for F.

Corollary 2.18. Further specialize the hypotheses of Theorem 2.17 to assume
that d = 2, the point p = (0,−p) for some p > 0, and B = {0} with boundary
value b0 = 1. Then there are exactly p formal power series ξ1(x), . . . , ξp(x)
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such that ξ j(0) = 0 and Q(x, ξ j(x)) = 0. Furthermore,

Q(x, y) = −C(x)
p∏

j=1

(y − ξ j(x))
r∏

j=1

(y − ρ j(x))

for some algebraic functions C(x), ρ1(x), . . . , ρP(x) not vanishing at the origin,
and

FZ(x, y) =
K(x, y) − U(x, y)

Q(x, y)
=

∏p
j=1(y − ξ j(x))

Q(x, y)
=

1
−C(x)

∏r
j=1(y − ρ j(x))

.

Proof We work in the ring C{x}[y] of polynomials in y with coefficients in the
ring of power series in x converging in a neighborhood of zero. The asserted
factorization of Q follows from its vanishing to order p at y = 0 and having
some degree p + r as a polynomial in y. By definition K(x, y) = yp and, recall-
ing that the degree of U(x, y) in y is at most p − 1, it follows that the degree of
K(x, y) − U(x, y) in y is exactly p. Since K(x, y) − U(x, y) vanishes in a neigh-
borhood of zero when y = ξ j(x) for any j, it is divisible by

∏p
j=1(y − ξ j(x)).

The leading coefficient of K − U is the same as the leading coefficient of K,
namely 1, so K(x, y) − U(x, y) =

∏p
j=1(y − ξ j(x)) as claimed. □

Dyck, Motzkin, Schröder and generalized Dyck paths

Let S = {(r1, s1), . . . , (rk, sk)} be a set of integer vectors with r j > 0 for all j
and min j s j = −p < 0 < max j s j = P. The classA of generalized Dyck paths
starting at (0, 0) and taking steps in S consists of all finite tuples (σ1, . . . ,σℓ)
of any length ℓ ∈ N with elements in S whose partial sums σ1 + · · ·+σ j for all
1 ≤ j ≤ ℓ have nonnegative coordinates. The elements of A can be viewed as
lattice paths starting at the origin which never go below the x-axis. The weight
of an element in (σ1, . . . ,σℓ) ∈ A is the endpoint (r, s) = σ1 + · · · + σℓ of the
path.

Let F(x, y) =
∑

r,s≥0 arsxrys enumerate this class. Because a generalized
Dyck path is either empty, or is a smaller generalized Dyck path with a single
step added we obtain a recurrence of the form treated by the kernel method.
In fact, we are precisely in the situation covered by Corollary 2.18 where
Q(x, y) = yp(1−

∑k
i=1 xri ysi ) and F(x, y) = FZ(x, y). The special case p = P = 1,

that is, vertical displacement of at most 1 per step, occurs often in classical ex-
amples.

Proposition 2.19. Assume the above setup. If p = P = 1 then the generating
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Figure 2.2 A generalized Dyck path of length nine with E = {(1, 2), (1,−1)}.

function for generalized Dyck paths with steps from E is given by

F(x, y) =
ξ(x)

a(x) −C(x)ξ(x)y

where a(x) =
∑

i:si=−1 xri , the algebraic function ξ(x) is the unique root of
Q(x, y) in y that vanishes at the origin, and C(x) =

∑
i:si=P xri .

Proof Under these hypotheses, Q is a quadratic polynomial in y with lead-
ing coefficient C(x) stated in the proposition. If ξ(x) and ρ(x) are the roots of
Q(x, y) in y then the product ξρ equals a(x)/C(x) where a(x) is stated in the
proposition. The formula in Corollary 2.18 thus simplifies to

F(x, y) =
ξ(x)/a(x)

1 − [C(x)ξ(x)/a(x)]y
.

□

We end this section with three of the most famous examples of lattice path
classes.
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Dyck paths
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Figure 2.3 Legal steps for three types of paths.

• Classical Dyck paths occur when S = {(1, 1), (1,−1)}. Computing the quan-
tities in Proposition 2.19 implies

F(x, y) =
1

−x(y − ρ(x))
=

ξ(x)/x
1 − yξ(x)

where ξ(x) = (1−
√

1 − 4x2)/(2x). Setting y = 0 proves the well-known fact
that the Dyck paths coming back to the x-axis at (2n, 0) are counted by the
Catalan number cn.

• Motzkin paths occur when S = {(1, 1), (1, 0), (1,−1)}, ultimately giving the
generating function

F(x, y) =
2

1 − x +
√

1 − 2x − 3x2 − 2xy
.

• Schröder paths occur when S = {(1, 1), (2, 0), (1,−1)}, ultimately giving the
generating function

F(x, y) =
2

1 +
√

1 − 6x2 + x4 − x2 − 2xy
.

2.4 D-finite generating functions and diagonals

The more explicitly a generating function is described, the better the prospects
are for extracting information from it. This includes not only exact formu-
las and asymptotic estimation, but also additional properties like bijections to
other classes and random sampling algorithms for objects in the class. Ratio-
nal generating functions (with coefficients in the integers or rational numbers)
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are easy to work with because they are specified by the finite data of their
numerator and denominator polynomials.

We have seen that some common and very natural combinatorial operations
take us from the class of rational functions to the larger class of algebraic gen-
erating functions. Algebraic functions also have canonical representations: if
f is algebraic then there is a minimal polynomial P for which P( f (z), z) = 0
and the series f may be specified by writing down the coefficients of P, which
are themselves polynomials and therefore finitely specified, and enough initial
terms to uniquely determine f among all roots of P. In Chapter 8 we discuss
techniques in computational algebra that allow one to manipulate algebraic
quantities implicitly using symbolic methods, making the class of algebraic
generating functions reasonably nice to work with. There are, however, com-
mon combinatorial operations that take us out of the class of algebraic func-
tions, and this drives us to consider a more general class of generating functions
involving differential equations. A more complete discussion of the hierarchy
for univariate generating functions may be found in [Mel21, Chapter 2] and
[Sta99, Chapter 6].

Rational 
Algebraic

D−finite

Figure 2.4 Common classes of generating functions.
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Univariate D-finite functions

Because any formal power series with a non-zero constant is invertible, the
field of fractions of C[[z]] is the field of formal Laurent series

C((z)) =

∑
n≥κ

anzn : κ ∈ Z and an ∈ C for all n


containing series with a finite number of terms with negative exponents, where
addition is still defined termwise and multiplication is still defined by convo-
lution. Section 6.1 gives further information on Laurent series.

Definition 2.20. A formal power series f (z) ∈ C[[z]] is a D-finite series if
and only if there is an integer m and polynomials P0(z), . . . , Pm(z) ∈ C[z] with
Pm(z) , 0 such that

P0(z) f (z) + P1(z) f ′(z) + · · · + Pm(z) f (m)(z) = 0 . (2.8)

Equivalently, f is D-finite if and only if f and its derivatives span a finite
dimensional vector space in C((z)) over the field C(z) of rational functions.

Remark. The more natural definition of a D-finite series is one whose deriva-
tives span a finite dimensional space over the polynomial ring C[z]. Vector
spaces over fields are simpler than modules over rings, so we phrase this in
terms of vector space dimension over the rational functions instead. This re-
quires that the rational functions act on C[[z]], which requires us to extend
C[[z]] to C((z)).

Remark. If f (z) is a formal power series that satisfies a non-homogeneous
linear equation

P0(z) f (z) + P1(z) f ′(z) + · · · + Pm(z) f (m)(z) = P(z)

with P(z), P0(z), . . . , Pm(z) ∈ C[z] then repeated differentiation proves that f (z)
is D-finite.

Variants of this definition are discussed in [Sta99, Proposition 6.4.1]. The
Venn diagram in Figure 2.4 depicting the hierarchy of generating function class
is justified by the following classical proposition.

Proposition 2.21. If f (z) ∈ C[[z]] is algebraic then f (z) is D-finite.

Proof Since f (z) is algebraic there exists P(z, y) =
∑m

j=0 P j(z)y j ∈ C[z, y]
such that P(z, f (z)) = 0. Assume P is selected among all such polynomials
to have minimal degree in y, so that the partial derivative Py(z, y), which has
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smaller degree in y than P(z, y), is non-zero when y = f (z). Implicit differentia-
tion of the equation P(z, f (z)) = 0 shows that Pz(z, f (z)) + f ′(z)Py(z, f (z)) = 0,
so Py(z, f (z)) , 0 implies

f ′(z) = −
Pz(z, f (z))
Py(z, f (z))

. (2.9)

We have now shown that f ′(z) lies in the field of fractions of the ringC[z][ f ].
The quotient rule thus implies that the derivative of any element of the field
extension C(z, f ) is again in C(z, f ), so induction implies all derivatives of f
are in C(z, f ). Because f is algebraic, C(z, f ) is a finite extension of C(z). Thus,
f and its derivatives span a finite vector space over C(z), and f is D-finite. □

Recall that a series f =
∑∞

n=0 anzn is rational if and only if the sequence
{an : n ≥ 0} satisfies a linear recurrence with constant coefficients. There is no
equivalent linear characterization for the coefficients of algebraic generating
functions, but there is for D-finite functions.

Definition 2.22 (P-recursiveness). A univariate sequence {an : n ≥ 0} is said
to be a P-recursive sequence (or polynomially recursive) if there exist polyno-
mials P0(n), . . . , Pr(n) ∈ C[n] with Pm(n) , 0 such that

Pr(n)an+r + Pr−1(n)an+r−1 + · · · + P0(n)an = 0 (2.10)

for all n ≥ 0.

Example 2.23. If an = 1/n! then {an} is P-recursive as (n+ 1)an+1 − an = 0 for
all n ≥ 0. Furthermore, if f (z) enumerates {an} then

∑
n≥0(n+ 1)an+1zn = f ′(z),

so f ′(z) − f (z) = 0 and f is D-finite. We can compute f by solving this linear
differential equation with the initial condition a0 = 1, obtaining the expected
solution f (z) = ez =

∑
n≥0 zn/n!. ◁

The correspondence between P-recursive sequences and D-finite series is a
classical result, known at least as far back as Frobenius’s work on computing
series solutions to ordinary differential equations.

Theorem 2.24 (P-recursive corresponds to D-finite). A sequence {an : n ≥ 0}
is P-recursive if and only if its generating function f (z) =

∑∞
n=0 anzn is D-finite.

Proof First, suppose f is D-finite and satisfies (2.8). Differentiating the power
series for f shows that for any n ∈ N and k ∈ [n] the coefficient [zn−k] f ( j)(z)
equals (n − k + j) jan−k+ j, where (u) j := u(u − 1) · · · (u − j + 1) denotes the
falling factorial. Let bk, j = [zk]P j(z) and let D denote the maximum degree of
the coefficient polynomials P0(z), . . . , Pm(z). Then for any n ≥ 0, extracting the
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coefficient of zn in (2.8) gives the linear equation

m∑
j=0

D∑
k=0

bk, j (n − k + j) j an−k+ j = 0

having polynomial coefficients in n of degrees at most m. This is a non-trivial
linear recurrence for {an}, because for any k such that bk,m = [zk]Pm(z) , 0 the
coefficient of an−k+m is bm,knm + O(nm−1) , 0.

Conversely, suppose that {an} is P-recursive and satisfies (2.10). The set of
falling-factorial polynomials {(n + j) j : j ≥ 0} forms a basis for C[n] which
is triangular with respect to the basis {n j : j ≥ 0}, hence each Pk(n) is a finite
linear combination Pk(n) =

∑
j ck, j(n + j) j and substitution into (2.10) yields

m∑
k=0

deg Pk∑
j=0

ck, j (n + j) jan+k = 0 .

The rules for differentiating formal power series extend to the differentiation
of Laurent series, and imply that the coefficient of zn in the repeated derivative
(z j−k f (z))( j) is (n + j) j an+k. Multiplying our last equality by zn and summing
over all values of n thus gives the relation

m∑
k=0

deg Pk∑
j=0

ck, j

(
z j−k f (z)

)( j)
= 0 .

Using the product rule, this becomes a nontrivial linear ODE in f (z) with co-
efficients in C[z, z−1], and multiplying through by a sufficiently high power of
z proves that f (z) is D-finite. □

Multivariate D-finite functions

Generalizing the univariate definition, a multivariate formal power series f (z) ∈
C[[z]] is called a D-finite sequence when f and all its iterated partial deriva-
tives generate a finite dimensional vector space over C(z). The correct ana-
logue of P-recursiveness in the multivariate case is not as obvious: the fol-
lowing definition, recursive in the dimension d, comes from [Lip89, Defini-
tion 3.2].

Definition 2.25 (P-recursiveness in arbitrary dimension). Suppose d > 1 and
P-recursiveness has been defined for arrays of dimension d − 1. Then the mul-
tivariate sequence {ar : r ∈ Nd} is said to be a P-recursive sequence if there is
some positive integer k such that the following two conditions hold.
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(i) For each j ∈ [d] there are polynomials
{
P j
τ (n) : τ ∈ {0, . . . , k}d

}
, not all

zero, such that ∑
τ∈{0,...,k}d

P j
τ (r j)ar−τ = 0 for all r1, . . . , rd ≥ k

(ii) All the (d − 1)-variate arrays obtained from {ar} by holding one of the d
indices fixed at a value less than k are P-recursive.

The following result, proved in [Lip89, Theorem 31], shows that this defini-
tion of P-recursiveness is the correct one.

Theorem 2.26. The array {ar : r ∈ Nd} is P-recursive if and only if its gener-
ating function f (z) =

∑
r arz

r is D-finite. □

2.4.1 Diagonals

D-finite generating functions are finitely specifiable, the arrays they enumerate
satisfy nice recursions, and they appear often in combinatorics. In addition,
D-finite functions form an interesting family to study because they satisfy nice
closure properties. First, we note that D-finite functions are closed under addi-
tion and multiplication, just like rational and algebraic functions.

Theorem 2.27. If f (z) and g(z) are D-finite then so are f (z) + g(z) and
f (z)g(z).

Proof Let V be the C(z)-subspace of C((z)) spanned by f (z) + g(z) and all
its derivatives. Then V is contained in the sum of subspaces V f + Vg spanned
by the derivatives of f and g. Hence, V is finite-dimensional with dimension at
most dim(V f ) + dim(Vg) and f (z) + g(z) is D-finite.

Similarly, the products f (r)(z)g(s)(z) of the partial derivatives of f and g
span a finite dimensional space W of dimension at most dim(V f ) · dim(Vg).
By the product rule, every derivative of f (z)g(z) lies in W, so f (z)g(z) is
D-finite. □

A more interesting closure property has to do with diagonals of multivariate
series.

Definition 2.28 (diagonal of a formal power series). Let F(z) =
∑

r∈Nd arzr

be a formal power series and s ∈ Rd be a fixed vector. The s-diagonal of F is
the univariate series

(∆sF)(z1) :=
∑
n≥0

anszn
1

consisting of the series coefficients of F whose indices are multiples of s,
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where ans = 0 if ns < Nd (so the s-diagonal is only non-trivial when s has
nonnegative rational coordinates). When s = 1 the s-diagonal of F is called
the main diagonal and denoted diag F or ∆F. For 1 ≤ i < j ≤ d the (zi, z j)-
elementary diagonal of F is the formal power series

(∆zi=z j F)(z1, . . . , z j−1, z j+1, . . . , zd)

obtained by taking the terms of F where the exponent of zi equals the exponent
of z j and setting z j = 1. Note that the main diagonal of F can be computed by
taking d − 1 elementary diagonals.

Exercise 2.7. Show that if f (x) is the diagonal of F(x, y) then it is also the
diagonal of F(−x,−y).

Example 2.29. Consider the generating function

F(x, y, z) =
1

1 − x − y − z
=

∑
r,s,t≥0

(r + s + t)!
r!s!t!

xryszt

enumerating the trinomial coefficients. Then the (x, y)-elementary diagonal of
F is the series

(∆x=yF)(x, z) =
∑
r,t≥0

(2r + t)!
(r!)2 t!

xrzt ,

while the main diagonal is

(∆F)(x) =
∑
n≥0

(3n)!
(n!)3 xn = 1 + 6x + 90x2 + · · · .

◁

Exercise 2.8. Let F(x, y) =
∑

r,s≥0 arsxrys be a bivariate formal power series.
What is the difference between diag F and F(x, x)?

It is interesting to note that even though the generating function in Exam-
ple 2.29 is rational, the main diagonal ∆F is transcendental (i.e., not algebraic).
Perhaps the easiest way to see this is to compute asymptotics of the diagonal
coefficients using the methods of Chapter 9 and verify that they do not have
asymptotic growth compatible with being an algebraic series [Mel21, Corol-
lary 2.1].

Although the classes of rational and algebraic series are not closed under
taking diagonals, the class of D-finite series is.

Theorem 2.30 (Lipshitz [Lip88]). Any elementary diagonal of a D-finite series
in d variables is a D-finite series in d − 1 variables. In particular, the main
diagonal of a D-finite series is a univariate D-finite function. □
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Because many other operations on power series can be phrased as diagonals,
Theorem 2.30 finds a wide variety of applications.

Example 2.31. The Hadamard product of two formal power series F(z) =∑
r∈Nd arzr and G(z) =

∑
r∈Nd brzr is the series (F ⊙G)(z) =

∑
r∈Nd arbrz

r.
The repeated diagonal expression

(F ⊙G)(z) = ∆z1=y1 · · ·∆zd=yd F(z)G(y)

implies that F ⊙ G is D-finite whenever F and G are D-finite. See [CS98]
for an algorithm to compute an annihilating D-finite equation for F ⊙ G from
annihilating D-finite equations for F and G. ◁

Exercise 2.9. The z-constant term of an analytic series F(z, t) ∈ C[[z, t]]
is the series F(0, t) ∈ C[[t]]. Prove that the z-constant term of F is the main
diagonal of F(z, z1 · · · zdt).

Finally, we note that the class of D-finite series is not closed under compo-
sition or division.

Exercise 2.10. Let f (x) = sin x and g(x) = 1/x. Prove that f and g are D-finite
but g( f (x)) is not.

Algebraic series and diagonals
The family of series obtained as main diagonals of rational functions appears
in many combinatorial applications, and sits naturally between the classes of
algebraic and D-finite series. Indeed, it turns out that the diagonals of bivariate
rational series form precisely the set of algebraic series. This means that com-
putation of asymptotics for the main diagonal of a bivariate rational series can
be reduced to computing asymptotics of a univariate algebraic series (see the
discussion in Section 13.1) or vice-versa (see Section 9.3.1).

The proof that the diagonal of a bivariate rational series is algebraic was
sketched by Furstenberg [Fur67] and given in more detail by Hautus and Klarner
[HK71]. Because we work with series over the complex numbers, we give a
straightforward analytic proof that helps compute an annihilating polynomial
for the diagonal. Stanley [Sta99, Theorem 6.3.3] gives an algebraic proof hold-
ing over arbitrary fields.

Theorem 2.32 (bivariate diagonal extraction). If F(x, y) is a rational power
series in two variables then ∆F is algebraic.

Proof Write F(x, y) = P(x, y)/Q(x, y) for coprime polynomials P and Q with
Q(0, 0) , 0, and let h(y) = (∆F)(y). Since F converges in a neighborhood of
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the origin, when |y| is sufficiently small the function F(z, y/z) is absolutely con-
vergent for z in some annulus A(y). Treating y as a constant, we view F(z, y/z)
as a convergent Laurent series in z inside the annulus A(y) with constant term
h(y). The Cauchy Integral Formula then gives the integral expression

h(y) =
1

2πi

∫
C

P(z, y/z)
zQ(z, y/z)

dz ,

where C is any positively oriented circle in the annulus of convergence A(y).
By the Residue Theorem,

h(y) =
∑
α

Res
z=α(y)

(
P(z, y/z)

zQ(z, y/z)

)
(2.11)

where the sum is over all poles α(y) inside the circle C. These residues are
all rational expressions of the poles, which are roots of Q(z, y/z), so we have
represented the diagonal as a sum of algebraic functions, which is also alge-
braic. □

Remark. Taking |y| sufficiently small in the proof of Theorem 2.32 allows one
to pick a circle C such that the poles of the Cauchy integrand inside the circle
are precisely the roots z = α(y) of Q(z, y/z) that approach zero as y → 0. An
annihilating polynomial for the diagonal can be computed from (2.11) using
algebraic tools like the resultant, although in low-degree cases it can usually
be computed directly.

Example 2.33 (Delannoy numbers, continued). Recall from above that the
generating function of the Delannoy numbers is F(x, y) = 1/(1 − x − y − xy),
so

x−1F(x, y/x) =
1

x − x2 − y − xy

has poles at

x±(y) =
1 − y ±

√
1 − 6y + y2

2

with only x−(y)→ 0 as y→ 0. Since x−1F(x, y/x) = −1/[(x−x−(y))(x−x+(y))],
the sequence of Delannoy numbers where both indices are equal has generating
function

(∆F)(y) = Res
x=x−(y)

x−1F(x, y/x) =
−1

x−(y) − x+(y)
=

1√
1 − 6y + y2

.

◁

The converse of Theorem 2.32 also holds. First, we give an explicit formula
of Furstenberg [Fur67] that holds in a special case.
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Proposition 2.34. Let f (x) be an algebraic univariate power series satisfying
P(x, f (x)) = 0 for some P(x, y) ∈ C[x, y]. Suppose further that f (0) = 0 and
Py(0, 0) , 0. Then

f (x) = ∆
(

y2Py(xy, y)
P(xy, y)

)
.

The proof of Proposition 2.34 follows directly from factoring P(x, y) = (y −
f (x))u(x, y) for some u ∈ C[[x]][y] with u(0, 0) , 0 and then examining which
terms lie on the diagonal of y2Py(xy, y)/P(xy, y).

Example 2.35. The generating function for binary trees counted by external
nodes is the shifted Catalan generating function f (x) = (1 −

√
1 − 4x)/2 with

minimal polynomial P(x, y) = y2 − y + x. Proposition 2.34 yields the rational
function F(y, z) = y(1 − 2y)/(1 − x − y) whose diagonal is f (x). ◁

The hypothesis that Py(0, 0) , 0 in Proposition 2.34 restricts it to the case
where P(x, y) has a single root that passes through the origin. One natural
generalization to the multivariate setting is the following, which can be found
in [Saf00, Lemma 2].

Proposition 2.36. Let f (z) be an algebraic power series with P(z, f (z)) = 0
for some P(z, y) ∈ C[z, y]. Suppose further that f is divisible by zd and that in
some neighborhood of 0 there is a positive integer k and factorization P(z, y) =
(y − f (z))ku(z, y) such that u(0, 0) , 0. Then f (z) is the elementary diagonal
∆zd=yF(z, y) of the rational function

F(z, y) =
y2Py(z1, . . . , zd−1, yzd, y)
kP(z1, . . . , zd−1, yzd, y)

.

Example 2.37. The Narayana numbers [FS09, Example III.13], defined by
the explicit formula

ars =
1
r

(
r
s

)(
r

s − 1

)
,

are a refinement of the Catalan numbers which enumerate, for example, rooted
ordered trees by edges and leaves. The Narayana generating function

f (x, y) =
1 + x(y − 1) −

√
1 − 2x(y + 1) + x2(y − 1)2

2

is a root of the polynomial

P(x, y,w) = w2 − w
[
1 + x(y − 1)

]
+ xy =

[
w − f (x, y)

] [
w − f (x, y)

]
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where f denotes the algebraic conjugate of f , obtained by changing the sign
in front of the square root in f . Proposition 2.36 gives the diagonal expression

f (x, y) = ∆x=w

(
w(1 − 2w − wx(1 − y))
1 − w − xy − wx(1 − y)

)
.

Note that we cannot use Proposition 2.36 with respect to the variable y. ◁

The following example from [Saf00] shows that the hypotheses of Proposi-
tion 2.36 are necessary for its conclusion.

Example 2.38. Let f (x, y) = y
√

1 − x − y. If f (x, y) could be expressed as the
(y,w)-elementary diagonal of a trivariate rational series F(x, y,w) then

Fyw(x, 0, 0) = [yw]F(x, y,w) = [y] f (x, y) = fy(x, 0) =
√

1 − x,

contradicting the fact that
√

1 − x is irrational while Fyw(x, 0, 0) is rational. ◁

To extend Proposition 2.36 to larger classes of algebraic series we can ei-
ther increase the dimension of the rational function in question, or relax our
definition of a diagonal. In the first direction, Denef and Lipshitz proved that
every algebraic function has a rational diagonal expression in at most double
the number of variables.

Proposition 2.39 (Denef and Lipshitz [DL87, Theorem 6.2]). If f (z) is an
algebraic power series in d variables then there exists a rational series R(z,y)
in 2d variables such that f (z) = ∆z1=y1 · · ·∆zd=yd R(z,y). □

In the second direction, Safonov gave an algorithm to express any algebraic
function in d variables as a generalized diagonal of a rational function in d + 1
variables.

Definition 2.40. A unimodular matrix is a matrix having integer entries and
determinant ±1. Let F(z, y) =

∑
(r,s)∈Nd+1 ar,szrys be a formal power series

in d + 1 variables and let M be a unimodular d × d matrix with nonnegative
entries. The M-diagonal or generalized diagonal (with respect to M) of F is
the formal power series in d variables given by

∑
r∈Nd brzr with br = as,sd

where s = Mr.

Exercise 2.11. Let M =
(

1 0
1 1

)
and suppose that F(x, y) is the M-diagonal of

H(x, y, z). Express ∆F in terms of the coefficients ar,s,t of H.

Theorem 2.41 (Safonov [Saf00]). Let f (z) be an algebraic function in d vari-
ables. Then there is a unimodular matrix M ∈ Nd×d and a rational function
F(z, y) in d + 1 variables such that f is the M-diagonal of F.
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Proof idea The basic idea is to apply a sequence of blowups to a polynomial
annihilating f (z) to resolve any singularities it has at the origin, until we arrive
at a case where Proposition 2.36 applies. These changes of variable are mono-
mial substitutions of the form zi 7→ ziz j, which yields the unimodular matrix.
Full details can be found in [Saf00, Theorem 1]. □

Example 2.42. If f (x, y) = y
√

1 − x − y is the function from Example 2.38
then Safonov’s algorithm implies that f is the M-diagonal of

F(x, y,w) = wx +
2wx

(
w2 + w

)
2 + w + x + xy

=
∑

r,s,t≥0

ar,s,t xsytwr

where M =
(

1 0
1 1

)
. In particular, f (x, y) =

∑
s,t≥0 as+t,s+t,t xsyt. ◁

2.5 Labeled classes

We end this chapter with additional constructions that produce a large variety
of combinatorial classes. Each combinatorial class that we have seen so far is
ultimately constructed from atomic pieces via constructions such as the disjoint
union and product, and we can enrich the objects in a class by adding labels
to their atoms. More formally, let the atomic classZ be the class containing a
single object of size 1 and no objects of other sizes, and let the neutral class E
be the class containing a single object of size 0 and no objects of other sizes. A
labeled combinatorial class is a univariate combinatorial class A constructed
from copies of the atomic and neutral classes, where the size of an object is the
number of atoms it contains and for any n ∈ N and α ∈ An the atoms in α are
given unique labels from the set [n]. The exponential generating function A(z)
of the labeled classA is the formal power series A(z) =

∑
n≥0

|An |

n! zn ∈ C[[z]].

Example 2.43 (Basic labeled classes). The labeled atomic class Z =
{

1
}

is obtained from the atomic class by giving its single element of size one the
label 1. The labeled neutral class is the same as the neutral class, as an object
of size zero has no atoms. ◁

Example 2.44. By viewing a permutation of [n] in one-line notation, the class
of permutations can be constructed as the labeled class consisting of all finite
sequences of labeled atoms. ◁

We can construct labeled classes iteratively using labeled versions of the
constructions discussed above. IfA andB are two labeled combinatorial classes
then, just like in the unlabeled case, the labeled disjoint union class C = A⊔B
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is simply the class whose set of objects is the disjoint union of the elements in
A and B. The exponential generating function of the labeled disjoint union is

C(z) =
∑
n≥0

|An| + |Bn|

n!
zn = A(z) + B(z) ,

where A and B are the exponential generating functions ofA and B.
Creating a product for labeled classes is harder: when building tuples of

objects, relabeling must occur in order to achieve uniqueness of labels. The
labeled productA⋆B of labeled classesA and B is formed by first taking the
product of the underlying unlabeled classes, and then labeling in all possible
ways that are consistent with the order of labels on the component pieces. More
formally, if α ∈ A and β ∈ B then we say that the pair (α, β) is pair labeled if
the sizes of α and β sum to n and the atoms appearing in both elements of the
pair are together given distinct labels from [n]. If ρ is the reduction map that
takes an object of size k whose atoms have distinct labels from any subset of
N and reduces the labels to lie in [k], then the labeled product ofA and B is

A⋆B =
{
(α′, β′) : α ∈ A, β ∈ B, ρ(α′) = α, ρ(β′) = β; (α′, β′) is pair labeled

}
.

As in the unlabeled case, the size of a labeled pair is the sum of the sizes of its
elements.

Example 2.45 (Labeled product). The labeled product of the atomic class with
itself is the labeled class

Z2 = Z ⋆Z =
{(

1 , 2
)
,
(

2 , 1
)}
=

{
1 − 2 , 2 − 1

}
containing two elements of size two, where we draw elements of a tuple sepa-
rated by dashes to simplify notation. IfA = {σ} is the labeled class containing
a single object, which is the set σ =

{
1 , 2

}
, then the labeled class Z2 × A

contains the six elements(
1 − 2 ,

{
3 , 4

})
,
(

1 − 3 ,
{

2 , 4
})
,
(

1 − 4 ,
{

2 , 3
})(

2 − 3 ,
{

1 , 4
})
,
(

2 − 4 ,
{

1 , 3
})
,
(

3 − 4 ,
{

1 , 2
})
,

coming from pair labelings (α′, β′) whose components reduce to ρ(α′) = 1 −
2 and ρ(β′) = σ, together with another six elements whose first component

reduces to 2 − 1 . ◁

If α ∈ A has size k and β ∈ B has size n − k then there are
(

n
k

)
elements

(α′, β′) ∈ A ⋆ B with ρ(α′) = α and ρ(β′) = β, since choosing the k labels
from [n] to give to the elements of α′ uniquely determines (α′, β′). Thus, the
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exponential generating function of C = A ⋆ B is

C(z) =
∑
n≥0

n∑
k=0

(
n
k

)
|Ak | |Bn−k |

zn

n!

=
∑
n≥0

n∑
k=0

|Ak |

k!
zk ·

|Bn−k |

(n − k)!
zn−k

= A(z)B(z) ,

where A and B are the exponential generating functions of A and B. This
nice behavior is one reason why exponential generating functions are used for
labeled classes.

A labeled sequence construction is defined analogously to the unlabeled
case. Because sequences can be represented in terms of disjoint union and
product, and the exponential generating functions of labeled classes behave the
same under these operations as ordinary generating functions do in the unla-
beled case, the exponential generating function of the sequence class SEQ(A)
for any labeled classA with no objects of size zero is still 1/(1 − A(z)).

Example 2.46 (permutations as labeled sequences). As discussed in Exam-
ple 2.44, the class of permutations has the labeled construction P = SEQ(Z),
so that P(z) = 1/(1−z). As a sanity check, we note that there are n![zn]P(z) = n!
permutations of size n. ◁

Finally, we introduce two new constructions, which can be used in the unla-
beled case but are much easier when dealing with labeled objects. Let A be a
labeled class with no objects of size zero and exponential generating function
A(z). The set class SET(A) is the labeled class containing all sets of objects in
A, which can be viewed as SEQ(A) after identifying tuples whose elements
differ only by a permutation. Because there are k! ways to permute the elements
in a tuple of length k, the exponential generating function of B = SET(A) is

B(z) =
∑
k≥0

A(z)k

k!
= eA(z) ,

where ez = exp(z) denotes the formal power series
∑

n≥1
zn

n! . Similarly, the cycle
class CYC(A) is the labeled class containing the elements of SEQ(A) after
identifying tuples whose elements differ only by a cyclic shift. By convention,
we do not add an element of size zero to the cycle class. Because there are
k ways to cyclically shift the elements in a tuple of length k, the exponential
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generating function of C = CYC(A) is

C(z) =
∑
k≥1

A(z)k

k
= log

(
1

1 − A(z)

)
,

where log is the formal power series defined by log
(

1
1−z

)
=

∑
n≥1

zn

n .

Example 2.47 (permutations as labeled cycles). Viewing a permutation as a
set of disjoint cycles, the class of permutations has the labeled constructionP =
SET(CYC(Z)), so that P(z) = exp

[
log

(
1

1−z

)]
. Comparing this to Example 2.46

gives a combinatorial proof that

exp
[
log

(
1

1 − z

)]
=

1
1 − z

as formal power series. ◁

Exercise 2.12. Prove the following statements for formal power series using
algebraic arguments.

• If A(0) = B(0) = 0 then eA(z)+B(z) = eA(z)eB(z).
• If A(0) = B(0) = 1 then log(A(z)B(z)) = log A(z) + log B(z).
• If A(0) = 0 then log(exp(A(z))) = A(z).
• If A(0) = 0 then exp(log(1 − A(z))) = 1 − A(z).

Often, we wish to track the size of the tuple that defines an element in a
sequence, set, or cycle class. If A is a labeled class with no objects of size
zero and exponential generating function A(z) then the semi-exponential gen-
erating function tracking the elements of SEQ(A) by size and tuple length
is ∑

k≥0

ykA(z)k =
1

1 − yA(z)
.

The term semi-exponential refers to the fact that the coefficient of ykzn is di-
vided by n! but not by k!. Similarly, the semi-exponential generating function
for SET(A) is ∑

k≥0

yk A(z)k

k!
= exp(yA(z))

and the semi-exponential generating function for CYC(A) is∑
k≥0

yk A(z)k

k
= log

1
1 − yA(z)

.

We end by listing several examples of (semi-)exponential generating functions
that we return to in Chapter 3 when deriving asymptotics.
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Example 2.48 (permutations by number of cycles). Continuing Example 2.47,
the semi-exponential generating function for permutations enumerated by size
and number of cycles is

f (z, y) = exp
(
y log

1
1 − z

)
.

The entries of the bivariate sequence counting permutations of size n with k
cycles are called the Stirling numbers of the second kind. ◁

Example 2.49 (involutions). An involution is a permutation whose square is
the identity. Equivalently, an involution is a permutation with cycles of length
one or two. The exponential generating function for the class of cycles of
length one or two is z + z2/2, so the exponential generating function for the
class of involutions is exp(z + z2/2). ◁

Example 2.50 (set partitions). Let B = SEQ>0(Z) be the labeled class with a
single object of all sizes n ≥ 1 and no object of size zero, with exponential gen-
erating function g(z) = exp(z) − 1. The labeled class exp(B), with exponential
generating function exp(ez − 1), can be interpreted as the partitions of [n] into
nonempty sets. Tracking both the size and number of sets in these set partitions
gives the semi-exponential generating function exp(yg(z)) = exp(y(ez − 1))
. The entries of the bivariate sequence counting partitions of [n] into k non-
empty sets are called the Stirling numbers of the first kind. ◁

Example 2.51 (set partitions into tuples). If P>0 is the labeled class of non-
empty permutations, then SET(P>0) is the class of set partitions into tuples,
containing sets {(x11, . . . , x1n1 ), . . . , (xk1, . . . , xknk )} where each element of [n]
appears exactly once. The semi-exponential generating function F(y, z) for par-
titions into tuples by size and number of sets is thus

F(y, z) = exp
(
y

z
1 − z

)
. (2.12)

◁

Example 2.52 (2-regular graphs). A 2-regular graph is a simple graph (with
no loops or multiple edges) in which every vertex has degree 2. A labeled
2-regular graph is the union of labeled undirected cycles and, because we con-
sider simple graphs, every cycle has length at least three. The exponential gen-
erating function for undirected cycles of length at least three is

u(z) =
1
2

(
log

1
1 − z

− z −
z2

2

)
,

derived by taking the expression for all cycles and removing the terms for
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cycles of length one and two, then dividing by 2 to account for orientation.
The exponential generating function for labeled 2-regular graphs is thus

eu(z) =
exp

(
− 1

2 z − 1
4 z2

)
√

1 − z
.

◁

Example 2.53 (surjections). A surjection of size n is any mapping from [n]
to a set [k] for any positive integer k. Because a surjection of size n onto [k]
can be viewed as the sequence ( f −1(1), . . . , f −1(k)) of non-empty sets, and the
exponential generating function of non-empty sets is ez − 1, the exponential
generating function of surjections is 1/(2 − ez). ◁

A wide variety of additional combinatorial constructions, for labeled and
unlabeled classes, can be found in [FS09].

Notes

The transfer matrix method is classical, and discussed in [Sta97, Section 4.7]
and [GJ04, Chapter 2], among many other places. Our discussion of the ker-
nel method borrows liberally from [BP00]. The method itself, which appears
to have been re-discovered several times, has been taken much further; a his-
torical account and survey of recent results can be found in [Mel21, Section
4.2.1].

Several of our proofs in Section 2.4 are taken from [Sta99]. An earlier defini-
tion of P-recursiveness appeared in the literature but it was discarded, due to its
failure to be equivalent to D-finiteness; counterexamples are given in [Lip89].
Lipshitz’s Theorem replaced two earlier proofs [Ges81; Zei82] with gaps and
solved a problem of Stanley [Sta80, Question 4e]. Algorithms for finding a
differential equation satisfied by an algebraic function go back at least to Abel,
and work on efficient algorithms for this purpose is still ongoing [Bos+07].
The approach of Exercise 2.14 is due to Comtet [Com64].

The method of Denef and Lipshitz [DL87] for expressing a d-variate alge-
braic function as the diagonal of a 2d-variate rational function is not, to our
knowledge, computationally effective, as it relies on the existence of a gener-
ator for a certain type of ring extension. Further discussion can be found in
[AB13], which gives a different, computationally effective, embedding proce-
dure. Denef and Lipshitz also give an embedding as an M-diagonal in dimen-
sion d + 1, and they allow a wider range of substitutions than do the other
methods.
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By Theorem 2.30, the main diagonal of every rational function is a D-finite
univariate generating function. The converse is not true, but Christol conjec-
tured that every D-finite univariate function that satisfies a mild condition
called global boundedness is the main diagonal of some rational function (see
[Chr15] for a recent survey of progress). Rational diagonals occur very often
in applications: see, for instance, [Mel21, Ch. 3.4] for a list of interesting ex-
amples.

There are several methods for computing asymptotics of P-recursive se-
quences, which can be used to compute asymptotics for rational diagonal se-
quences, including the method of Frobenius for D-finite series and methods
arising from the work of Birkhoff and Trjitzinsky [WZ85]. The difficulty in
such work is typically expressing the sequence of interest as a linear combina-
tion of certain known series expansions, which is a type of connection problem.
In Chapter 8 we discuss how to combine methods for D-finite series and mul-
tivariate asymptotics to resolve the connection problem, and how to effectively
compute with algebraic and D-finite series.

Moving on from D-finite series, one might consider the even larger class
of differentially algebraic series, defined to be those that satisfy an equation
P(z, f , f ′, . . . , f (m)) = 0 for some positive integer m and some polynomial P.
The question of possible behaviors of the coefficient sequence of such a func-
tion is wide open; some of the few known results are summarized in [Rub83;
Rub92]. Some negative results using model theory can be found in [MM08].

In the other direction, the theory of hypergeometric sequences is well de-
veloped. These are the coefficients of univariate formal power series satisfying
a first order linear recurrence with polynomial coefficients (equivalently, they
are sequences where the ratio of successive coefficients an+1/an is some fixed
rational function of n), and hence correspond to a special subclass of D-finite
generating functions. A substantial algorithmic theory exists, well described at
an elementary level in the book [PWZ96].

Additional exercises

Exercise 2.13. A domino or dimer is a union of two unit squares along a
common edge. Let ank be the number of ways of placing k non-overlapping
dominoes on a 2 × n grid. Find the generating function enumerating {ank}.

Exercise 2.14. From the defining algebraic equation for the Catalan number
generating function C(z) =

∑
n≥0 cnzn, derive a first order linear differential

equation with polynomial coefficients for C(z), and then a first order linear
recurrence for cn. Use this to deduce an explicit formula for cn in terms of
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factorials. Hint: After expressing C′ as a rational function A/B, use the fact
that B and the minimal polynomial P of C are relatively prime, and apply the
Euclidean algorithm to eventually express B−1(z) modulo P(z).

Exercise 2.15. Given a generating function F(x, y) in dimension d, consider
the monomial change of variables F(xayb, xcyd) where a, b, c, d ∈ N. How does
the main diagonal of F relate to the r-diagonal for other values of r?

Exercise 2.16. Using the method shown in this chapter, obtain the generat-
ing function T (z) for the (2, 1)-diagonal {a2n,n} of the Delannoy numbers and
compare the algebraic complexity of T to the diagonal generating function in
Example 2.33.

Exercise 2.17. Let α ∈ Nd represent a direction (with all coefficients nonzero
and relatively prime). Show how to express the α-diagonal of F(z) =

∑
r∈Nd arzr

as the main diagonal of a function related to F in a simple way. Hint: Consider
roots of unity.

Exercise 2.18. (a D-finite generating function) Let p0 = 1 and define {pn : n ≥
1} recursively by

pn =
1

3n + 1

2pn−1 +

n∑
j=2

p j−2 pn− j

 .
This sequence from [LP04] gives the probability that a genome in a certain
model due to Kaufmann and Levin cannot be improved by changing one al-
lele. Find a differential equation satisfied by the generating function f (z) =∑∞

N=0 pnzn, then use a computer algebra system to solve the resulting Riccati
equation explicitly in terms of Bessel functions. Among the solutions, find the
only one that is analytic in a neighborhood of the origin.

Exercise 2.19. A left-to-right maximum (respectively right-to-left maximum)
of a permutation π of size n is a position i for which πi > π j for all j <
i (respectively all j > i). Derive an explicit formula for the bivariate semi-
exponential generating function that enumerates permutations by length and
number of left-to-right maxima. Then derive the trivariate generating function
that also counts right-to-left maxima.

Exercise 2.20. The Catalan generating function f (x) = (1 −
√

1 − 4x)/(2x)
does not satisfy the hypotheses of Proposition 2.34. We can get around this by
multiplying by x, as in Example 2.35. Find another simple change to f that
allows Proposition 2.34 to be applied, and compare results.

Exercise 2.21. The Narayana numbers can be further refined by considering
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different types of leaves in a rooted ordered tree. Following [CDE06], we say
that the leaf of a tree is old if it is the leftmost child of its parent, and young oth-
erwise. The authors of [CDE06] enumerate such trees according to the number
of old leaves, number of young leaves and number of edges, finding the alge-
braic equation

G(x, y, z) = 1 +
z(G(x, y, z) − 1 + x)

1 − z(G(x, y, z) − 1 + y)
.

Use the embedding procedure above to express this as a diagonal of a 4-
variable rational function R. How exactly do we obtain the Narayana gen-
erating function from G? Does the embedding procedure commute with this
operation?



3

Univariate asymptotics

In this chapter we review some classical results on the asymptotics of univari-
ate generating functions. Throughout, f (z) =

∑∞
n=0 anzn will be a univariate

generating function for the sequence {an}, and for any complex function g(z)
analytic at the origin we write [zn]g(z) for the coefficient of zn in the power
series expansion of g(z) at the origin.

3.1 An explicit formula for rational functions

For rational functions in one variable, it is possible to determine an exact for-
mula for an when n is sufficiently large. For instance, when ρ , 0 the equality

[zn]
1

(1 − z/ρ)k =

(
n + k − 1

k − 1

)
ρ−n (3.1)

holds for k = 1 as the left-hand side is a geometric series, and repeated dif-
ferentiation proves inductively that it holds for all k ∈ N. More generally,
suppose f (z) = p(z)/q(z) is any rational function that is analytic at z = 0.
We assume, without loss of generality, that p and q are relatively prime poly-
nomials with q having the distinct roots ρ1, . . . , ρt ∈ C, and that q(0) = 1.
For each j ∈ {1, . . . , t}, let m j denote the multiplicity of the root ρ j and let
q j(z) = q(z)/(1 − z/ρ j)m j .

Because the q j have no common root, there exist polynomials p1, . . . , pt ∈

C[z] such that the numerator p of f can be written as a linear combination
p(z) =

∑t
j=1 p j(z)q j(z). This yields a partial fraction decomposition

f (z) =
p(z)
q(z)

=

t∑
j=1

p j(z)q j(z)
q(z)

= h0(z) +
t∑

j=1

h j(z)
(1 − z/ρ j)m j

,

where h0, . . . , ht ∈ C[z] and for every j ∈ {1, . . . , t} the polynomial h j(z) has

76
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degree at most m j − 1 and does not vanish at ρ j. Further decomposing each
term h j(z)/(1 − z/ρ j)m j as a sum

∑m j

i=0 ci j/(1 − z/ρ j)i for constants ci j ∈ C and
applying (3.1) then implies

an =

t∑
j=1

m j∑
i=0

ci j

(
n + i − 1

i − 1

)
ρ−n

j when n > deg(p0). (3.2)

In this way, a partial fraction decomposition of f results in an explicit expres-
sion for the coefficients in its power series expansion.

Proposition 3.1 (univariate rational coefficients). Suppose f (z) = p(z)/q(z)
is the ratio of coprime polynomials p and q, where q has the distinct roots
ρ1, . . . , ρt ∈ C and q(0) , 0. Then there exist N ∈ N and polynomials

P1(n, x), . . . , Pt(n, x) ∈ Q[n, x]

such that

[zn] f (z) =
t∑

k=1

Pk(n, ρk) ρ−n
k

for all n ≥ N. If the zero ρk of q(z) has multiplicity mk then as a function of n
the polynomial Pk(n, x) has degree mk − 1 and leading term expansion

Pk(n, x) = nmk−1 (−1)mk
mk p(x)

xmk q(mk)(x)
+ O(nmk−2). (3.3)

If q(z) has degree d then the polynomials P1, . . . , Pt have degree at most d in
x, and they can all be computed explicitly in polynomial time with respect to d.

Proof The stated decomposition and the degree of Pk(n, x) as a polynomial in
n follow from (3.2) after noting that the binomial coefficient

(
n+i−1

i−1

)
is a poly-

nomial of degree i− 1 in n. The fact that each Pk(n, x) has rational coefficients,
and a method to compute them, follows most easily from an analytic argument
given in Lemma 3.6 below. Each ρ j is an algebraic number of degree at most
d, so the degree of Pk(n, x) in x can be taken to be at most d. □

Proposition 3.1 has strong consequences for asymptotics. Most importantly,
the roots of q each give a contribution to the asymptotics of an, with the roots
of minimal modulus having the exponentially largest asymptotic contributions.

Remark 3.2. When q(x) has a unique root ρ1 of minimal modulus then

an = P1(n, ρ1) ρ−n
1 + O(ρ−n

†
),
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where ρ† is any root of q(z) with second smallest modulus. When ρ1 has mul-
tiplicity one then P1(n, ρ1) is constant, and the expression

an = −
p(ρ1)

ρ1 q′(ρ1)
ρ−n

1 + O(ρ−n
†

)

gives an asymptotic expansion of an with exponentially small error term. When
q(x) has a unique root ρ1 of minimal modulus with multiplicity larger than one
then, because the coefficients of P1(n, x) get rather unwieldy to compute, it is
common to give only the leading term (or the first few terms) in P1(n, x) and
leave an error of polynomially smaller size. Algorithms to separate the roots
of a univariate polynomial by modulus are discussed in [GS96] and [MS21].

If there are several roots of q with minimal modulus then only those with
maximum multiplicity contribute to dominant asymptotic behavior. The exis-
tence of several roots of minimal modulus and maximum multiplicity means
one must compute the terms in Proposition 3.1 coming from each, and po-
tentially deal with cancellation in the powers of these roots. Because it can
be very difficult to track algebraic relations between terms involving powers
of algebraic numbers with the same modulus, there are (perhaps surprisingly)
still open problems related to when such cancellation can occur. Thankfully,
the very pathological cases where it is difficult to detect dominant asymptotic
behavior do not arise for combinatorial examples; see [Mel21, Section 2.2] for
further discussion of these issues.

Exercise 3.1. Let a0 and a1 be any real numbers and suppose an+1 = 10an −

25an−1 for all integers n ≥ 1. Explicitly determine the generating function
f (z) =

∑∞
n=0 anzn and use this to determine the asymptotic behavior of an as

n → ∞. Split the parameter space determined by a0 and a1 into regions de-
pending on the different asymptotic behaviors of an.

3.2 Meromorphic asymptotics

Partial fraction decomposition gives a simple algebraic method to determine
asymptotics for rational generating functions. In this section we introduce an-
alytic techniques, allowing for a vast generalization from rational functions
to functions that behave locally like rational functions. Our arguments make
use of standard results about meromorphic functions and, although we make
our presentation as self-contained as possible, the reader not familiar with this
aspect of complex analysis can consult [Con78b] for further background.

Analytic methods require that the series f (z) represents an analytic function
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at the origin. To that end, we now assume that the sequence {an} behaves ex-
ponentially, meaning there exist C1,C2 > 0 such that Cn

1 < |an| < Cn
2 for all

sufficiently large n. Under this assumption, the open domain of convergence of
f (z) is a finite open disk around the origin, and the Cauchy Integral Formula
implies

an =
1

2πi

∫
C

f (z)
dz

zn+1 (3.4)

whenever C is a simple closed contour enclosing the origin in this disk. The
domain of integration in a complex integral can be deformed without changing
the value of the integral, as long as the deformation stays where the integrand
is analytic. It is therefore crucial to understand where f (z) is not analytic.

Definition 3.3 (singularities). IfD1 andD2 are domains (connected open sub-
sets) of C and g1(z) and g2(z) are analytic functions that agree onD1∩D2 , ∅

then we say g2 is a direct analytic continuation of g1 to D2. More generally,
we say that g2(z) is an analytic continuation of g1(z) if there exists a sequence
of direct analytic continuations on consecutively overlapping domains that be-
gins with g1 and end with g2. If f (z) can be analytically continued to the interior
of a simple closed curve γ but cannot be analytically continued to a neighbor-
hood of a point ω ∈ γ then we call ω a singularity of f .

Example 3.4. If f (z) is a rational function with coprime numerator and de-
nominator then f has singularities at the roots of its denominator. Aside from
division by zero, the most common types of singularities encountered in com-
binatorial applications include substitution of zero into an algebraic root or
logarithm (see Section 3.4 below). ◁

One implication of the Cauchy Integral Formula is that the radius of conver-
gence 0 < R < ∞ of f equals the minimum modulus of a singularity of f , and
this correspondence allows us to obtain a rough estimate of the growth of an.
Since

|an| =

∣∣∣∣∣∣ 1
2πi

∫
|z|=R−ε

z−n−1 f (z) dz

∣∣∣∣∣∣ ≤ (R − ε)−n sup
|z|=R−ε

| f (z)| ,

we see that lim supn→∞ |an|
1/n ≤ (R − ε)−1 for all 0 < ε < R. Conversely,

because there is a singularity of modulus R the power series for f does not
converge for |z| > R, so for any 0 < ε < R we have |an|

1/n ≥ (R− ε)−1 infinitely
often. Thus, the exponential growth rate lim supn→∞ |an|

1/n of an satisfies

lim sup
n→∞

|an|
1/n =

1
R
=

1
|ρ|
, (3.5)
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where ρ is a singularity of f (z) with minimal modulus. The exponential growth
rate of an can be viewed as the coarsest measure of its asymptotic behavior.

Just as for rational functions, the singularities of f (z) give contributions to
the asymptotic behavior of an. For the rest of this section, we restrict to the
case where f locally behaves like a rational function near the singularities that
determine dominant asymptotics of an. The asymptotic contributions of more
general types of singularities are discussed in Section 3.4 below.

Definition 3.5 (poles and meromorphic functions). We say that f has a pole
(or polar singularity) of order κ ∈ Z>0 at the point z = ω if f (z) cannot be ana-
lytically continued to z = ω but (z − ω)κ f (z) can, and κ is the smallest positive
integer with this property. A pole of order one is usually called a simple pole.
If f is either analytic or has a pole at every point of a set D ⊂ C then we say
f (z) is a meromorphic function onD.

Suppose now that f (z) is analytic on a closed disk D = {z ∈ C : |z| ≤ S } for
some S > 0, except at a non-empty collection {ρ1, . . . , ρt} of poles of orders
κ1, . . . , κt which lie in the interior of D (by our running assumption that an

grows exponentially, the ρ j must be non-zero). If C− is any positively-oriented
circle around the origin with radius less than R = min j |ρ j|, and C+ is the
positively-oriented circle around the origin with radius S , then the Cauchy
residue theorem implies

1
2πi

∫
C+

f (z)
dz

zn+1 −
1

2πi

∫
C−

f (z)
dz

zn+1 =

t∑
j=1

Res
z=ρ j

[
z−n−1 f (z)

]
. (3.6)

For readers unfamiliar with complex residues, the residue of a function g(z) at
a pole z = ω of order k can be defined by the explicit formula

Res
z=ω

g(z) =
1

(k − 1)!
lim
z→ω

[
dk−1

dzk−1

(
(z − ω)kg(z)

)]
, (3.7)

which for a simple pole reduces to

Res
z=ω

g(z) = lim
z→ω

[
(z − ω)g(z)

]
. (3.8)

It is a classic result in complex analysis that if z = ω is a pole of f (z) of order
k then for z in a neighborhood of ω we can write f as a ratio f (z) = p(z)/q(z)
of analytic functions with p(ω), q(k)(ω) , 0 and q(ω) = · · · = q(k−1)(ω) = 0
(taking a series expansion of q at z = ω shows the converse is also true). We
can use such a representation to compute the residue of f at z = ω.

Lemma 3.6. Under the assumptions of the previous paragraph,

Res
z=ω

f (z)z−n−1 = ω−nP(n)
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where P(n) is a polynomial in n of degree k − 1 with leading term expansion

P(n) = nk−1 (−1)k−1 k p(ω)
ωk q(k)(ω)

+ O(nk−2).

Proof The vanishing of the repeated derivatives of q implies q(z) = q(k)(ω)
k! (z−

ω)k + h(z)(z − ω)k+1 for some function h(z) analytic at z = ω, so (3.7) yields

Res
z=ω

f (z)z−n−1 =
1

(k − 1)!
lim
z→ω

 dk−1

dzk−1

 p(z)
q(k)(ω)

k! + (z − ω)h(z)
z−n−1


 .

The product rule gives a finite sum expression for the repeated derivative in
this limit, each term of which is a multiple of ω−n times a polynomial in n. The
leading term of this polynomial in n is contained only in the summand

lim
z→ω

 p(z)
q(k)(ω)

k! + (z − ω)h(z)
·

dk−1

dzk−1

(
z−n−1

) = k! p(ω)
q(k)(ω)

ω−n−k (−n)k−1

+ O(ω−n−knk−2),

and algebraic simplification gives the stated result. □

Exercise 3.2. Compute P(n) in Lemma 3.6 when f (z) = p(z)/q(z) = (2z −
1)/(2 − z − e1−z).

Combining Lemma 3.6 with (3.7) gives a generalization of Proposition 3.1
from rational functions to functions whose closest singularities to the origin
are poles.

Proposition 3.7 (meromorphic coefficients). Suppose that f (z) is analytic on
a closed disk D = {z ∈ C : |z| ≤ S } for some S > 0, except at a non-empty
collection {ρ1, . . . , ρt} of non-zero poles of orders κ1, . . . , κt which lie in the
interior of D. Then there exist polynomials P1(n), . . . , Pt(n) in n such that

[zn] f (z) = −
t∑

j=1

P j(n) ρ−n
j + O(S −n) ,

where P j(n) has degree κ j − 1. If f (z) = p(z)/q(z) represents f as a ratio of
analytic functions at z = ρ j with p(ρ j) , 0 then the polynomial P j(n) is the
polynomial P(n) in Lemma 3.6 with ω = ρ j and k = κ j. The terms of P j(n) can
be computed explicitly from the evaluations of the first κ j − 1 derivatives of p
and the first 2κ j derivatives of q at z = ρ j.

Proof Because f is analytic inside and on C−, the Cauchy integral formula
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implies 1
2π

∫
C−

f (z) dz
zn+1 = an, and (3.6) can be rearranged to give

an = −

t∑
j=1

Res
z=ρ j

[
z−n−1 f (z)

]
+

1
2πi

∫
C+

f (z)
dz

zn+1 .

Since f (z) is analytic on the circle C+, which is a compact set, the function
| f (z)| is bounded on C+, and∣∣∣∣∣∣ 1

2πi

∫
C+

f (z)
dz

zn+1

∣∣∣∣∣∣ ≤ max
z∈C+
| f (z)| · S −n = O(S −n).

The stated forms for the residues follow from Lemma 3.6. □

As was observed above for rational functions, if f (z) satisfies the conditions
of Proposition 3.7 and has a unique singularity closest to the origin then the
contribution of this point determines dominant asymptotics of an, up to an
exponentially smaller error. If f (z) has multiple poles of minimal modulus,
and several of them have maximum order, then we must consider cancellation
between their asymptotic contributions.

Example 3.8 (surjection asymptotics). As seen in Example 2.53, the number
an of surjections from a set of size n has exponential generating function

f (z) =
1

2 − ez .

This function is meromorphic in the entire complex plane, with poles at the
solutions Ξ = {log 2 + k2πi : k ∈ Z} to the equation 2 − ez = 0 in the com-
plex plane. Writing p(z) = 1 and q(z) = 2 − ez, we see that ω ∈ Ξ implies
p(ω), q′(ω) , 0, so every element of Ξ is a simple pole. Because log 2 is the
unique element of Ξ with minimal modulus, Proposition 3.7 implies

an

n!
∼

−p(log 2)
(log 2)q′(log 2)

(
1

log 2

)n

=
1
2

(
1

log 2

)n+1

.

In fact, because all singularities of f (z) are poles, Proposition 3.7 allows us
to obtain an asymptotic expansion of an to arbitrary accuracy. If S > 0 is not
equal to the modulus of any element in Ξ, and ΞS denotes the elements of Ξ
with modulus at most S , then

an

n!
=

∑
ω∈ΞS

−p(ω)
ωq′(ω)

ω−n + O
(
S −n) = 1

2

∑
ω∈ΞS

ω−n−1 + O
(
S −n) .

◁
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3.3 Darboux’s method

The fact that the asymptotic contribution of a pole singularity ω is easy to
compute using the theory of residues is partially a reflection of the fact that
f (z) is analytic in a punctured disk around ω, which is a disk centered at ω
with the center removed. Unfortunately, this property no longer holds near
singularities where f (z) locally behaves like a complex logarithm or a non-
integral power, due to the branch cuts required to define such functions. A
singularity where branch cuts are required to discuss local behavior of f (z)
is called a branch point, and in this section we illustrate a classical method
for computing asymptotics in the presence of a branch point coming from a
non-integral power.

Our first general asymptotic result (3.5), which bounded the exponential
growth of an, was achieved by pushing the domain of integration in the Cauchy
integral to the boundary of the domain of convergence of f (z). Crucially, even
if f (z) admits a branch point on the boundary of its domain of convergence,
such a deformation can be performed without needing to cross a branch cut.
Integrating a slight modification of f (z) on the boundary of the domain of con-
vergence leads to Darboux’s method and Darboux’s Theorem. Before describ-
ing Darboux’s method we require two preliminary results, the first of which
asymptotically bounds integrals of smooth functions.

Lemma 3.9. Suppose a complex-valued function f is k times continuously
differentiable on the circle γ of radius R for some integer k ≥ 0. Then∫

γ

z−n−1 f (z) dz = O
(
n−kR−n

)
as n→ ∞.

Proof Replacing f (z) by f (z/R) we may assume without loss of generality
that R = 1. Integrating by parts shows∫

γ

z−n−1 f (z) dz =
∫
γ

1
n

z−n f ′(z) dz ,

where the term involving z−n

−n f (z) vanishes because γ has no boundary, and
induction on k implies∫

γ

z−n−1 f (z) dz =
1

k!
(

n
k

) ∫
γ

zk−n−1 f (k)(z) dz .

Since f (k) is continuous, it is bounded on the unit circle. Thus, the last integral
above is bounded independently of n and our result follows from the behavior
k!

(
n
k

)
∼ nk when k is fixed and n→ ∞. □
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Our second preliminary result concerns expansions of power functions.

Lemma 3.10. For any α ∈ C the series (1−z)α has the power series expansion

(1 − z)α =
∑
n≥0

(−1)n
(
α

n

)
zn

which converges for |z| < 1, where(
α

n

)
=

∏n
j=1(α − j + 1)

n!
.

Furthermore, if α < N then there is a series expansion(
α

n

)
=

n−α−1

Γ(−α)

1 + ∞∑
k=1

ek

nk


as n → ∞, where each ek is a polynomial in α of degree 2k that can be com-
puted explicitly.

Proof The series expansion of (1− z)α is Newton’s generalized binomial the-
orem. The series expansion for

(
α
n

)
follows from an asymptotic analysis of the

Euler Gamma function, and can be found in [FS09, Theorem VI.1]. □

Darboux’s method consists of decomposing a generating function of interest
into the sum of an error term that can be bounded by Lemma 3.9 and a finite
number of terms that can be asymptotically approximated with Lemma 3.10.
The method dates back to nineteenth century work of Darboux on complex
functions with algebraic singularities.

Example 3.11. The techniques of Section 2.5 often give non-rational (or even
non-algebraic) generating functions to which Darboux’s method can be ap-
plied. For instance, if C denotes the class of even length cycles of length at
least four, with exponential generating function

C(z) =
∑
n≥2

z2n

(2n)!
=

1
2

log
1

1 − z2 −
z2

2
,

then the class P of permutations with disjoint cycles of even length at least
four has exponential generating function

P(z) = eC(z) =
e−z2/2

√
1 − z2

.

Since P is a function of z2, we make the substitution t = z2 and analyse f (t) =
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P(
√

t) = e−t/2/
√

1 − t. The Taylor series expansion e−t/2 = e−1/2 + e−1/2

2 (1− t)+
O((1 − t)2) at t = 1 proves that we can write

f (t) = e−1/2(1 − t)−1/2 +
e−1/2

2

√
1 − t + ψ(t)

for some C1 function ψ(t). Lemma 3.9 then implies

[tn] f (t) = e−1/2[tn](1 − t)−1/2 +
e−1/2

2
[tn](1 − t)1/2 + o

(
n−1

)
,

so Lemma 3.10 shows that the counting sequence pn of P satisfies

p2n

(2n)!
= [tn] f (t) ∼

e−1/2

Γ(−α)
n−1/2 =

e−1/2

√
πn

.

◁

Exercise 3.3. Find real constants C , 0 and β such that the generating function
f (t) in Example 3.11 satisfies[

tn] f (t) =
e−1/2

√
πn
+ (C + o(1))nβ .

As seen in Example 3.11, it is common that a generating function is an
analytic function multiplied by a pure power. Applying Darboux’s method in
this context gives the following result.

Theorem 3.12 (Darboux’s Theorem). Suppose that f (z) = (1 − z/R)αψ(z) for
some R > 0, where α < N and ψ is analytic on the closed disk |z| ≤ R and
satisfies ψ(R) , 0. If the expansion of ψ about R is ψ(z) =

∑∞
n=0 bn(R− z)n then

the power series coefficients {an} of f have an asymptotic expansion

an ≈ R−n
∞∑

k=0

ckn−α−1−k

where the coefficient ck is an explicit linear combination of b0, . . . , bk. In par-
ticular,

an ∼
ψ(R)
Γ(−α)

n−α−1R−n .

Proof Again, by rescaling our variable we assume without loss of gener-
ality that R = 1. Lemma 3.10 implies that we can expand

(
α
n

)
into a series

in decreasing powers n−α−1−k with explicit coefficients, making it possible to
convert an asymptotic series of the form an ≈

∑∞
k=0 c′k(−1)n

(
α+k

n

)
into a series

an ≈
∑∞

k=0 ckn−α−1−k with c0 = c′0/Γ(−α). Thus, to prove our claimed result it
is sufficient to show that an can be expressed as a series in bk(−1)n

(
α+k

n

)
.
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Let m be a positive integer greater than Re{−α} and let ψm be the Taylor
series remainder such that

ψ(z) −
m∑

k=0

bk(1 − z)k = (1 − z)m+1ψm(z) .

Multiplying by (1 − z)α yields

f (z) −
m∑

k=0

bk(1 − z)α+k = (1 − z)α+m+1ψm(z)

on the open unit disk, and taking the coefficient of zn on both sides implies

an −

m−1∑
k=0

bk(−1)n
(
α + k

n

)
+ O(n−α−m−1) = [zn](1 − z)α+m+1ψm(z) . (3.9)

By assumption α + m + 1 ≥ 0, so the function (1 − z)α+m+1ψm is ⌊α + m + 1⌋
times continuously differentiable on the unit circle and Lemma 3.9 implies
the right-hand side of (3.9) is O(n−α−m). Since this argument works for any m
sufficiently large, this proves the desired series for an exists. □

Example 3.13 (2-regular graphs: an algebraic singularity). Let

f (z) = e−z/2−z2/4/
√

1 − z

be the exponential generating function for the number an of 2-regular graphs
that was derived in Example 2.52 of Chapter 2. Applying Darboux’s Theorem
with R = 1, α = −1/2 and ψ = exp(−z/2 − z2/4) gives

an

n!
∼

ψ(1)
Γ(−α)

n−1/2 =
e−3/4

√
πn

.

◁

Exercise 3.4. Use Darboux’s Theorem to compute an asymptotic estimate for

the coefficients of the generating function f (z) =
1

1 − 4z + z2 .

3.4 Transfer theorems

Our proof of Darboux’s Theorem uses analyticity of ψ(z) = f (z)/(R − z)α be-
yond the disk of radius R only to provide a series development of f at z = R. By
making stronger use of analytic properties, and using a sharper estimate than
Lemma 3.9 to bound error terms, it is possible to do better. There are various
results along these lines, our favorite being the transfer theorems of Flajolet
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and Odlyzko [FO90]. The idea of this approach is to establish an estimate of
the form an = O(n−α−1) for the coefficients of any power series f (z) that is
analytic in neighborhood of the unit disk in a slit plane, except at z = 1 where
f (z) = O((1 − z)α).

Remark. To simplify our notation in this section we state our results for func-
tions with singularities at z = 1. As noted above, this loses no generality since
[zn] f (z/R) = R−n[zn] f (z) for any non-zero constant R and analytic function f .

The transfer theorem method is also flexible enough to extend beyond pow-
ers to other branch singularities. Let alg-log be the class of functions that
are a product of a power of 1 − z, a power of z−1 log(1/(1 − z)) and a power
of log

[
z−1 log(1/(1 − z))

]
. We begin with a description of asymptotics for all

functions in the class alg-log, then discuss asymptotics of functions which lo-
cally behave as if they are in alg-log near their singularities.

Proposition 3.14. Let α, γ, δ ∈ C \ N and let

f (z) = (1 − z)α
(

1
z

log
1

1 − z

)γ (
1
z

log
(

1
z

log
1

1 − z

))δ
.

Then the power series coefficients {an} of f satisfy

an ∼
n−α−1

Γ(−α)
(log n)γ(log log n)δ .

Proof See [FO90, Theorem 3B]. □

Remark. When at least one of α, γ or δ is a nonnegative integer, different for-
mulae can hold. For example, when γ < N but δ = 0 and α ∈ N the coincidence
of αwith a nonnegative integer decreases the exponent of the logarithm by one,
giving the estimate

an ∼ Cn−α−1(log n)γ−1 . (3.10)

For any R > 0 and ε ∈ (0, π/2), the ∆-domain (or Camembert-shaped
region) defined by R and ε is

∆(R, ε) = {z ∈ C : |z| < R + ε, z , R, | arg(z − R)| ≥ π/2 − ε} ,

pictured in Figure 3.1.

Theorem 3.15 (Transfer Theorem). Let f (z) =
∑∞

n=0 anzn be analytic in a ∆-
domain ∆(1, ε). If g(z) =

∑∞
n=0 bnzn is in alg-log then the following statements

hold.

(i) If f (z) = O(g(z)) as z→ 1 then an = O(bn) as n→ ∞.
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ε

ε

R

Figure 3.1 A ∆-domain.

(ii) If f (z) = o(g(z)) as z→ 1 then an = o(bn) as n→ ∞.
(iii) If f (z) ∼ g(z) as z→ 1 then an ∼ bn as n→ ∞.

Theorem 3.15 with g(z) = C(1 − z)α strengthens Theorem 3.12. So as not
to devote too much space to computation, we only prove Theorem 3.15 for the
subset of alg-log given by powers (1 − z)α.

Proof for g(z) = (1 − z)α. We need only prove the first two statements in the
theorem, as the third follows as an immediate consequence. Cauchy’s integral
formula implies an can be expressed as a sum of integrals

an =
1

2πi

∫
γ1

f (z)z−n−1dz +
1

2πi

∫
γ2

f (z)z−n−1dz

+
1

2πi

∫
γ3

f (z)z−n−1dz +
1

2πi

∫
γ4

f (z)z−n−1dz

defined by two parameters ξ and η, where

• γ1 is the circular arc parametrized by 1 + n−1e−it for ξ ≤ t ≤ 2π − ξ,
• γ2 is the line segment between 1+ n−1eiξ and the number β of modulus 1+ η

and arg(β − 1) = ξ,
• γ3 is the arc on the circle of radius 1 + η running between β and β the long

way, and
• γ4 is the conjugate of γ2, oriented oppositely.

Our argument works with any 0 < η < ε and any 0 < ξ < π/2 large enough
so that the curves are contained in ∆(1, ε); see Figure 3.2 for an illustration.
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Suppose first that f (z) = O((1 − z)α) near z = 1, so that for some K > 0 the
inequality | f (z)| ≤ K|1 − z|α holds everywhere on the curves.

Figure 3.2 The contour γ.

On γ1 the modulus of f is at most Kn−α and the modulus of z−n−1 is at most
(1 − n−1)−n−1 ≤ 2e ≤ 6 so, since the length of the curve is less than 2πn−1, the
Cauchy integral over γ1 has size at most 6Kn−α−1.

On γ3 the z−n−1 factor reduces the modulus of the integrand to at most
C(η)(1+η)−n,where C(η) grows at most polynomially with η. Thus, the Cauchy
integral over γ3 is O(n−N) for any N ∈ N.

By symmetry, it remains only to bound the integral over γ2. Set ω = eiξ and
parametrize the integral as z = 1+ (ω/n)t for t from 1 to En, where E = |β−1|.
We have | f (z)| ≤ K|z − 1|α = K(t/n)α and |z|−n−1 =

∣∣∣1 + ωt
n

∣∣∣−n−1
, so∣∣∣∣∣∣

∫
γ2

f (z)z−n−1dz

∣∣∣∣∣∣ ≤
∫
γ2

| f (z)||z−n−1|dz ≤
∫ En

1
K

( t
n

)α ∣∣∣∣∣1 + ωt
n

∣∣∣∣∣−n−1 dt
n

≤ Kn−α−1
∫ ∞

1
tα

∣∣∣∣∣1 + ωt
n

∣∣∣∣∣−n−1
dt.

(3.11)

The inequality |1+ωt/n| ≥ 1+Re{ωt/n} = 1+ (t/n) cos(ξ), implies an upper
bound of ∫ ∞

1
tα

(
1 +

t cos(ξ)
n

)−n−1

dt
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for the integral in (3.11), which can be relaxed to

Jn =

∫ ∞

1
tα

(
1 +

t cos(ξ)
n

)−n

dt

because cos(ξ) > 0. The integrand of Jn monotonically decreases as n in-
creases, and is finite for any positive n larger than the real part of α, so the
decreasing limit is

J = lim
n→∞

Jn =

∫ ∞

1
tαe−t cos(ξ) dt ,

which is finite as 0 < ξ < π/2. We have now bounded all four integrals by
multiples of n−α−1, so the proof statement (i) in the theorem is complete.

The proof of statement (ii) is contained in this argument too. When | f (z)| ≤
Kg(z) then the integral over γ1 is bounded above by 6Kn−α−1, the integral over
γ3 is o(n−α−1), and the integrals over γ2 and γ4 are bounded by JKn−α−1. Fur-
thermore, the contributions to each of these four integrals from parts of γ at
distance greater than any fixed δ > 0 from 1 are o(n−α−1). If f (z) = o(g(z)) at
z = 1 then for any ε > 0 there is a δ such that | f (z)| ≤ ε|g(z)| when |1 − z| ≤ δ.
It follows that an ≤ (2J + 6+ o(1))εn−α−1. This is true for every ε > 0, whence
an = o(n−α−1). □

Example 3.16 (Catalan asymptotics). Let an =
1

n+1

(
2n
n

)
be the nth Catalan

number, whose generating function

f (z) =
∞∑

n=0

anzn =
1 −
√

1 − 4z
2z

=
1 − 2

√
1
4 − z

2z

was described in Example 2.14 of Chapter 2. The function f (z) has an algebraic
singularity at z = 1/4, near which the asymptotic expansion for f begins

f (z) = 2 − 4

√
1
4
− z + 8

(
1
4
− z

)
− 16

(
1
4
− z

)3/2

+ O

(1
4
− z

)2 .
Note that f (z)/

√
1/4 − z is not analytic in any disk of radius 1/4+ε, since both

integral and half-integral powers appear in f , but f is analytic in a ∆-domain.
Since the integral powers of (1− z) do not contribute to asymptotic behavior as
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they are polynomials, Theorem 3.15 thus gives an expansion

an = −4 · 4n

− 1

4n
3
2
√
π
−

3

32n
5
2
√
π
+ O

(
n−

7
2

)︸                                          ︷︷                                          ︸
[zn](1/4−z)1/2

−16 · 4n
(
−3

32n
5
2

+ O
(
n−

7
2

))
︸                    ︷︷                    ︸

[zn](1/4−z)3/2

+ O
(
4nn−

7
2

)︸     ︷︷     ︸
[zn]O((1/4−z)2)

= 4n
(
n−

3
2

1
√
π
− n−

5
2

9
8
√
π
+ O

(
n−

7
2

))
.

◁

Exercise 3.5 (common subexpression problem). Flajolet and Odlyzko [FO90]
quote the generating function

f (z) =
1
2z

∑
p≥0

1
p + 1

(
2p
p

) [ √
1 − 4z + 4zp+1 −

√
1 − 4z

]
involved in the representation of trees by directed acyclic graphs.

(a) Show that the minimal modulus singularity occurs at z = 1/4, around
which

f (z) ∼
c√

(1 − 4z) log(1 − 4z)−1
.

(b) Compute the asymptotic behavior of the coefficients of f (you can check
your answer against [FO90, (6.7b)]).

Example 3.17 (branching random walk: logarithmic singularity). For an ex-
ample including a logarithmic term, recall from Example 2.13 the implicit
equation

ϕ(z) = [(1 − p)z + pϕ(ϕ(z))]2 .

This characterizes the probability generating function for the number X of par-
ticles to reach the origin in a binary branching nearest-neighbor random walk
with absorption at the origin. Aldous (see [AB05, Theorem 29] and [Ald98,
Theorem 6]) showed that there is a critical value p = p∗ satisfying 16p∗(1 −
p∗) = 1, such that if p > p∗ then X is sometimes infinite, while if p < p∗ then
X is never infinite. At the critical value X is always finite, and it is of interest
to know the likelihood of large values of X.

Below, we show that

ϕ(z) = 1 −
1 − z
4p
− (c + o(1))

1 − z
log(1/(1 − z))

, (3.12)
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where c = log(1/(4p))/(4p) and the statement holds for z ∈ [0, 1] (the interest-
ing situation is when z→ 1). If we knew this for all z in a ∆-domain, we could
use (3.10) to conclude an ∼ cn−2(log n)−2, so that X has a first moment but not
a “1 + log” moment. Here we establish (3.12) on the unit interval, although
it is probably true in a ∆-domain and this is left to the interested reader. Just
knowing (3.12), we can deduce information on the partial sums

∑n
k=0 ak via a

Tauberian theorem of Hardy & Littlewood, and perhaps asymptotic informa-
tion on an itself (see [FS09, Sec. VI.11]).

To show (3.12), fix 0 < z0 < 1 and consider the iterates zn = ϕ(−n)(z0) of
the inverse of ϕ. The function ϕ is convex on [0, 1] with ϕ(0) > 0, ϕ(1) = 1,
and one other fixed point k with p∗ < k < 1. Because ϕ(x) < x on (k, 1), if
we iterate ϕ on any point in (c, 1) it converges downward to c. Likewise, if we
iterate the inverse function ϕ−1 starting with any point in (c, 1), it converges
upwards to 1, so zn ↑ 1. The recursion for ϕ gives

zn = ((1 − p)zn+1 + pzn−1)2,

and changing variables to yn = 1 − zn implies

yn = 1 − ((1 − p)(1 − yn+1) + p(1 − yn−1))2

= 1 − (1 − ((1 − p)yn+1 − pyn−1))2.

Solving for yn+1 gives

yn+1 =
1 −

√
1 − yn − pyn−1

1 − p
.

Setting xn = yn/(4p)n and using 16p(1 − p) = 1 results in

xn+1 = 2xn − xn−1 + O(yn)2.

Verifying first that yn is small, we then approximately solve the linear re-
currence for xn to obtain xn ∼ An + B, for some constants A, B, whence
yn ∼ (4p)n(An + B). We may write this as

yn+1 = 4pyn + (1 + o(1))
yn+1

n + 1
= 4pyn + (1 + o(1))

yn+1

log yn+1/ log(4p)
.

Let z = 1 − yn+1 so ϕ(z) = 1 − yn. We then have

1 − ϕ(z) =
1 − z
4p
− (1 + o(1))

1 − z
4p

log(4p)
log(1 − z)

for all real z ↑ 1, proving (3.12). ◁
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3.5 The saddle point method

One of the crowning achievements of complex analysis is the development of
techniques to evaluate integrals through clever deformations of their contours
of integration. Much of this work can be grouped together under the umbrella
of the saddle point method, aimed at discovering the best deformation for an
asymptotic analysis. Unlike the techniques discussed above, saddle point meth-
ods do not require an integrand to have singularities, and it is common to use
a saddle point analysis in situations where transfer theorems cannot be utilized
(in fact, the presence of singularities can complicate the saddle point method).
In this section we give a short overview of univariate saddle point techniques,
with further development of the univariate case covered in Chapter 4 and mul-
tivariate generalizations discussed in Chapter 5.

The heart of the saddle point method is the following statement: when the
modulus of an integrand falls steeply on either side of its maximum, most of the
contribution to the integral comes from a small interval about the maximum.
If the descent is steep enough, multiplying the integrand by the length of the
interval where the modulus is sufficiently near its maximum (or doing some-
thing slightly more fancy) gives an accurate estimate. Most contours, however,
cannot be used for this purpose: such an estimate cannot hold if the contour
can be deformed so as to decrease the maximum modulus of the integrand,
since then the integral would be less than the claimed estimate.

Let γ be a contour and let I = log f (z) − (n + 1) log z be the logarithm of the
Cauchy integrand in (3.4). Fixing z0 ∈ γ, we write Re{I′} and Im{I′} for the real
and imaginary parts of the derivative at z0 of I restricted to the curve γ. If z0

maximizes the modulus of the Cauchy integrand on γ then Re{I′} = 0, however
it is not usually true that Im{I′} = 0. In fact, the Cauchy-Riemann equations
imply that Im{I′} equals the real part of the derivative at z0 of I along any
curve perpendicular to γ at z0. Thus, when Im{I′} , 0 the curve γ may be
locally perturbed, fixing the endpoints but pushing the center in the direction
of increasing Re{I}, thereby decreasing the maximum modulus of the Cauchy
integrand on the contour. In other words, if the modulus of the integrand is
maximized on γ at z0, and this maximum cannot be reduced by perturbing γ,
then I′ must vanish at z0. The univariate saddle point method thus consists of
the following steps:

(i) locate the zeros of I′, which form a discrete set of points,

(ii) see whether the contour of integration can be deformed so as to minimize
Re{I} at such a point,

(iii) estimate the integral via a Taylor series expansion of the integrand.
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In Chapter 4 we will see that for integrals of the form∫
A(z) exp(−λϕ(z))

with parameter λ going to infinity, including the Cauchy integral, one can get
away with approximating the critical point z0(λ) by the critical point z0 for ϕ,
ignoring A and removing the dependence of z0 on λ. This approximation is
often good enough to provide an asymptotic expansion of the integral, but here
we consider cases where we can deal with z0(λ) directly. For the second step
above not to fail, either f must be entire or the saddle point where I′ vanishes
must be have smaller modulus than the singularities of f . In practice this is
often satisfied, and this classic method is widely applicable. For instance, the
seminal paper [Hay56] defines a broad class of functions, called admissible
functions, for which the saddle point method works and can be automated.

Examples of saddle point integrals

Because we go into great detail on saddle point integrals in Chapter 4, here
we simply present two examples illustrating the theory. At their heart, these
examples rely on the estimate∫

γ

A(z) exp(−λϕ(z)) dz ∼ A(z0)

√
2π

ϕ′′(z0)λ
exp(−λϕ(z0)) (3.13)

where A and ϕ are smooth functions with Re{ϕ} minimized in the interior of γ
at a point z0 where ϕ′′ does not vanish. The approximation (3.13) follows from
Theorem 4.1, however we compute it directly in our first example to illustrate
why it is true.

Example 3.18 (ordered-set partitions: an isolated essential singularity). Ex-
ample 2.51 implies that the exponential generating function for the number an

of ordered-set partitions of [n] is

f (z) = exp
( z
1 − z

)
.

Our goal here is to prove the estimate

an ∼ n!

√
1

4πe
n−3/4 exp

(
2
√

n
)
,

starting with the Cauchy integral expression

an

n!
=

1
2πi

∫
|z|=ε

exp
( z
1 − z

)
z−n−1 dz
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Figure 3.3 The circle |z| = 1 − βn can be deformed to a rectangle with right edge
(bold) on the line x = 1 − βn and other edges arbitrarily far from the origin.

that holds for any 0 < ε < 1 (in fact, we will select ε to vary with n, with ε→ 0
as n→ ∞).

Following the outline of the saddle point method above, we let

I(z) = In(z) = −(n + 1) log z +
z

1 − z

be the logarithm of the integrand and begin by computing the points where the
derivative

I′(z) =
−n − 1

z
+

1
(1 − z)2

vanishes. The closest solution of I′(z) = 0 to the origin is 1 − βn where

βn = n−1/2 −
1
2

n−1 + O
(
n−3/2

)
, (3.14)

and we thus take the Cauchy contour of integration to be the circle of radius
ε = 1 − βn (which is less than one for all n sufficiently large). Because the
only singularities of the Cauchy integrand lie at the origin and the point z = 1,
without changing the value of the Cauchy integral we can deform this circle to
a rectangle with right edge on the line x = 1−βn and all other points arbitrarily
far from the origin (see Figure 3.3). When |z| ≥ 2 the modulus of the Cauchy
integrand is upper bounded by exp

(
|z|
|z|−1

)
|z|−n−1 ≤ e2|z|−n−1, meaning we can

take the left, top, and bottom edges of the rectangle in Figure 3.3 to infinity
and use the change of variables z = 1 − βn + it to obtain

an

n!
=

1
2πi

∫ ∞

−∞

exp(I(1 − βn + it)) (i dt) (3.15)

for n sufficiently large, fulfilling the second step of the saddle point method.
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The final step is to prove an approximation of the form

1
2π

∫ ∞

−∞

exp(I(1 − βn + it)) dt ∼
1

2π

∫ ∞

−∞

exp
[
I(1 − βn) +

1
2

I′′(1 − βn)(it)2
]

dt

(3.16)
where I(1−βn+it) is replaced by its second-degree Taylor approximation. This
is very useful because, as a Gaussian integral, the right-hand side of (3.16) can
be computed exactly,

1
2π

∫ ∞

−∞

exp
[
I(1 − βn) +

1
2

I′′(1 − βn)(it)2
]

dt =

√
1

2πI′′(1 − βn)
exp(I(1−βn)) .

(3.17)
The estimate (3.16) — comparable to (3.13) with λ = n + 1 and ϕ(t) = −I(1 −
βn+it) — is verified through several integral bounds. The approximation (3.14)
for βn implies

I′′(1 − βn) =
n + 1

(1 − βn)2 +
2
β3

n
= (2 + o(1))n3/2, (3.18)

so that the right-hand side of (3.17) is

√
1

2πI′′(1 − βn)
exp(I(1 − βn))

∼

√
1

4πn3/2 exp
(
−(n + 1) log(1 − βn) − 1 +

1
βn

)
∼

√
1

4πn3/2 exp
(
−(n + 1)

(
−n−1/2 + O

(
n−3/2

))
− 1 + n1/2 +

1
2
+ O

(
n−1/2

))
∼

√
1

4πe
n−3/4 exp

(
2
√

n
)
.

Our claimed asymptotic result for an thus holds as long as we can show the
left and right sides of (3.16) are equal up to an error that is o

(
n−3/4 exp

(
2
√

n
))

.
The approximation (3.18) suggests that the main contributions to the integrals
in (3.16) come from the region where t2n3/2 is not too small, meaning |t| is
roughly n−3/4 or smaller. Accordingly, we pick a cutoff L = 2n−3/4 log n a little
greater than that and break our integrals into the two parts |t| ≤ L and |t| > L.
Up to the cutoff the two integrals are close, and past the cutoff they are both
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small. More precisely, define

M1 =

∫
|t|≥L

∣∣∣∣∣∣exp
[
I(1 − βn) +

1
2

I′′(1 − βn)(it)2
] ∣∣∣∣∣∣ dt

M2 =

∫
|t|≥n−1/2

∣∣∣exp[I(1 − βn + it)]
∣∣∣ dt

M3 =

∫
n−1/2>|t|≥L

∣∣∣exp[I(1 − βn + it)]
∣∣∣ dt

M4 =

∫
|t|<L

∣∣∣∣∣∣exp
[
I(1 − βn) +

1
2

I′′(1 − βn)(it)2
]
− exp

[
I(1 − βn + it)

]∣∣∣∣∣∣ dt

so that

• M1 is the integral on the right-hand side of (3.16) beyond L,
• the sum of M2 and M3 bounds the integral on the left-hand side of (3.16)

beyond L,
• M4 bounds the difference between the left and right-hand sides of (3.16) on

[−L, L],
• and the modulus of the difference between the left and right sides of (3.16)

is bounded by the sum M1 + M2 + M3 + M4.

Letting M = exp[I(1 − βn)], we prove M1,M2 and M3 have upper bounds of
the form M · exp(−c(log n)2) for some c > 0, and that M4 = o(Mn−3/4). These
bounds all lie in o

(
n−3/4 exp

(
2
√

n
))

, completing our derivation of asymptotics
for this example.

Bound on M1 We bound M1 with a standard Gaussian tail estimate. For any
a,C > 0 ∫

|t|≥C
e−at2

dt = 2
∫

t≥C
e−at2

dt = 2e−aC2
∫

t≥0
e−at2−2aCtdt

≤ 2e−aC2
∫

t≥0
e−at2

dt

=
√
π/ae−aC2

,

so the growth rates of I′′(1 − βn) and L give the asserted upper bound on M1

for any c < 8.

Bound on M2 To bound M2, observe first that if |t| ≥ n−1/2 then the exponent
−t2/(β3

n + βnt2) decreases to −β−1
n ∼ −

√
n. This is small, but integrating it over
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the unbounded region [n−1/2,∞] requires us to be careful. In particular, we use
the upper bound

| exp(I(1 − βn + it))|
exp(I(1 − βn))

≤
|1 − βn|

n

|1 − βn + it|n
exp

(
Re

{
1 − βn + it
βn − it

−
1 − βn

βn

})
≤ (1 + t2)−n/2 exp

(
−(1 + o(1))n1/2

)
,

where we can bound the power of n in the first line by (1+ t2)−n/2 since 1−βn <

1 and |x/(x + it)| is increasing in x ≥ 0. Integrating the factor (1 + t2)−n/2 as t
ranges from n−1/2 to infinity gives a term of size o(1), so

M2

M
≤ exp

(
−(1 + o(1))n1/2

)
= o

(
exp

[
−c(log n)2

])
for any c > 0.

Bound on M3 To bound M3 we pull out the factor of M, obtaining

M3 ≤ M
∫

L<|t|<n−1/2
exp

[
Re {I(1 − βn + it) − I(1 − βn)}

]
dt .

The real part of −(n + 1) log(1 − βn + it) is maximized at t = 0, whence

Re {I(1 − βn + it) − I(1 − βn)} ≤ Re
{

1 − βn + it
βn − it

−
1 − βn

βn

}
,

and

M3 ≤ M
∫

L<|t|<n−1/2
exp

(
Re

{
1 − βn + it
βn − it

−
1 − βn

βn

})
dt

= M
∫

L<|t|<n−1/2
exp

(
−t2

β3
n + βnt2

)

≤ M
∫

L<|t|<n−1/2
exp

(
−

t2

2β3
n

)
dt

because the β3
n term is the greatest term in the denominator when t < n−1/2.

The behavior βn ∼ n−1/2 and L = 2n−3/4 log n proves the desired upper bound
on M3 for any constant c < 2.

Bound on M4 Finally, for M4 we use the Taylor approximation∣∣∣∣∣I(1 − βn + it) − I(1 − βn) +
1
2

t2I′′(1 − βn)
∣∣∣∣∣ ≤ t3

6
sup
|s|≤L
|I′′′(1 − βn + s)|.

Differentiating I′(z) = −(n+1)/z+1/(1− z)2 twice we find that I′′′(z) ∼ 6/(1−
z)4 near z = 1, and hence that the right-hand side is bounded by (k+o(1))t3n2 =
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(k + o(1))n−1/4 log3 n for some k > 0. Because the integrand on the right-hand
side of (3.16) is everywhere positive, this implies the existence of c > 0 such
that M4 ≤ cn−1/4 log3 n times the value of M, as desired. ◁

Remark. The approach of Example 3.18 yields a full asymptotic development
of an with minor modifications.

Our second example simply assumes the approximation (3.13), greatly re-
ducing the amount of work.

Example 3.19 (involutions: an entire function). Let f (z) = exp(z+z2/2) be the
exponential generating function for the number an of involutions in the permu-
tations group S n, as discussed in Example 2.49. This is an entire function, and
we apply a saddle point analysis. Let

I(z) = log( f (z)z−n−1) = z +
z2

2
− (n + 1) log z .

Setting the derivative of I equal to zero gives the quadratic z2 + z − (n + 1) = 0

with roots −
1
2
±

√
n +

5
4

. The series coefficients an of f are positive, whereas

exp(I(z)) alternates in sign near the negative root, meaning an cannot be ap-
proximated by the integrand near the negative root.

We thus let γ be the positively oriented circle around the origin through z0 =√
n + 5

4 −
1
2 . The real part of I on γ is maximized at z0, so the estimate (3.13)

implies

[zn] f (z) =
1

2πi

∫
γ

exp(I(zn)) dz ∼ exp(I(z0))

√
1

2π I′′(z0)
.

From the approximations

z0 = n1/2 −
1
2
+

5
8

n−1/2 + O(n−3/2)

z2
0

2
=

1
2

n −
1
2

n1/2 +
3
4
+ O(n−1/2)

log(z0) =
1
2

log n −
1
2

n−1/2 +
1
2

n−1 + O(n−3/2)

it follows that

I(z0) = −
1
2

n log n +
1
2

n + n1/2 −
1
2

log n −
1
4
+ O(n−1/2)
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and I′′(z0) = 2 + o(1). Thus,

an ∼ n! exp(I(z0))

√
1

2π I′′(z0)

= n! exp
(
−

1
2

n log n +
1
2

n + n1/2 −
1
2

log n −
1
4
+ O(n−1/2)

)
2−1/2

∼ nn/2e
√

n−n/2 1√
2
√

e
,

where the final line follows from Stirling’s approximation for n!. ◁

Notes

One of the earliest and most well-known uses of a modern generating func-
tion analysis to obtain asymptotics was Hardy and Ramanujan’s derivation of
asymptotics for the number of partitions of an integer [HR00a]. Their original
argument used a Tauberian theorem and the behavior of the generating func-
tion f (s) as s ↑ 1 through real values, though later work such as [HR00b] used
a circle method obtained by integrating over a circle near the boundary of the
domain of convergence. Saddle point methods are even more classical, dating
back centuries. As mentioned in the chapter, [Hay56] was an influential work
in developing the modern general theory.

The exposition in this chapter does not follow any one source, though it
owes a debt to Chapter 11 of [Hen91] and to the beautiful paper [FO90]. A
nice reference book for univariate asymptotics is the exemplary text [FS09].

Additional exercises

Exercise 3.6. The explicit leading term formulas in Lemmas 3.6 and Propo-
sition 3.7 are only useful when the numerator of the meromorphic generating
function is nonzero at the pole in question. Extend these two results to cap-
ture vanishing numerators and find the leading asymptotic term for the series
coefficients of f (z) = (1 − z)/(2 − z − e1−z) as n→ ∞.

Exercise 3.7. (set partition asymptotics) Use the exponential generating func-
tion f (z) = exp(ez − 1) for the number an of set partitions of [n] from Exam-
ple 2.51 to derive the estimate

an = (log n + O(1))n .
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Exercise 3.8. (Exercise 2.18 continued) Using the fact that the series coef-
ficients an of the generating function f in Exercise 2.18 are positive, prove
that its smallest positive singularity has the least modulus of any singularity of
f . Approximate this singularity and then estimate the logarithmic exponential
growth rate lim sup

n→∞
n−1 log an. Prove that this limsup is equal to the liminf, so

the limit exists.

Exercise 3.9. Sometimes, even when f is given explicitly, it can be tricky to
compute the minimal modulus of the singularities of f in order to obtain the
exponential coefficient behavior using (3.5). The power series coefficients of
the function

f (z) =
arctan

√
2e−z − 1

√
2e−z − 1

were shown by H. Wilf to yield rational approximations to π. An asymptotic
analysis was provided by [War10]; do the first step by finding the radius of
convergence of the power series for f at zero.

Exercise 3.10. Suppose P(x) is a polynomial of degree k with leading coeffi-
cient ak , 0. What does the saddle point method tell you about the asymptotics
of the Maclaurin coefficients an of eP(x)? Specifically, can you identify an ex-
ponent β such that lim

n→∞
n−β log |an| is finite?

Exercise 3.11. (Open Problem) Is the generating function ϕ from Example 3.17
analytic in a ∆-domain?





PART II

MATHEMATICAL BACKGROUND





4

Fourier-Laplace integrals in one variable

In this chapter we perform a systematic asymptotic study of Fourier-Laplace
integrals having the form

∫
γ

A(z) exp(−λϕ(z)) dz ,

as the parameter λ → ∞. The functions A and ϕ are called the amplitude and
phase functions, respectively (note that when ϕ(z) = −iρ(z) is purely imaginary
some authors use the term phase to denote ρ rather than iρ). The univariate
setting covered in this chapter gives a basis for the multivariate case handled
in Chapter 5, which in turn underlies the asymptotic results of analytic combi-
natorics in several variables. Our main result is the following theorem, which
is proved in Section 4.2.

Theorem 4.1 (univariate Fourier-Laplace asymptotics). Let A and ϕ be ana-
lytic functions in a neighborhood N ⊆ C of the origin. Let

A(z) =
∞∑
j=0

b jz j

ϕ(z) =
∞∑
j=0

c jz j

be the power series for A and ϕ at the origin, and let ℓ ≥ 0 and k ≥ 2 be the
indices of the least nonvanishing terms in these series, so that bℓ, ck , 0 and
b j = ci = 0 for any j < ℓ and i < k. Let γ : [−ε, ε] → C be any smooth curve
with γ(0) = 0 , γ′(0) and assume that Re{ϕ(γ(t))} ≥ 0 with equality only at

105
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t = 0. Denote

I+(λ) :=
∫
γ|[0,ε]

A(z) exp(−λϕ(z)) dz

I(λ) :=
∫
γ

A(z) exp(−λϕ(z)) dz

C(k, ℓ) :=
Γ((1 + ℓ)/k)

k
,

where Γ is the Euler gamma function. Then there are asymptotic expansions

I+(λ) ≈
∞∑
j=ℓ

a jC(k, j)(ckλ)−(1+ j)/k (4.1)

I(λ) ≈
∞∑
j=ℓ

α jC(k, j)(ckλ)−(1+ j)/k (4.2)

with the following explicit description.

(i) a j is a polynomial expression, explicitly constructed in our proof, in the
values bℓ, . . . , b j, c−1

k , ck+1, . . . , ck+ j−ℓ whose first two values are aℓ = bℓ

and aℓ+1 = bℓ+1 − bℓ
2 + ℓ

k
ck+1

ck
,

(ii) the choice of kth root in the expression (ckλ)−(1+ j)/k is made by taking the
principal root in x−1(ckλxk)1/k where x = γ′(0),

(iii) the numbers α j are related to the numbers a j by

α j =


2a j if k is even and j is even

0 if k is even and j is odd(
1 − ζ j+1

)
a j if k is odd

where

ζ = − exp
( iπ

k
sgn Im

{
ϕ(γ′(0))

})
.

Remarks. (i) If ϕ(0) = ν , 0 but Re{ϕ(x)} is still minimized at x = 0, then
one may apply this result by replacing ϕ(x) with ϕ(x)− ν and multiplying
the asymptotic behavior by exp(λν).

(ii) The hypothesis that the minimum of Re{ϕ} occurs only at 0 will be re-
moved when we reach the multivariate setting. In one variable, due to an-
alyticity, either the minimum occurs only at zero in some neighborhood
of the origin or the real part of ϕ is identically zero in that neighborhood.
The analysis of a purely imaginary phase function takes place more nat-
urally with C∞ methods, which are discussed in Section 4.3 below.
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Exercise 4.1. Explain why the term “stationary phase integral” is usually re-
served for k ≥ 2.

Exercise 4.2. Although Theorem 4.1 assumes k ≥ 2, the expansion for I+
given in part (i) by (4.1) holds when k = 1. What is ζ in the case k = 1 and
what expansion for I holds as a consequence?

To those unfamiliar with saddle point methods, this result may seem difficult
to decipher, but both the statement and proof are actually quite intuitive. When
A and ϕ are real, their orders of vanishing dictate the order of magnitude of
such an integral after direct integration. Changing variables to simplify the ex-
ponent produces a full asymptotic development of the integral. When the phase
is complex, one can use integration by parts in order to cancel oscillations, or
one can reduce to the real case by a contour shift. The latter approach requires
stronger hypotheses (analyticity rather than smoothness) but gives stronger re-
sults (exponentially small remainders rather than rapidly decreasing remain-
ders). In order to give all of the intuition, we take a route to the derivation
that is longer than necessary. We begin with a stripped down special case, in
which direct integration suffices, then give the arguments that hold in greater
generality.

4.1 Real integrands

For univariate Fourier-Laplace integrals, Theorem 4.1 states the existence of
an asymptotic expansion∫ ε

0
A(x) exp(−λϕ(x)) dx ≈

∞∑
j=ℓ

a jC(k, j)(ckλ)−(1+ j)/k

with explicitly computable constants a j. The main result of this section, Theo-
rem 4.6, yields this expansion for real integrands, along with further informa-
tion about the constants.

Complex analytic techniques are not needed when working on the real line,
and consequently we need to assume only differentiability and not analyticity
of A and ϕ. We build the argument in three steps: first taking A and ϕ to be
monomials, then taking ϕ to be a monomial but allowing A to be free, and
finally handling the general case. The first step is accomplished via an exact
computation, the second via a remainder estimate, and the third with a change
of variables.
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A and ϕ are monomials

On the positive half-line, we can get away with a change of variables involv-
ing a fractional power. This allows us to handle the special case of monomial
phase and amplitude by an exact integral, holding for any positive real α and
nonnegative real β. The change of variables y = λxα gives∫ ∞

0
xβ exp(−λxα) dx =

∫ ∞

0

( y
λ

)β/α
e−y 1

α

y1/α−1

λ1/α dy

=
1
α
λ−(1+β)/α

∫ ∞

0
y

1+β
α −1e−y dy ,

so, by the definition of the Gamma function, we have the exact evaluation∫ ∞

0
xβ exp(−λxα) dx = C(α, β) λ−(1+β)/α (4.3)

with C(α, β) = 1
α
Γ
(

1+β
α

)
as above.

Remark 4.2. All of the contribution to (4.3) comes from a neighborhood of
zero: for any ε > 0 the substitution w = λ(xα − εα) proves that the difference∣∣∣∣∣∫ ε

0
xβ exp(−λxα) dx −C(α, β) λ−(1+β)/α

∣∣∣∣∣ = ∫ ∞

ε

xβ exp(−λxα) dx

=
1
α
λ−(1+β)/αe−λε

α

∫ ∞

0
(w + λεα)

1+β
α −1 e−w dw

= O
(
λ−(1+β)/αe−λε

α
)

decays exponentially in λ. The fact that a Fourier-Laplace integral decays ex-
ponentially when integrated over a region where its phase does not vanish will
be used multiple times in this chapter.

Exercise 4.3. Suppose x has units of time (or length, or any other physical
unit). Explain the right-hand side of (4.3), except for the constant, via a soft
analysis: what are the free variables on the left, what units must λ have in order
to abide by the principle of unitless exponentiation, what units must the left-
hand side of (4.3) have (remembering to include the units of dx), and what
power must λ therefore be given on the right-hand side?

When β = ℓ is an integer and α = 2k is an even integer the corresponding
two-sided integrals make sense as well, giving∫ ∞

−∞

xℓ exp
(
−λx2k

)
dx =

{
2C(2k, ℓ) λ−(1+ℓ)/(2k) if ℓ is even
0 if ℓ is odd

. (4.4)
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ϕ is a monomial and A is anything

Generalizing our argument to the case of general amplitude requires the fol-
lowing estimate.

Lemma 4.3 (Big-O Lemma). Let k, ℓ > 0 with k an integer. If A and ϕ are
real-valued functions such that A(x) = O

(
xℓ

)
and ϕ(x) ∼ xk at x = 0, and ϕ(x)

vanishes in [0, ε] only at 0, then∫ ε

0
A(x) exp(−λϕ(x)) dx = O

(
λ−(1+ℓ)/k

)
as λ→ ∞.

Proof Pick any K > 0 such that |A(x)| ≤ K|x|ℓ on [0, ε]. Because ϕ(x) ∼ xk

at x = 0, for any δ ∈ (0, 1) there is some interval [0, ε′] with ε′ ≤ ε such that
ϕ(x) ≥ (1−δ)xk on [0, ε′]. Fixing any such δ and ε′, nonvanishing of ϕ on (0, ε]
implies that infε′≤x≤ε ϕ(x) is positive, hence the portion of the integral coming
from [ε′, ε] decays exponentially in λ. On [0, ε′],∣∣∣∣∣∣
∫ ε′

0
A(x) exp(−λϕ(x)) dx

∣∣∣∣∣∣ ≤ K
∫ ε′

0
xℓ exp(−λ(1 − δ)xk) dx

≤ K
∫ ∞

0
xℓ exp(−λ(1 − δ)xk) dx

= O
(
(λ(1 − δ))−(1+ℓ)/k

)
by (4.3)

= O
(
λ−(1+ℓ)/k

)
,

as desired. □

For monomial phase functions and general amplitude functions, we now
have the following result.

Lemma 4.4. Suppose that A is a real function with

A(x) =
M−1∑
j=ℓ

b jx j + O(xM)

as x→ 0. Then∫ ε

0
A(x) exp(−λxk) dx =

M−1∑
j=ℓ

b jC(k, j)λ−(1+ j)/k + O
(
λ−(1+M)/k

)
,

where C(k, j) = Γ((1 + j)/k)/k.

Remark. The hypothesis on A in Lemma 4.4 is quite weak. In particular, A
need not even be continuously differentiable, so it is useful for examples such
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as A(x) = x sin(x−1). If A is represented by an infinite asymptotic series then an
asymptotic expansion for the integral follows by applying the lemma for each
M.

Proof Multiply the estimate

A(x) −
M−1∑
j=0

b jx j = O(xM)

by exp(−λϕ(x)) and integrate. Using Lemma 4.3 to bound the integral of the
right-hand side gives∣∣∣∣∣∣∣∣I −

M−1∑
j=0

∫ ε

0
b jx j exp(−λxk) dx

∣∣∣∣∣∣∣∣ = O
(
λ−(1+M)/k

)
,

and applying (4.3) to each integral with monomial amplitude gives the desired
conclusion. □

Exercise 4.4. Apply Lemma 4.4 with M = 1 to give an asymptotic estimate
with remainder for ∫ 1

0
(1 + x sin(x−1))e−λx2/2 dx .

General A and ϕ

A change of variables reduces the general case to Lemma 4.4, although a bit of
care is required to ensure we understand the asymptotic series for the functions
involved in the change of variables.

Lemma 4.5. Let M ≥ 2 be an integer and suppose

y(x) = c1x + · · · + cM−1xM−1 + O(xM) (4.5)

in a neighborhood of zero, where c1 , 0. Then there is a neighborhood of
zero on which y has a compositional inverse. The inverse function x(y) has an
expansion

x(y) = a1y + · · · + aM−1yM−1 + O(yM) ,

where each a j is a polynomial in c1, . . . , c j and c−1
1 .

Proof Suppose that c1 = 1. From y = x + O(x2) we see that y ∼ x at zero,
hence

x = y + O(x2) = y + O(y2).

Now let 2 ≤ n < M and suppose inductively that x = y+a2y2+ · · ·+an−1yn−1+
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O(yn), where each coefficient a j is a polynomial in c2, . . . , c j. Let a be an inde-
terminate, and substitute the value of y in (4.5) into the quantity

Φ(x, y) = x − (y + a2y2 + · · · + an−1yn−1 + ayn) .

The resultΦ(x, y(x)) is a polynomial in x, whose coefficients in degrees 1, . . . , n−
1 vanish due to the induction hypothesis, plus a remainder of O(xM) coming
from our starting assumption. The coefficient of the xn term may be written as
a − P(a2, . . . , an−1, c2, . . . , cn) where P is a polynomial. By induction, this is a
polynomial in c2, . . . , cn. Setting an = P(a2, . . . , an−1, c2, . . . , cn), we see that

x − y −
n∑

j=2

a jy j = O(xn+1) ,

completing the induction. When n = M − 1, observing that O(xM) = O(yM)
completes the proof of the lemma for c1 = 1. For general c1 , 1 we can
use this argument to represent x as a function of y/c1, which shows that x =∑M−1

j=1 a jy j + O(yM) with each c j
1a j a polynomial in c2, . . . , c j. □

Exercise 4.5. Write down the quadratic Taylor expansion (with remainder
term O(x3)) near zero for y = 1 −

√
1 − x and find its compositional inverse.

Check your work afterward by computing x as a function of y explicitly.

We can now establish Theorem 4.1 for real integrands. Recall that for each
natural number M, a real function f is said to be of class CM or CM-smooth
if all derivatives of f up to and including order M are continuous; if this holds
for all M we say f belongs to C∞ and is smooth.

Theorem 4.6. Let M be a positive integer and let k and ℓ be integers with
0 ≤ k, ℓ ≤ M and k ≥ 2. Suppose that A is a real function, and ϕ is a CM-
smooth real function, with series expansions

A(x) =
M−1∑
j=ℓ

b jx j + O
(
xM

)
ϕ(x) =

M+k−1∑
j=k

c jx j + O
(
xM+k

)
as x → 0, where bℓ, ck , 0. Then I+(λ) =

∫ ε

0 A(x) exp(−λϕ(x)) dx has the
asymptotic expansion

I+(λ) =
M−1∑
j=ℓ

a jC(k, j)(ck λ)−(1+ j)/k + O
(
λ−(1+M)/k

)
(4.6)
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as λ → ∞, with C(k, j) = k−1Γ
(

1+ j
k

)
as above and the coefficient a j given by

a polynomial in bℓ, . . . , b j and c−1
k , ck+1, . . . , ck+ j−ℓ. The first two coefficients in

this expansion are

aℓ = bℓ

aℓ+1 = bℓ+1 − bℓ
2 + ℓ

k
ck+1

ck
. (4.7)

Proof Applying the change of variables y = ϕ(x)1/k to

ϕ(x) = ck xk
(
1 +

ck+1

ck
x + · · · +

cM+k−1

ck
xM−1 + O

(
xM

))
shows that

y = c1/k
k x

(
1 +

ck+1

ck
x + · · · +

cM+k−1

ck
xM−1 + O

(
xM

))1/k

, (4.8)

and the binomial expansion for (1 + u)1/k gives

y = c1/k
k

M∑
j=1

d jx j + O
(
xM+1

)
,

where each d j is a polynomial in ck+1, . . . , ck+ j−1 and c−1
k .

By Lemma 4.5, the inverse function x = x(y) defined by this equation satis-
fies

x =
M∑
j=1

e j

 y

c1/k
k

 j

+ O
(
yM+1

)
, (4.9)

where e j is a polynomial in ck+1, . . . , ck+ j−1. A function of class CM with
nowhere vanishing derivative has an inverse of class CM , which justifies term
by term differentiation and yields

x′(y) = c−1/k
k

M∑
j=1

je j

 y

c1/k
k

 j−1

+ O
(
yM

)
.

The change of variables formula gives

I+(λ) =
∫ y(ε)

0
Ã(y) exp(−λyk) dy

where Ã(y) = A(x(y))x′(y). Plugging in the series for x and x′ into the definition
of Ã implies

Ã(y) = c−1/k
k

M−1∑
j=ℓ

b̃ j

 y

c1/k
k

 j

+ O
(
yM

)
,
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where b̃ j is a polynomial in bℓ, . . . , b j, c−1
k , ck+1, . . . , ck+ j−ℓ.

The existence of the expansion (4.6), with a j = b̃ j for all j, now follows
from the monomial exponent case in Lemma 4.4, and we compute the leading
terms (4.7) by finding b̃ℓ and b̃ℓ+1. Inverting the expression

y = c1/k
k x

(
1 +

ck+1

ck
x + O

(
x2

))1/k

= c1/k
k x

(
1 +

ck+1

k ck
x + O

(
x2

))
(4.10)

to expand x as a series in y is a matter of plugging x = c−1/k
k y + ay2 + O(y3)

into (4.10), setting the result equal to x, and solving for a to obtain

x =
y

c1/k
k

−
1
k

ck+1

ck

 y

c1/k
k

2

+ O(y3)

x′(y) =
1

c1/k
k

−
2

c2/k
k

ck+1

k ck
y + O(y2) . (4.11)

Composing A with x(y) gives

A(x(y)) = bℓ
1

cℓ/kk

yℓ +

bℓ ℓ

c(ℓ−1)/k
k

−ck+1

kc1+2/k
k

+ bℓ+1
1

c(ℓ+1)/k
k

 yℓ+1 + O(yℓ+2),

and multiplying this expansion by the expression for x′(y) in (4.11) shows that
the leading series coefficients of Ã(y) = A(x(y))x′(y) are

b̃ℓ = bℓ

b̃ℓ+1 = bℓ+1 − bℓ
ℓ + 2

k
ck+1

ck
,

giving (4.7). □

Exercise 4.6. Give an example to show that the hypotheses do not imply that
ϕ is CM+1-smooth.

4.2 Complex phase

Extending the results of the previous section to complex amplitudes is trivial:
by linearity of the integral, the result holds separately for Im{A} and Re{A}, and
these may be recombined to give the result for complex A. When it comes to
complex phases, we are faced with a choice. If we assume A and ϕ are analytic
in a neighborhood of zero then we are entitled to move the contour, which is the
quickest justification for extending the conclusion to complex phases and is the
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approach taken in this section. Later, in Section 4.3, we discuss an alternative
using only smoothness instead of analyticity.

We now prove Theorem 4.1, starting with the one-sided integral I+ before
addressing the double-sided integral I.

Step 1: evaluation of the one-sided integral I+
Let γ+ : [0, ε]→ C denote the restriction of γ to [0, ε] so that

I+ =

∫
γ+

A(z) exp(−λϕ(z)) dz.

To evaluate I+ we employ the same change of variables y = ϕ(z)1/k as in the
proof of Theorem 4.6, only we need to be careful in choosing a branch of the
kth root. Formula (4.8) defines k different functions, one for each choice of
kth root for c1/k

k . It follows from Lemma 4.5 that each of these k functions
and their inverses are analytic in a neighborhood of the origin. To discuss the
principal kth root — the analytic function from the slit plane C \ R<0 to the
cone K = {z : −π/k < arg(z) < π/k} — we write p(u1/k) = z for the unique
z ∈ K such that zk = u, and let v = γ′(0). Near the origin ϕ(z) ∼ ckzk, so the
requirement that Re{ϕ(γ(t))} ≥ 0 forces the quantity v to be in the windmill-
shaped set of preimages of the right half-plane under ckzk, shown in Figure 4.1.
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Figure 4.1 Arrows represent v and (d/dt)|t=0 f (γ+(t)).

Define f (x) = p(ϕ(x)1/k). Since the path ϕ(γ+(t)) remains in the positive real
half-plane for 0 < t ≤ ε, it also remains in the slit plane, and hence maps the
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image of γ+ bi-analytically into the cone K. With this choice of kth root, the
change of variables (4.8) becomes

y = f (x) = ηx
(
1 + · · · +

cM

ck
xM−k + O

(
xM−k+1

))1/k

, (4.12)

where η = v−1 p(ckvk)1/k and the branch of the kth root of the series in paren-
theses fixes 1. Thus f ′(0) = η and the inverse function x(y) is defined as in
the proof of Theorem 4.6, with c1/k

k = η in (4.9). Analogously to the proof of
Theorem 4.6, we then have

I+ =

∫
γ̃

Ã(y) exp(−λyk) dy (4.13)

where γ̃ = f ◦ γ+ is the image of γ+ under our change of variables.

γ~ β

α

Figure 4.2 The path γ̃ in the cone K and the line segments α and β.

Let p = f (γ(ε)) denote the endpoint of γ̃ with real part p′ > 0 and define
the line segments α = [0, p′] and β = [p′, p] in the complex plane. As seen in
Figure 4.2, the contour γ̃ is homotopic to α + β, hence

∫
γ̃

h(z) dz =
∫
α

h(z) dz +∫
β

h(z) dz for any analytic function h. On compact subsets of K, the real part of
yk is bounded from below by a positive constant, so there are positive constants
C and ρ such that ∣∣∣Ã(y) exp(−λyk)

∣∣∣ ≤ Ce−ρλ

on β (the reason we chose the principal value for our root was to ensure that β
lies inside K.) We conclude that

I+ =

∫
α

Ã(y) exp(−λyk) dy + Rλ
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for a remainder Rλ that decays exponentially, and applying Theorem 4.6 (with
complex amplitude) to the integral over α gives the asymptotic series

I+ ≈

∞∑
j=ℓ

a jC(k, j)(ckλ)−(1+ j)/k

satisfying conclusion (i) of Theorem 4.1.

Step 2: evaluation of the two-sided integral I
In order to reduce the two-sided integral to the one-sided case, define the con-
tour γ− : [0, ε] → C by γ−(t) = γ(−t). The curve γ− is oriented from 0 to −ε
so it appears with sign reversed. In other words, I = I+ − I− where

I− :=
∫
γ−

A(z) exp(−λϕ(z)) dz .

The integral forI− has nearly the same data as the integral forI+: the functions
A and ϕ are identical so the only difference between the two integrals is the
contour. The contour affects the integral only via the choice of η in (4.12).
Denoting the two choices by η+ and η−, we know a fortiori that η− = η+/ζ for
some ζ with ζk = 1. Denoting the respective inverse functions of f (x) in (4.12)
by g+ and g− we see that g−(y) = g+(ζy). The two changes of variables produce
amplitudes Ã+ and Ã− in (4.13) satisfying

Ã+(y) = A(g+(y)) · g′+(y)

and

Ã−(y) = A(g−(y)) · g′−(y)

= A(g+(ζy)) · ζg′+(ζy)

= ζÃ+(ζy) .

The coefficients of the power series for Ã+ and Ã− are therefore related by
[y j]Ã−(y) = ζ j+1[y j]Ã+(y). The asymptotic expansions of Ã± are integrated
term by term in (4.13), which implies that the coefficients α j for the two-sided
integral I are related to the coefficients a j for the one-sided integral I+ via
α j = (1 − ζ j+1)a j. Thus, part (iii) of Theorem 4.1 is reduced to the correct
identification of ζ. The evaluation of ζ breaks into two cases, depending on the
parity of k.

Suppose first that k is even. Since ϕ(z) ∼ ckzk, the image of the smooth curve
γ under ϕ moves back in the same direction at the origin, with the tangents to
the images ϕ(γ−(t)) and ϕ(γ+(t)) coinciding at t = 0 (see Figure 4.3). Because
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K

Figure 4.3 Illustration for even k: ϕ(γ+) is a solid curve and ϕ(γ−) is dotted.

Kγ

γ

+

−

Figure 4.4 Illustration for odd k: ϕ(γ+) and ϕ(γ−) and their principal 1/k powers.

γ− reverses the orientation of the parametrization, we see that v− = γ′−(0) and
v+ = γ

′
+(0) satisfy v− = −v+. The powers vk

− and vk
+ coincide, meaning

η− = v−1
− p(ckv

k
−)1/k = −v−1

+ p(ckv
k
+)1/k = −η+ .

Thus, when k is even ζ takes the value −1. This leads to α j = 2a j for even j
and α j = 0 for odd j, completing the proof of the theorem for even k.

When k is odd, the images of γ+ and γ− under ϕ point in opposite directions
(see Figure 4.4). Since both are in the closed right half-plane, this implies
that one points in the positive imaginary direction and the other points in the
negative imaginary direction. Thus the argument of the tangent to ϕ(γ+) at the
origin is σπ/2, where the sign of σ is given by

σ = sgn Im
{
ϕ(γ′(0))

}
.
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The argument of the tangent to ϕ(γ−) at the origin is −σπ/2 and thus differs
from the argument of ϕ(γ+) by −σπ. Mapping by the principal kth root shrinks
the difference in arguments by a factor of k, thus

p(ckv
k
−)1/k = e−iπσ/k

p(ckv
k
+)1/k .

Again the reversal of parametrization implies v− = −v+, whence

η− = (−1) · e−iπσ/kη+ =
η+
ζ

with ζ = −eiπσ/k as in the statement of the theorem. □

Applications

The following classical result is a direct corollary of our machinery.

Proposition 4.7 (Watson’s Lemma). Let A : R>0 → C have asymptotic devel-
opment

A(t) ≈
∞∑

m=0

bmtβm

for t near the origin, where −1 < Re{β0} < Re{β1} < · · · and Re{βm} → ∞ as
m→ ∞. Then the Laplace transform

L(λ) =
∫ ∞

0
A(t)e−λt dt

of A has an asymptotic series

L(λ) ≈
∞∑

m=0

bmΓ(βm + 1)λ−(1+βm)

as λ→ ∞.

Proof As in our previous arguments, we may replace the integral in the Laplace
transform by an integral on [0, ε] while introducing only an exponentially small
error. Writing

A(t) =
N∑

m=0

bmtβm + RN(t)

for RN = O
(
tRe {βm+1}

)
at the origin, we may integrate term by term to get the

first N terms of the expansion, up to an exponentially small correction from
truncating the integral, then use Lemma 4.3 to see that the remainder satisfies∣∣∣∣∣∫ ε

0
RN(t)e−λt dt

∣∣∣∣∣ = O
(
λ−Re{βm}−1

)
,
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proving the proposition. □

Exercise 4.7. Let y be the positive real root of x − 3xy − y3 = 0 satisfying
y ∼ x1/3 as x ↓ 0. Find the first two terms of the Puiseux series for y and use
Watson’s Lemma to compute the corresponding first two asymptotic terms of
the Laplace transform L(λ) =

∫ ∞
0 y(x)e−λx dx.

As discussed in Section 3.5 of Chapter 3, Theorem 4.1 is a crucial compo-
nent of the saddle point method, which is also called the method of steepest
descent. If we consider an integral

I(λ) =
∫
γ

A(z) exp(−λϕ(z)) dz

where ϕ′ does not vanish on γ then the idea is to deform γ to pass through
a point x where ϕ′ vanishes while introducing a negligible error. The phrase
steepest descent comes from the fact that the real part of ϕ must have a local
maximum on the contour at x, rather than a minimum or inflection point. Hav-
ing deformed the contour to pass through x, Theorem 4.1 is then applied to
determine asymptotics.

Example 4.8. Consider the univariate power series f (z) = (1 − z)−1/2, whose
power series coefficients at the origin form the sequence an = (−1)n

(
−1/2

n

)
.

Instead of using a transfer theorem from Chapter 3 to obtain the asymptotic
behavior an ∼ 1/

√
πn, let us apply a saddle point approach to the Cauchy

integral representation

an =
1

2πi

∫
C

z−n−1(1 − z)−1/2 dz,

where C is any sufficiently small positively-oriented circle around the origin.
Since we understand meromorphic integrands the best, we make the change of
variables z = 1 − y2 to obtain

an =
1

2πi

∫
E

(1 − y2)−n−1y−1 (−2y) dy =
i
π

∫
E

(1 − y2)−n−1 dy

where, as shown in Figure 4.5, E is a positively-oriented small circle in the y-
plane around either the point +1 or the point −1 (since both of these contours
map to a small contour around 0 in the z-plane). For concreteness, let us take
E to be a small circle around +1. In the y-plane, there is a critical point for
ϕ(y) = − log(1 − y2) at the origin. Without crossing any singularities of our
integrand, we can deform the contour E to a contour Ẽ passing through the
origin in the downward direction. Changing variables with y = −it gives

an =
i
π

∫
R

(1 + t2)−n−1 (−i) dt =
1
π

∫
R

1
1 + t2 exp

(
−n log(1 + t2)

)
dt ,
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and an application of Theorem 4.1 with the expansions A(t) = 1/(1+ t2) = 1+
· · · and ϕ(t) = log(1 + t2) = t2 + · · · implies an ∼

√
2/(πnϕ′′(0)) = 1/

√
πn. ◁

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

C
z=1

E

E
~

z = 1 − y
2

z = 1 − y
2

E
~~

Figure 4.5 Top: Circles around ±1 map to a circle around the origin. Bottom: The
curve Ẽ mapped back to the z-plane.

Remark. The function (1−z)−1/2 is analytic on the slit planeC\{x ∈ R : x ≥ 1},
which we may view as half of the Riemann surface R obtained by gluing two
copies of the slit plane, with the upper half of one attaching along the slit to
the lower half of the other. The change of variables z = 1 − y2 maps from R
to C. The saddle point contour Ẽ, when mapped to the z-plane, comes in to +1
along one copy of the slit, does a U-turn, and goes back along the other copy
of the slit. Perturbing slightly gives a hairpin-shaped contour ˜̃E that may be
drawn in the slit plane. This shape near 1 reflects the design of the ∆-domain
in Figure 3.1.
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4.3 Analytic versus smooth functions

Although most of our results above are stated for analytic amplitudes and
phases, their conclusions hold assuming only that these functions are C∞ -
mooth. This indicates that there should be arguments using smooth techniques,
such as partitions of unity and integration by parts, rather than contour defor-
mation. Such an approach to evaluating saddle point integrals has been devel-
oped and used extensively by harmonic analysts, who are chiefly interested
in the case where ϕ is purely imaginary. This is not covered by Theorem 4.1,
which requires that Re{ϕ} be strictly positive away from zero for the contour
decomposition used in our proof. Results in this section will be used only once
or twice for the analysis of generating functions in this book; our chief reason
for including this material is that any treatment of Fourier-Laplace integrals
bypassing smooth methods is pedagogically and historically incomplete.

When the exponent ϕ is imaginary, the modulus of the Fourier-Laplace inte-
grand is equal to |A(z)|, so it is no longer true that one may cut off the integral
outside of an interval [−ε, ε] and expect to introduce negligible remainders.
Instead, one assumes that A has compact support, then uses smooth partitions
of unity to reduce to integrals over small intervals. Note that neither partitions
of unity nor compactly supported functions exist in the analytic category; how-
ever, when the contour of integration γ is a closed curve, any amplitude func-
tion has compact support on γ so both the analytic and the smooth methods
apply and may be compared.

In this section we give asymptotics for the integral

I(λ) =
∫ b

a
A(z) exp(iλϕ(z)) dz

where A and ϕ are smooth, ϕ is real, and A is supported on a compact sub-
interval of (a, b). Matching existing literature we use the term phase to denote ϕ
rather than iϕ. The overall argument in the smooth case is the same as the proof
of Theorem 4.6, except for the insertion of a localization step at the beginning
and the introduction of a damping term in the step where both amplitude and
phase are monomial. Our process towards general asymptotics thus becomes:
localization, big-O estimate, monomials (with damping), monomial phase, and
then the full theorem.

Localization lemma in C∞

Following [Ste93], we begin with a localization principle.

Lemma 4.9 (Localization Lemma). Suppose ϕ is real and ϕ′(x) , 0 for all
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x ∈ (a, b). Then I(λ) is rapidly decreasing, meaning that for any fixed N ≥ 0
we have I(λ) = O(λ−N) as λ→ ∞.

Proof Our assumption that A is supported on a subset of the domain of in-
tegration allows us to integrate by parts without introducing boundary terms.
Integrating by parts with U = A/(iλϕ′) and dV = iλϕ′eiλϕ dx gives

I(λ) = −
∫ b

a
eiλϕ(x) d

dx

(
A

iλϕ′

)
(x) dx ,

and by repeating this N ≥ 1 times we obtain

I(λ) =
∫ b

a
eiλϕ(x)(−λ−N)DN(A)(x) dx , (4.14)

whereD is the differential operator f 7→ (d/dx)( f /iϕ′). If

KN = (b − a) sup
a≤x≤b

|DN A(x)| (4.15)

then |I(λ)| ≤ λ−N KN , which proves that I is a rapidly decreasing function of
λ. □

Remarks. (i) In the analytic case, if ϕ′ is nowhere vanishing then the con-
tour can be pushed down along a gradient flow so that the maximum
of Re{iϕ} is strictly negative, resulting in an exponentially (rather than
rapidly) decreasing integral.

(ii) Since ϕ′ does not vanish, we may change variables to y = ϕ(x) and the
conclusion of Lemma 4.9 is equivalent to the perhaps more familiar state-
ment that the Fourier transform of the smooth function Ã(y) obtained is
rapidly decreasing.

(iii) While Lemma 4.9 is stated only for purely imaginary phase functions,
the same argument shows that I(λ) is rapidly decreasing whenever the
real part of ϕ is nonnegative and ϕ′ is nonvanishing.

Exercise 4.8. Suppose ϕ(x) = x and A(x) is periodic with fundamental domain
(−π, π].

(a) Show that there is no boundary term when integrating I over [−π, π].
(b) Applying the localization lemma with A(x) = 1 + cos(x), what value do

you get for K2 in the bound |I(λ)| ≤ K2λ
−2?

We call Lemma 4.9 the Localization Lemma for the following reason. Sup-
pose we allow ϕ′ to vanish on some finite set of points x1, . . . , xd ∈ [a, b].
Then the contribution to I(λ) from any closed region not containing some xi

is rapidly decreasing, so the asymptotics for I(λ) may be read off as the sum
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of contributions local to each xi. Indeed, for each i let [ai, bi] be a tiny inter-
val containing xi, with all intervals disjoint, and let ξ1, . . . , ξd be a partition of
unity subordinate to {[ai, bi] : 1 ≤ i ≤ d}. Once we see how to obtain asymp-
totics in a neighborhood of xi containing no other critical points, we can write
A(x) = A0(x) +

∑d
i=1 A(x)ξi(x), so that the support of A0 contains no xi. The

integral
∫

A0(x)eiλϕ(x) dx is rapidly decreasing by the Localization Lemma, so
as long as the integrals

Ii(λ) =
∫ b

a
A(x)ξi(x)eiλϕ(x) dx =

∫ bi

ai

A(x)ξi(x)eiλϕ(x) dx

sum to something not rapidly decreasing, the asymptotic development of I(λ)
is obtained by summing the developments of the Ii(λ).

We thus need only consider integrals over domains where the derivative of
the phase vanishes at a single point. Our main univariate result for integrals
with purely imaginary phase is the asymptotic development described in the
following result.

Theorem 4.10. Let ϕ and A be smooth real functions defined on R with A
having compact support in an interval (a, b) whose closure contains zero. Let
k ≥ 2 and ℓ ≥ 0 be integers and suppose the power series coefficients for A
and ϕ at the origin are {b j} and {c j} as in Theorem 4.6, with ck > 0. Suppose
that ϕ′ vanishes in [a, b] at the origin but nowhere else, and let Ã = (A ◦ g) · g′

where g is the inverse function to x 7→ (ϕ/ck)1/k. Then as λ → ∞ there is an
asymptotic development

I(λ) =
∫ b

a
A(x) exp(iλϕ(x)) dx ≈

∞∑
j=ℓ

α jC(k, j)(i ck λ)−(1+ j)/k .

The coefficients α j are obtained from the power series coefficients a0, . . . , a j

for Ã exactly as in part (iii) of Theorem 4.1. If the asymptotic expansion is
computed up to an O

(
λ−(N+1)/k

)
error term then this error term can be explicitly

bounded by a continuous function of the suprema of the first N + 1 derivatives
of ϕ and A on the support of A. The kth root of i ckλ in this expansion is the
principal root.

The rest of this chapter is devoted to proving Theorem 4.10, using the steps
outlined above.

The C∞ Big-O Lemma

The smooth counterpart to Lemma 4.3 is established by showing that the main
contribution toI(λ) comes from an interval of size λ−1/k. The increase in length



124 Fourier-Laplace integrals in one variable

for the proof of this result compared to the very short proof of Lemma 4.3
comes from the need to keep track of a partition of unity function and its
derivatives.

Lemma 4.11. If η is smooth and compactly supported and ℓ ≥ 1 and k ≥ 2
are integers, then ∣∣∣∣∣∫ ∞

−∞

eiλxk
xℓη(x) dx

∣∣∣∣∣ ≤ Cλ−(ℓ+1)/k (4.16)

for a constant C depending only on k, ℓ and the first ℓ derivatives of η.

Proof Let α be a smooth bump function taking values in [0, 1] that is equal
to 1 on |x| ≤ 1 and vanishes on |x| ≥ 2. Choose ε > 0 and rewrite (4.16) as∫ ∞

−∞

eiλxk
xℓη(x)α(x/ε) dx +

∫ ∞

−∞

eiλxk
xℓη(x)[1 − α(x/ε)] dx. (4.17)

For any S ⊂ R let 1S (x) denote the indicator function that equals one when
x ∈ S and zero otherwise. The absolute value of the first integrand in (4.17) is
everywhere bounded by |x|ℓ · sup|x|≤2 |η(x)| · 1|x|≤2ε, so its integral is bounded by
C1ε

1+ℓ where C1 = 2ℓ+2 sup|x|≤2 |η(x)|.
The second integral will be done by parts, and to prepare for this we examine

the iteration of the operator D : f 7→ (d/dx)( f /xk−1) applied to the function
f (x) = xℓη(x)(1−α(x/ε)). The result will be a sum of monomials, each mono-
mial being a product of a power of x, a derivative of η, a derivative of α and a
power of ε: if [a, b, c, d] is shorthand for the term xa η(b)(x)α(c)(x/ε) εd then

D·[a, b, c, d] = (a−k+1)[a−k, b, c, d]+[a−k+1, b+1, c, d]+[a−k+1, b, c+1, d−1]

whenever a ≥ 0. By induction, we see that DN · [a, b, c, d] is the sum of terms
of the form C[r, s, t, u] where

r + u ≥ a + d − kN, s ≤ b + N, t ≤ c + N,

and C is bounded above by the factorial of max{kN, a}. In particular, since
ε ≤ x we may replace positive powers of ε by the same power of x to arrive at
the upper bound ∣∣∣∣DN

[
xℓη(x)(1 − α(x/ε))

]∣∣∣∣ ≤ 1|x|≥εC2|x|ℓ−kN , (4.18)

where C2 is the product of 2 · 3N · sup j≤N,|x|∈(1,2) η
( j)(x) and the maximum of 1

and sup j≤N,|x|∈(1,2) α
( j)(x).

Now we fix an N large enough so that ℓ − kN + 1 < 0, and perform inte-
gration by parts on the second integral of (4.17) N times, each time integrating
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−ikλxk−1eiλxk
and differentiating the rest, ending with∫ ∞

−∞

eiλxk
(−ikλ)−N DN

[
xℓη(x)(1 − α(x/ε))

]
dx.

By (4.18) the modulus of this integrand is at most C21|x|≥ε|x|ℓ−kN(kλ)−N so the
integral is bounded by C3λ

−Nεℓ−kN+1, where C3 = 2C2/(1 − ℓ + kN). Setting
ε = λ−1/k and adding the bounds on the two integrals yields an upper bound of
(C1+C3)λ−(1+ℓ)/k on the modulus of the integral in (4.16). We have also shown
that C1 and C3 depend only on k, ℓ, the first ℓ derivatives of η, and the first ℓ
derivatives of α. Fixing any valid choice of the function α thus completes our
proof. □

Exercise 4.9. For a smooth function α taking value zero on negative arguments
and value one on arguments ε or greater, what is the least possible value of
supx |α

′′(x)|? This question is motivated by the reliance on smooth partitions
of unity and the derivatives of α appearing in (4.18).

Lemma 4.11 immediately implies the following result.

Corollary 4.12. If a smooth function g vanishes in an neighborhood of the
origin and decreases rapidly at infinity (or is compactly supported) thenI(λ) =∫ ∞
−∞

g(x)eiλxk
dx is rapidly decreasing. □

A and ϕ are monomials and A is damped

In this section we prove the C∞ version of Lemma 4.4. Since a monomial
amplitude function does not have compact support, we introduce a damping
function which will later need to be removed. For parameters λ, k, ℓ, δ ∈ R
with k ≥ 2 define

I(λ, k, ℓ, δ) =
∫ ∞

−∞

eiλxk
e−δ|x|

k
xℓ dx . (4.19)

Lemma 4.13. An asymptotic expansion

I(λ, k, ℓ, δ) = λ−(1+ℓ)/k
∞∑
j=0

C( j, k, ℓ, δ)λ− j

holds as λ → ∞, where the constants C( j, k, ℓ, δ) with j > 0 go to zero as
δ→ 0.

Proof Let I+(λ, k, ℓ, δ) denote the integral obtained by restricting the domain
of integration in (4.19) to [0,∞) and define I−(λ, k, ℓ, δ) by restricting the do-
main of integration to (−∞, 0]. The change of variables z = (δ− iλ)1/k x implies



126 Fourier-Laplace integrals in one variable

I+(λ, k, ℓ, δ) = limM→∞ I
[M]
+ (λ, k, ℓ, δ), where

I
[M]
+ (λ, k, ℓ, δ) = (δ − iλ)−(1+ℓ)/k

∫ M(δ−iλ)1/k

0
e−zk

zℓdz

has as its domain of integration the line segment from the origin to M(δ− iλ)1/k

in C. The integral over this line segment in complex space is the same as the
integral over the real line segment from the origin to M|δ − iλ|1/k followed by
the imaginary line segment from M|δ− iλ|1/k to M(δ− iλ)1/k. Thus, for fixed λ
we can write

I
[M]
+ (λ, k, ℓ, δ) = (δ−iλ)−

1+ℓ
k

∫ M|δ−iλ|1/k

0
e−zk

zℓdz+(δ−iλ)−
1+ℓ

k

∫ M(δ−iλ)1/k

M|δ−iλ|1/k
e−zk

zℓdz.

Since k ≥ 2 the modulus of the integrand e−zk
zℓ on the imaginary line seg-

ment decays exponentially with M, and the length of this segment grows only
linearly with M. Taking M → ∞ thus implies

I+(λ, k, ℓ, δ) = (δ − iλ)−(1+ℓ)/k
∫ ∞

0
e−zk

zℓ dz ,

rotating our domain of integration back to the real axis. The definite integral
in this expression has value C(k, ℓ) = k−1Γ((1 + ℓ)/k), and expanding (δ −
iλ)−(1+ℓ)/k = (−iλ)−(1+ℓ)/k(1 + δi/λ)−(1+ℓ)/k using the binomial theorem gives

I+(λ, k, ℓ, δ) = C(k, ℓ)eiπ(1+ℓ)/(2k)λ−(1+ℓ)/k
∞∑
j=0

(iδ) j
(
−(1 + ℓ)/k

j

)
λ− j.

Writing

C+( j, k, ℓ, δ) = k−1Γ

(
ℓ + 1

k

)
eiπ(1+ℓ+ jk)/(2k)

(
−(1 + ℓ)/k

j

)
δ j (4.20)

and defining constants C−( j, k, ℓ, δ) by performing the analogous computa-
tion on I−( j, k, ℓ, δ) proves the lemma by taking C( j, k, ℓ, δ) = C+( j, k, ℓ, δ) +
C−( j, k, ℓ, δ). □

ϕ is a monomial and A is anything

Theorem 4.14. Let ϕ(x) = xk and let A be a smooth function with com-
pact support containing the origin. If the Taylor series of A at the origin
has coefficients {b j} and ℓ denotes the smallest index such that bℓ , 0 then
I+ =

∫ ∞
0 A(x) exp(iλϕ(x)) dx has an asymptotic development

I+ ≈

∞∑
j=ℓ

b j C(k, j) (iλ)−(1+ j)/k.
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The error obtained by taking the (N − 1)st partial sum is O(λ−N/k) with the
implied constant bounded in terms of the suprema of the first N derivatives
of A near the origin. A similar result holds for the two-sided integral I with
coefficients α j obtained from conclusion (iii) in Theorem 4.1 with a j = b j.

Proof Let U be a smooth function that is 1 on the support of A and vanishes
outside of a compact set. Fix N ≥ 1 and δ > 0, and let P(x) = PN,δ(x) be the
Nth Taylor polynomial for eδxk

A(x) (obtained by truncating its Taylor series at
the xN term). If b j,δ denotes the coefficient of x j in P(x) and the normalized
remainder term R(x) = RN,δ(x) is defined by eδxk

A(x) = P(x) + xN+1R(x) then
I+ = B1 + B2 + B3 where

B1 =

∫ ∞

0
eiλxk

e−δxk
P(x) dx ,

B2 =

∫ ∞

0
eiλxk

xN+1e−δxk
R(x)U(x) dx ,

B3 =

∫ ∞

0
eiλxk

e−δxk
P(x)(U(x) − 1) dx .

By Lemma 4.11 with η(x) = e−δxk
R(x)U(x) and ℓ = N +1, we know that |B2| ≤

Kλ−(ℓ+2)/k for some constant K > 0 that can be bounded in terms of k, ℓ and
the first ℓ derivatives of A, the bound being uniform over δ in a neighborhood
of the origin.

Similarly, by Corollary 4.12 we see that B3 is rapidly decreasing as λ→ ∞.
It follows that the asymptotic series for I+ up to the λ−(ℓ+1)/k term may be
obtained by taking δ→ 0 in B1. Since P is a finite sum of monomials, we may
use Lemma 4.13 to compute B1 and prove the theorem. As before, we may sum
results for I+ and the analogous integral I− over the negative real half-line to
prove the result for I. □

General A and ϕ

Since iϕ always lies along the imaginary axis, we may use a diffeomorphic
change of variables to transform ϕ into ick xk, under which the contour remains
along the imaginary axis (thus there is no need for arguments about moving
the contour).

Proof of Theorem 4.10. By assumption, we can write ϕ(x) = ck xk(1 + θ(x))
where θ(x) = O(|x|). If y = x(1 + θ(x))1/k then y(x) is a diffeomorphism in
a neighborhood of the origin, and we write x = g(y) for its inverse. Since
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ckyk = ϕ(x) we may change variables to see that∫
eiλϕ(x)A(x) dx =

∫
eiλckyk

Ã(y) dy ,

and the result follows from Lemma 4.4. □

Notes

Our chief sources for Sections 1 and 2 were [BH86] and [Won01], along
with [Hen91]. Although our main theorem follows from the extensive anal-
yses in [BH86, Chapter 7], for example, asymptotics of Fourier and Laplace
transforms are seldom treated together, and we have never seen the univariate
Fourier-Laplace Theorem stated in exactly this form. We have also not seen a
derivation by purely complex analytic methods.

Watson’s Lemma may be found in many places. The version here agrees
with the statements in [BH86, Section 4.1] and [Hen91, Section 11.5]. The
saddle point method is described very nicely in [dBru81] and [FS09, Chapter
VIII]. Our treatment is more akin to [Hen91, Section 11.8]; see also [BH86,
Chapter 7], especially for some of our exercises.

Section 4.3 borrows heavily from [Ste93], although we have attempted to
fill in some details. For instance, our proof of Lemma 4.11 is summarized
as “A simple computation shows...” in [Ste93, page 335], which also omits
details as to how the argument for k = 2 extends to greater values of k. Despite
its omission of detail in elementary arguments, Stein’s book is a beautifully
written modern classic, and is a recommended addition to anyone’s bookshelf.

Additional exercises

Exercise 4.10. Let ϕ : R→ R be defined by

ϕ(x) =

exp
(
− 1

x2

)
if x , 0

0 if x = 0.

Show that ϕ is of class C∞ and that all derivatives of ϕ vanish at 0. Explain
the relevance of this fact to the asymptotic formulae derived in the theorems in
this chapter.

Exercise 4.11. If k = 2 and ℓ = 0 then Theorem 4.1 gives

I = b0

√
π

c2
λ−1/2 + α2λ

−3/2 + O(λ−5/2) .
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Compute the coefficient α2 in terms of b0, b1, b2, c2, c3 and c4.

Exercise 4.12. The Bessel function is defined by

Jm(r) =
1

2π

∫ 2π

0
exp(ir sin θ − imθ) dθ ,

where m is a fixed parameter (you may assume it is a positive integer). Use
Theorem 4.10 to find the two leading terms of an asymptotic series for Jm(r)
in decreasing powers of r.

Exercise 4.13. The Airy function is defined by

Ai(x) =
1

2π

∫ ∞

−∞

ei(xt+t3/3) dt .

Find an asymptotic expression for Ai(x) as x → ∞ in R by (1) performing the
change of variables t = ix1/2u, (2) finding the critical points and deforming
the contour of integration to pass through one or more of them, and (3) com-
puting the expansion on a compactly supported interval and arguing that this
converges as the limits of integration go to infinity.

Exercise 4.14. Continue the error estimation in Exercise 4.9.

(a) In terms of ε and j, what is the least value of sup0≤x≤ε |α
( j)(x)| for a bump

function α that is flat on the complement of [0, ε] and goes from value zero
to value one?

(b) What does this imply about a lower bound on the implied constant CM in
the O(λM) error term?

(c) Assuming this lower bound can be achieved, for fixed λ what value of M
optimizes the error bound CMλ

M?
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Multivariate Fourier-Laplace integrals

5.1 Overview

In this chapter we generalize the univariate saddle point techniques of Chap-
ter 4 to multivariate Fourier-Laplace integrals of the form

I(λ) =
∫
C

A(z) exp(−λϕ(z)) dz , (5.1)

where the amplitude A and phase ϕ are now analytic functions of a vector
argument z in d variables and C is a d-chain in Cd (see Section A.3 of Ap-
pendix A for definitions involving integration of chains on manifolds). In one
variable, the comprehensive Theorem 4.1 covers all degrees of vanishing of
the phase and amplitude functions. The range of possibilities for the phase
function ϕ in higher dimensions is much greater, however, and we restrict our-
selves here to the case of nondegenerate phase where the d×d Hessian matrix

H =

(
∂2ϕ

∂z j ∂zk

)
of ϕ is non-singular at the points in the domain of integration

determining asymptotics. The Taylor series for ϕ at a point p ∈ Cd is

ϕ(z) = ϕ(p) + (z − p)T (∇ϕ)(p) +
1
2

(z − p)T H(p)(z − p) + O
(
|z − p|3

)
,

hence the Hessian matrix H(p) represents (twice) the quadratic term in the
phase, and nondegeneracy is a generalization of nonvanishing of the quadratic
term for a univariate phase function.

Exercise 5.1. Determine whether the phase function ϕ(x, y, z) = z2+(x+y)z+xy
is degenerate at the origin.

We begin, analogously to the univariate case, by considering integrals whose
phase is restricted to the standard quadratic S (z) := z2

1 + · · · + z2
d. Asymptotic

behavior when A is monomial and ϕ is the standard quadratic (Corollary 5.7

130
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below) is coupled with a big-O bound (Lemma 5.8 below), allowing us to
integrate term by term and obtain the following result. Recall that if r ∈ Nd we
write |r| = r1 + · · · + rd.

Theorem 5.1 (standard phase). Let A(x) =
∑

r∈Nd arxr be a real analytic
function defined on a neighborhood N of the origin in Rd. If

I(λ) =
∫
N

A(x)e−λS (x) dx (5.2)

then there is an asymptotic series expansion

I(λ) ≈
∑
n≥0

∑
|r|=n

arβrλ−(|r|+d)/2 ,

where

βr =


0 if any r j is odd

πd/2
d∏

j=1

(2m j)!
m j!4m j

if r = 2m
.

After establishing Theorem 5.1 in Section 5.2, we use a change of variables
and contour deformation to study the case of nondegenerate phase whose real
part has a strict minimum at the origin. Our next result is proven in Section 5.3;
note that we change our variables from x to z to reflect the fact that our proof
works over the complex numbers.

Theorem 5.2 (Re{ϕ} has a strict minimum). Let A and ϕ be complex-valued
analytic functions on a compact neighborhood N of the origin in Rd. Suppose
that the real part of ϕ is nonnegative on N and vanishes only at the origin,
and that the Hessian matrix H of ϕ at the origin is nonsingular. Then I(λ) =∫
N

A(z)e−λϕ(z) has an asymptotic expansion

I(λ) ≈
∑
ℓ≥0

cℓλ−d/2−ℓ (5.3)

with leading coefficient

c0 = A(0)
(2π)d/2

√
detH

, (5.4)

where
√

detH is the product of the principal square roots of the eigenvalues
ofH .

Exercise 5.2. Show that the expansion in (5.3) can be written as

I(λ) ≈
A(0)

√
det 2πλH

∑
ℓ≥0

c′ℓλ
−ℓ (5.5)
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where c′0 = 1.

Exercise 5.3. Let c > 0, where c is independent of λ. What happens to the
right side of (5.5) if we change ϕ to ϕ/c and λ to cλ?

When Re{ϕ} is strictly positive except at a finite number of points in the do-
main of integration of I(λ) then, up to an asymptotically negligible error, we
can express I(λ) as a sum of integrals localized to neighborhoods of these van-
ishing points. A chain of integration in a manifold which can be localized to
arbitrarily small neighborhoods can be pulled back to correspondingly local-
ized integrals over Rd, which is why the above results are stated for integrals
over neighborhoods of the origin in Rd. In dimension greater than one, how-
ever, it is possible for an analytic function to have a real part that vanishes
along a set of positive dimension without vanishing everywhere, meaning it
may not be possible to localize.

Exercise 5.4. Over which of the following chains in C2 does ϕ(x, y) = x2 + y2

have a nonnegative real part and, among those where this holds, which have
the real part of ϕ vanishing only at the origin?

(a) a small neighborhood of 0 in the real × real subspace of C2

(b) a small neighborhood of 0 in the imaginary × imaginary subspace of C2

(c) a small neighborhood of 0 in the diagonal subspace {(x, y) ∈ C2 : x = y} of
C2

(d) a small neighborhood of 0 in the linear subspace of C2 spanned over R by
(1 + i, 0) and (0, 1 + i)

Such difficulties lead us to state our most general results in the language of
stratified spaces and vector flows. A vector flow on a space X is the solutionΨ :
X×[0,T ]→ X to a differential equation (d/dt)Ψ(x, t) = v(Ψ(x, t)) where v is a
vector field on X (see, e.g., Lemma 5.14); an upward gradient flow is defined
by the vector field v = ∇ ϕ, while a downward gradient flow is defined by
v = −∇ ϕ. These constructions and results, summarized in Appendix D, have
been around for over 50 years, though they are not very well-known outside of
differential topology and singularity theory. To ease exposition we now state
our main result using some terminology to be defined in Section 5.4, where the
result is proved. If X is an oriented stratified space then q ∈ X is a critical point
(in the stratified sense) of an analytic map ϕ : X → C if q lies in a stratum
S and the differential dϕ|S at q is zero. Appendix D contains a more complete
explanation of the vector flows we use.
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Theorem 5.3 (minimum of Re{ϕ} is not strict but there are finitely many criti-
cal points). LetV be a smooth complex (d − k)-dimensional algebraic variety
and suppose that

(i) X = ∆p × Md−k is a stratified space of dimension p + d − k in Cp+d−k,
where ∆p ⊆ Rp is the standard p-simplex and Md−k ⊆ V ⊆ Cd is a
smooth (d − k)-dimensional analytic submanifold ofV,

(ii) the closure of X is represented by an analytic (p + d − k)-chain C,
(iii) ϕ : X → C is an analytic map with minx∈X Re ϕ(x) = 0, and
(iv) η = A(z) dz is a holomorphic (p + d − k)-form on X.

Assume that the set G of critical points of ϕ on C is finite and that the subset
G′ ⊆ G where Re ϕ vanishes are all in strata of dimension p + d − k. Suppose
also that

(v) detH(q) , 0 for all q ∈ G′, whereH is the Hessian matrix for ϕ in some
local coordinates near q,

(vi) the imaginary part (and thus all of) ϕ(q) is zero for all q ∈ G′,
(vii) the boundary ∂C is supported on strata of dimension at most p+d−k−1,

with its simplices σ j analytic orientation preserving maps having disjoint
interiors, and

(viii) the elements of G′ lie in the interiors of distinct simplices σ j.

Then the integral

I(λ) =
∫
C

e−λϕ(z) η

has an asymptotic expansion

I(λ) ≈
∞∑
ℓ=0

cℓλ−(d−k)/2−ℓ (5.6)

as λ→ ∞, with leading term

c0 = (2π)d/2
∑
q∈G′

A(q)√
detH(q)

. (5.7)

The sign for the square root of the determinant is computed by choosing a
parametrization Υ for X near q by a neighborhood of the origin in Rp+d−k

and then multiplying the principal square roots of the eigenvalues of ϕ in these
coordinates with the Jacobian determinant det dΥ(q).

Without the assumption that the imaginary part of ϕ(q) vanishes for q ∈ G′

the formula (5.7) holds when each summand is multiplied by the term e−λϕ(q)

with modulus 1, making c0 = c0(λ) dependent on λ but having bounded modu-
lus.
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Remark 5.4. We apply Theorem 5.3 at two points in this book: first with p = 0
and k = 1 to derive Theorem 9.12, and second in its more general form to prove
asymptotics for multiple points in Chapter 10. In the statement of the theorem,
the first four conditions are geometric conditions ensuring the existence of the
necessary deformations and analytic extensions, while the last four ensure we
know how to do computations.

Example 5.5. Let X = I × S 1 where I is the interval [−1, 1] and S 1 is the unit
circle parametrized by θ ∈ [−π, π] with the endpoints identified, so that X can
be nicely embedded in C2. We apply Theorem 5.3 in the case p = k = 1 and
d = 2, with A(x, y) = 1 and ϕ : X → C defined by

ϕ(t, θ) = Kθ2 + iLθt (5.8)

for real numbers K > 0 and L. The phase ϕ is analytic on X, and the 2-chain C
representing X can be any cell complex with a subcomplex I×N for a compact
neighborhood N of θ = 0 in S 1. There is a single critical point p = (0, 0), at
which Re ϕ vanishes, so G′ = G = {p}.

Note that the strip I × {0} on which the phase function vanishes extends out
to the bounding circles of the cylinder X, so we are not in a case where the
magnitude of the integrand is small away from p, and Theorem 5.2 does not
apply. The Hessian matrix of ϕ at p is

(
2K iL
iL 0

)
, so Theorem 5.3 implies

I(λ) =
∫
N×I

e−λϕ(x) dx ∼
2π
λ |L|

.

The choice of sign on the term
√

L2 = |L| is arbitrary and depends on properly
orienting N × I for the application at hand. ◁

Exercise 5.5. Let X be the real sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} ⊂ C3

and let ϕ(x, y, z) = z2 + ix2.

(a) Identify the sets G and G′.
(b) DetermineH(q) for q ∈ G′.
(c) Determine c0(λ) when A(x, y, z) = 1 + x + y.

5.2 Standard phase

As in the one-dimensional case, we begin with the simplest phase function
and a monomial amplitude. We first state a formula for the one-dimensional
integral with amplitude A(x) = x2n and standard phase in terms of the explicit
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constants

β2n =
√
π

(2n)!
n! 4n .

Proposition 5.6. For all n ∈ N,∫ ∞

−∞

x2ne−x2
dx = β2n.

Proof For n = 0 this is just the standard Gaussian integral∫ ∞

−∞

e−x2
dx =

√
π ,

and the general result follows by induction. Indeed, rewriting∫ ∞

−∞

x2ne−x2
dx =

∫ ∞

−∞

−x2n−1

2

(
−2x e−x2

dx
)

and applying integration by parts gives∫ ∞

−∞

x2ne−x2
dx =

2n − 1
2

∫ ∞

−∞

x2n−2 e−x2
dx

=
2n − 1

2
·
√
π ·

(2n − 2)!
(n − 1)! 4n−1

=
√
π

(2n)!
n! 4n

by induction, as claimed. □

Corollary 5.7 (monomial integral). Let S (z) =
∑d

j=1 z2
j and r ∈ Nd. Then∫

Rd
zre−λS (z) dz = βrλ−(d+|r|)/2

for any λ > 0, where βr =
∏d

j=1 βr j if all the components r j are even and
βr = 0 otherwise.

Proof If n ∈ N then making the change of variables x = yλ−1/2 and applying
Proposition 5.6 proves∫ ∞

−∞

x2n e−λx2
dx = λ−1/2−n

∫ ∞

−∞

y2ne−y2
dy = λ−1/2−nβ2n ,

while
∫ ∞
−∞

x2n+1 e−λx2
= 0 as its integrand is odd. The integral under considera-

tion factors as ∫
Rd
zre−λS (z) dz =

d∏
j=1

[∫ ∞

−∞

zr j

j e−λz2
j dz j

]
,
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and the result follows from simplifying each factor. □

Before establishing Theorem 5.1 we also need to bound the error terms that
appear.

Lemma 5.8 (Big-O Lemma). Let A be a measurable function satisfying A(z) =
O(|z|r) at the origin. Then the integral of A(z)e−λS (z) over any compact set K
may be bounded from above by∫

K
A(z)e−λS (z) dz = O

(
λ−(d+r)/2

)
.

The implied constant on the right goes to zero as the implied constant in the
hypothesis A(z) = O(|z|r) goes to zero.

Proof Because K is compact and A(z) = O(|z|r) at the origin, there exists a
constant C > 0 such that |A(z)| ≤ C|z|r on all of K. Let

K0 =
{
z ∈ K : |z| ≤ λ−1/2

}
denote the intersection of K with the ball of radius λ−1/2, and for n ≥ 1 let

Kn =
{
z ∈ K : 2n−1λ−1/2 ≤ |z| ≤ 2nλ−1/2

}
denote the intersection of K with a shell. On K0 we have |A(z)| ≤ Cλ−r/2 and
|e−λS (z)| ≤ 1, so∫

K0

A(z)e−λS (z) dz ≤ Vol(K0) Cλ−r/2 =
(π/λ)d/2

Γ
(

d
2 + 1

) C λ−r/2.

For n ≥ 1, when z ∈ Kn we have the upper bounds

|A(z)| ≤ 2rnCλ−r/2 by upper bound on |z|

e−λS (z) ≤ e−22n−2
by lower bound on |z|

Vol(Kn) ≤
2dnπd/2

Γ
(

d
2 + 1

) λ−d/2 by upper bound on |z|.

Thus, if C′ = 1 +
∑

n≥0 2(d+r)ne−22n−2
< ∞ then∣∣∣∣∣∫

K
A(z)e−λS (z) dz

∣∣∣∣∣ ≤ ∞∑
n=0

∣∣∣∣∣∣
∫

Kn

A(z)e−λS (z) dz

∣∣∣∣∣∣ ≤ πm/2

Γ
(

d
2 + 1

) C C′ λ−(d+r)/2

with the right-hand side going to zero with the implied constant C, as claimed.
□

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. Writing A(z) as a power series up to degree N plus a
remainder term,

A(z) =

 N∑
n=0

∑
|r|=n

arzr

 + R(z)

where R(z) = O
(
|z|N+1

)
. Using Corollary 5.7 to integrate all the monomial

terms and Proposition 5.8 to bound the integral of R(z)e−λS (z) shows that

I(λ) =
N∑

n=0

∑
|r|=n

arβrλ
−(d+n)/2 + O

(
λ−(d+N+1)/2

)
,

proving the stated asymptotic expansion. □

Exercise 5.6. Let M(t) = sup{|A(z)| : |z| = t} and let KR be a ball of fixed
radius R. Prove a version of Theorem 5.1 using the fact that if M(t) = O(tα)
then ∫

KR

A(z)e−λS (z) dz ≤
∫ R

0
e−λt M(t) dV(Kt) ,

where dV(Kt) = cttd−1dt is the volume of a spherical shell of thickness dt and
radius t in d dimensions.

5.3 Real part of phase has a strict minimum

We extend our results beyond integrals with standard quadratic phases using
complex analytic techniques. IfN is a neighborhood of the origin in Rd and ϕ :
N → C is analytic on N then ϕ can be viewed as a complex analytic function
on a neighborhood NC of the origin in Cd using its power series expansion.
Suppose that ϕ(0) = 0 and the real part of ϕ is nonnegative on N , so that the
gradient of ϕ must vanish at the origin. Our first key lemma is that, under an
assumption of nondegeneracy, we can change variables so that ϕ becomes the
standard quadratic form.

Lemma 5.9 (Complex Morse Lemma). If ϕ(x) has vanishing gradient and
nonsingular HessianH at the origin then there is a bi-holomorphic change of
variables x = ψ(y) around x = y = 0 such that ϕ(ψ(y)) = S (y) =

∑d
j=1 y2

j .

The Jacobian matrix Jψ = dψ(0) satisfies (det Jψ)2 = 2d

detH .

Our proof of Lemma 5.9 is adapted from the proof of the real version given
in [Ste93, VIII:2.3.2].
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Proof To prove the claim about the Jacobian determinant, we apply the chain
rule to the equation ϕ(ψ(y)) = S (y) and conclude that the Hessian matrix of S
at the origin equals JT

ψ H Jψ. The Hessian of S is twice the identity matrix, so
2I = JT

ψ H Jψ and taking determinants gives the stated result.
To prove the change of variables, we begin by writing

ϕ(x) =
d∑

j,k=1

x jxkϕ j,k(x)

for analytic functions ϕ j,k = ϕk, j with constant terms ϕ j,k(0) = H j,k /2. There
is plenty of freedom, but a convenient choice is to take

x jxkϕ j,k(x) =
∑
|r|≥2

r j(rk − δ j,k)
|r|(|r| − 1)

arxr, (5.9)

where ar are the Taylor coefficients of ϕ at x and δ j,k = 1 if j = k and 0
otherwise. For fixed r it is easy to check that∑

1≤ j,k≤d

r j(rk − δ j,k)
|r|(|r| − 1)

= 1,

so that ϕ(x) =
∑

j,k x jxkϕ j,k(x), and matching coefficients on the terms of or-
der precisely two verifies ϕ j,k(0) = H j,k /2. We may assume without loss of
generality that ϕ j, j(0) = H j, j , 0 for all j, because there is always a unitary
map U such that the Hessian of ϕ ◦ U has non-vanishing diagonal entries, and
if (ϕ ◦ U) ◦ ψ0 = S for some ψ0 then ϕ ◦ ψ = S where ψ = U ◦ ψ0.

We conclude with an induction. Since we are assuming that ϕ1,1(0) , 0, the
reciprocal 1/ϕ1,1(x) and a branch of

√
ϕ1,1(x) are both analytic in a neighbor-

hood of the origin. If

y1 =
√
ϕ1,1(x)

x1 +
∑
k>1

xkϕ1,k(x)
ϕ1,1(x)


then the terms of y2

1 of total degree at most one in x2, . . . , xd match those of ϕ,
since

ϕ(x) − y2
1 =

d∑
j,k=2

x jxk

(
ϕ j,k(x) −

ϕ1, j(x)ϕ1,k(x)
ϕ1,1(x)

)
. (5.10)

In the new coordinates y1, x2, x3, . . . , xd, the Hessian matrix of ϕ is a (1, d − 1)
block matrix, where the submatrixH (1) corresponding to the variables x2, . . . , xd

has determinant detH (1) = detH /ϕ1,1 , 0. In fact, if H is real positive def-
inite then so is H (1), provided the correct branch of the square root is chosen.
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Equation (5.10) thus writes ϕ in the form

ϕ(x) = y2
1 +

∑
j,k≥2

x jxkϕ
(1)
j,k (x) (5.11)

for some analytic functions ϕ(1)
j,k satisfying ϕ(1)

j,k (0) = H (1)
j,k /2. By induction, if

we assume that

ϕ(x) =
r−1∑
j=1

y2
j +

∑
j,k≥r

x jxkϕ
(r−1)
j,k (x)

for some 1 ≤ r ≤ d then setting

yr =
√
ϕr,r(x)

xr +
∑
k>r

xkϕ
(r−1)
r,k (x)

ϕ(r−1)
r,r (x)


gives

ϕ(x) =
r∑

j=1

y2
j +

∑
j,k≥r+1

x jxkϕ
(r)
j,k(x)

for some analytic functions ϕ(r)
j,k satisfying ϕ(r)

j,k(0) = H (r)
j,k /2 with H (r) non-

singular, leading in the end to a sequence of bi-holomorphic changes of vari-
ables writing ϕ(x) =

∑d
j=1 y2

j as claimed. □

Exercise 5.7. Use the Complex Morse Lemma to find a bi-holomorphic change
of variables turning ϕ(x, y, z) = xy + yz + zx + xyz into the standard quadratic
form S (u, v,w).

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. The convergent power series expansion of ϕ allows us
to extend it to a neighborhood of the origin inCd. Under the change of variables
ψ from Lemma 5.9,

I(λ) =
∫
ψ−1N

A(ψ(y))e−λS (y)(det dψ(y)) dy

=

∫
ψ−1N

Ã(y)e−λS (y) dy .

We need to check that we can move the chain of integration C = ψ−1N back
to the real plane. If we can, then applying the expansion from Theorem 5.1
and noting that the terms with odd values of |r| all vanish yields the desired
expansion in powers λ−d/2−ℓ.

Let h(z) = Re{S (z)}. Our assumption that the real part of ϕ is nonnegative
onN and vanishes only at the origin implies that the chain C lies in the region
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{z ∈ Cd : h(z) > 0} except when z = 0, meaning there exists ε > 0 such that
h(z) ≥ ε > 0 for all z ∈ ∂C. Let

H(z, t) = Re{z} + (1 − t) i Im{z}

be a homotopy from the identity map to the projection map π(z) = Re{z}. For
any chain σ, the homotopy H induces a chain homotopy H(σ) satisfying

∂H(σ) = σ − π(σ) + H(∂σ) .

Taking σ = C, and using the fact that h(H(z, t)) ≥ h(z), we see there is a
d-chain C′ supported on {z ∈ Cd : h(z) > ε} and a (d + 1)-chainD such that

∂D = C − π(C) + C′.

Stokes’s Theorem (Theorem A.24 in Appendix A) implies that∫
∂D

ω =

∫
D

dω = 0

for any holomorphic d-form ω, which means∫
C

ω =

∫
π(C)

ω −

∫
C′
ω .

When ω = Ã(y)e−λS (y) dy the integral over C′ is O
(
e−λε

)
, giving

I(λ) =
∫
π(C)

Ã(y)e−λS (y) dy + O
(
e−ελ

)
.

The projection π maps any real d-manifold in Cd locally diffeomorphically
into Rd wherever its tangent space is not parallel to the imaginary subspace of
Cd. Because h(z) ≥ 0 on C, the tangent space to the support of C at the origin is
not parallel to the imaginary subspace. The tangent space varies continuously,
so in a neighborhood of the origin π is a diffeomorphism. In particular, the
chain π(C) is a disk ∆ in Rd plus a collection of points whose image under h is
bounded above zero (which will contribute an exponentially negligible term to
dominant asymptotic behavior). Observing that

Ã(0) = A(0) det(dψ(0)) =
2dA(0)
√

detH
finishes the proof, up to the choice of sign of the square root corresponding to
the orientation of ∆.

The stated sign choice of Ã(0) in this theorem can be verified by proving
that the linear map dπ ◦ dψ−1 at the origin sends the standard basis of Rd to
another positively oriented basis if and only if det(dψ(0)) is the product of
the principal square roots of the eigenvalues of H . We state and prove the



5.4 General nondegenerate phase with finite critical set 141

necessary technical result in Lemma 5.10 below, which completes our proof of
this theorem. □

Lemma 5.10. Let W = {z ∈ Cd : Re{S (z)} > 0} and suppose that α ∈ GLd(C)
maps Rd into W. If M = αTα is the matrix representing the quadratic form
S ◦ α and π is the projection map from Cd onto Rd then π ◦ α is orientation
preserving on Rd if and only if detα is the product of the principal square roots
of the eigenvalues of M (rather than the negative of this).

Proof First suppose α ∈ GLd(R). Then M has positive eigenvalues, and the
product of their principal square roots is positive. The map π is the identity on
Rd, so the claimed statement boils down to saying that α preserves orientation
if and only if it has positive determinant, which is true by definition. In the gen-
eral case, let αt = πt ◦α where πt(z) = Re{z}+ (1− t) Im{z}. Since πt(Rd) ⊆ W
for all 0 ≤ t ≤ 1, the matrix Mt = α

T
t αt always has eigenvalues with nonneg-

ative real parts. The product of the principal square roots of the eigenvalues is
a continuous function on the set of nonsingular matrices with no negative real
eigenvalues. The determinant of αt is a continuous function of t, and we have
seen it agrees with the product of principal square roots of eigenvalues of Mt

when t = 1 (the real case), so by continuity this is the correct sign choice for
all 0 ≤ t ≤ 1. Taking t = 0 proves the lemma. □

Exercise 5.8. Suppose ϕ is the logarithm of an analytic function, defined only
up to the addition of (2πi)n for n ∈ Z. How does this affect the conclusion of
Theorem 5.2?

5.4 General nondegenerate phase with finite critical set

In this section we prove Theorem 5.3 by moving the chain of integration of I
so that Re ϕ is minimized only at the finite set of critical points, then applying
Theorem 5.2. We first remark on some differences from our previous argu-
ments. While the chain of integration may be defined on a subspace X ⊆ Rd,
the form in the integrand will be extended to a neighborhood of X in Cd and the
deformation in general will not be confined to X. To accomplish this, we define
a complexification of X with analytic structure. Our deformation is defined by
a smooth vector field v which, although not analytic, lies in the complex tan-
gent bundle to the complexification of each stratum. The proof is broken into
the following steps.

(1) Define the complexification X ⊗ C.
(2) Extend ϕ and η to a neighborhood U of X in Cd.
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(3) Construct a vector flow v on U, tangent to the strata of X⊗C and vanishing
precisely on G, such that ⟨Re dϕ,v⟩ > 0 on U \G.

(4) Show that
∫
C

e−λϕη =
∫
C′

e−λϕη, where C′ is obtained from C by flowing
along v for a short time.

(5) Use Theorem 5.2 on the deformed chain C′.

Step (2) follows in a straightforward manner from Step (1). Step (3) is where
the special assumptions on X are used. This allows us to follow the methodol-
ogy of locally constant vector fields and partitions of unity in [ABG70], rather
than the more difficult methodology of controlled vector fields in [Mat70].
Step (4) is an application of Stokes’s Theorem together with the crucial obser-
vation that part of the boundary of the chain representing the deformation lies
in a complex manifold of dimension less than d. Step (5), once we reach it, is
immediate.

Step 1: Complexification
Lemma 5.11. Under the hypotheses of Theorem 5.3, there is a complex strat-
ified space X ⊗ C with strata S ⊗ C as S ranges over the strata of X, such that
X⊗C is a neighborhood of X in Cd and such that the chart maps ψ⊗C : Ck →

S ⊗ C restricted to Rk are chart maps for S.

Proof We complexify ∆p in Cp and Md−k in Cd separately and take the prod-
uct. First, we note that the set ∆p is defined by p + 1 linear inequalities. Re-
laxing these by ε > 0 produces a neighborhood D of ∆p in Rd. Taking the
product with a sufficiently small imaginary interval [−εi, εi] in each of the p
coordinates produces a complex stratified space that is a neighborhood of ∆p

in Cd. Because of our assumptions, we can complexify Md−k toV. Taking the
product of F ⊗ C and Md−k ⊗ C as stratified spaces, where F is a face of ∆p,
produces (F × M) ⊗ C; these are the strata S ⊗ C and fit together to form the
stratified space X ⊗ C satisfying the conclusion of the theorem. □

Remark 5.12. In Chapter 9, we always have k = 1 and Md−k is a smooth
open (d − 1)-patch in VQ. In Chapter 10, we have k = 0 and Md is a patch
of a middle-dimensional torus in Cd \ V. In general, under the condition that
the real tangent space spans a complex space of dimension d − k, one may
define Md−k ⊗C to be the intrinsic complexification of M, namely the smallest
complex manifold containing M. This is known to exist [BER99], following a
construction of [BW59], and will be a complex (d − k)-manifold.

Exercise 5.9. Suppose X is the circle in R3 defined by the real solutions to
x2 + y2 − 1 = z = 0. Find the complexification X ⊗ C.
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Step 2: Extending analytic maps
Proposition 5.13. Let ϕ : X → C be an analytic map on an analytic stratified
space X, and let ψ1 and ψ2 be chart maps whose ranges are overlapping do-
mains N1 and N2 in X. As y takes values in the intersection of the ranges of
ψ1 ⊗ C and ψ2 ⊗ C, the function ϕ̃ = ϕ̃ j defined by

ϕ̃ j(y) = τ j ◦ (ψ j ⊗ C)−1(y) (5.12)

is independent of j, where τ j represents analytic continuation of the map ϕ◦ψ j

from the real parameter space to a complex neighborhood of it. This common
value defines an analytic extension of ϕ on a neighborhood of X in Cd.

Proof The maps ϕ̃1 and ϕ̃2 agree when y ∈ N1∩N2∩X. Being analytic, they
must agree in a neighborhood of X in X ⊗ C. □

Step 3: Constructing the vector flow
Lemma 5.14. Under the assumptions of Theorem 5.3, there is a vector field v

on a neighborhood U of X in Cd, tangent to each complexified stratum S ⊗ C
of X ⊗ C and vanishing only on G, with the property that ⟨Re dϕ,v⟩ > 0 at
every point of U \G. For sufficiently small s, there is a well-defined differential
flow Ψ : [0, 1] × |C| → Cd satisfying (d/dt)Ψ(t, x) = sv(Ψ(t, x)), and the map
x 7→ Ψ(ε,x) is a local diffeomorphism for sufficiently small ε > 0.

Proof As described in Proposition D.14 of Appendix D, there is a diffeo-
morphic local product structure under the assumptions of Theorem 5.3. The
argument discussed in Step 2 of the proof of Proposition D.13 in Appendix D
implies that there is a Lipschitz vector flow v on a neighborhood U of X in Cd

defined by (D.2.1). This vector field v is tangent to each complexified stratum,
vanishes precisely on G, and satisfies ⟨Re dϕ,v⟩ > 0 on U \G.

The map x 7→ Ψ(ε,x) is a local diffeomorphism for sufficiently small
ε > 0 because v is smooth and bounded (see, for example, [Lee03, Propo-
sition 9.12]). □

Step 4: Deforming the contour
Composing the flow from Lemma 5.14 with the simplex σ j gives a homotopy
from each σ j to a new analytic simplex σ′j, and summing the σ′j defines a new
chain C′. Because v is tangent to S ⊗ C for each stratum S, the flow preserves
each complexified stratum S⊗C. Because ∂C is contained in the union of strata
of dimensions at most p + d − k − 1, it follows that Ψ(∂C) is contained in the
union of complexified strata of dimensions at most p + d − k − 1.
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Lemma 5.15. Using the above notation,∫
C

e−λϕη =
∫
C′

e−λϕη . (5.13)

Proof The homotopy Ψ defined by Lemma 5.14 is a chain with boundary
C−C′−[0, 1]×∂C. Since e−λϕη is a holomorphic p+d−k-form, it is annihilated
by the differential, and Stokes’s Theorem implies

0 =
∫
Ψ

d(e−λϕη)

=

∫
∂Ψ

e−λϕη

=

∫
C′

e−λϕη −
∫
C

e−λϕη −
∫
D

e−λϕη ,

where D is a chain representing [0, 1] × ∂C. Because e−λϕη is a holomorphic
(p + d − k)-form, its integral vanishes over any p + d − k-chain supported
on a (p + d − k − 1)-dimensional complex manifold (see Exercise A.15 of
Appendix A), finishing the proof. □

Exercise 5.10. A simpler version of the deformation argument can be illus-
trated in two real variables. Suppose that V(x, y) is a smooth function on R2 and
η = Vx(x, y)dx+Vy(x, y)dy. Assume that a homotopy H : [0,T ]× [0, 1] carries
the path α : [0,T ] → R2 to the path β : [0,T ] → R2, meaning H(t, 0) = α(t)
and H(t, 1) = β(t) for all t ∈ [0,T ]. If f (u) = H(0, u) and g(u) = H(T, u) then
what conditions on d f and dg guarantee that

∫
α
η =

∫
β
η by implying that the

integrals over the paths traced out by the endpoints of the path as it moves from
α to β are everywhere zero?

Step 5: Evaluating the integral on C′

From the construction of v we see that C′ =
∑m

j=1 σ
′
j, where each simplex

σ′j contains the same critical point q in its interior as σ j. By Lemma 5.14 we
know that Re ϕ(σ′j(x)) ≥ Re ϕ(σ j(x)) ≥ 0 for all j ≤ m and x ∈ ∆p, where
the first inequality is strict unless σ j(x) is a critical point. Thus, the image |C′|
is a stratified space represented analytically by (p + d − k)-simplices σ′j for
1 ≤ j ≤ m and the function Re ϕ is nonnegative and vanishes precisely on G′.

If σ′j contains no point of G′ then the modulus of
∫
σ′j

e−λϕ(z) η is bounded

above by Me−λK where M = max{|A(x)| : x ∈ ∆d} and K = min{Re ϕ(x) :
x ∈ ∆d}. If σ′j contains q ∈ G′ then translating the preimage of q to the origin
turns ∆p+d−k into a neighborhood N of the origin on which A and ϕ̃ = ϕ ◦ σ′j
are analytic and Re ϕ̃(z) ≥ 0, with equality only at the origin. Theorem 5.2
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then gives an asymptotic expansion for the integral over each simplex. Invari-
ance of det J(Υ)/

√
H under coordinate transformations equates the summand

in (5.7) with the result (5.4) in Theorem 5.2, provided the correct sign in (5.7)
is chosen to match (5.4). Summing these expansions then finishes the proof of
Theorem 5.3. □

Exercise 5.11. The simplest case of Theorem 5.3 occurs when p = 0, d =
1, and k = 0. Take ϕ(z) = −z2, so e−λϕ(z) = eλz2

, and let M be the 1-chain
consisting of the imaginary axis. Which sign in the equality∫

M
eλz2

dz = ±i

√
2π
λ

is correct when parametrizing M by z = it for t ∈ R, and which sign is correct
when parametrizing M by z = −it?

5.5 Higher order terms in the expansions

All of our explicit asymptotic computations ultimately reduce to computing
terms in the asymptotic expansions of Fourier-Laplace integrals. It is therefore
useful to have a closed formula for the higher-order terms that can appear. The
following result is derived in [Hör83, Thm. 7.7.5] using smooth methods, and
we refer the reader to that source for a proof.

Lemma 5.16. Let X ⊆ Rd be an open neighborhood of the origin and let ϕ and
A be smooth functions on X such that Re{ϕ} ≥ 0 on X. Further suppose that ϕ
has a unique critical point on the support of A at the origin, that ϕ(0) = 0, and
that the Hessian H of ϕ at 0 is nonsingular. Then for any positive integer M
and λ > 0 there exist constants Lk(A, ϕ) such that∣∣∣∣∣∣∣

∫
X

A(x)e−λϕ(x)dx − λ−d/2 (2π)d/2

√
detH

∑
0≤k<M

λ−kLk(A, ϕ)

∣∣∣∣∣∣∣
≤ C(ϕ)λ−d/2−M

∑
|β|≤2M

sup |DβA|,

where the constant C(ϕ) has a uniform bound when ϕ stays in a bounded set of
(3N + 1)-differentiable functions on X for which ∥x∥/∥∇ϕ(x)∥ has a uniform
bound. Setting

ϕ(x) = ϕ(x) − (1/2)x · H ·xT ,
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which vanishes to order three at 0, we have

Lk(A, ϕ) = (−1)k
∑

0≤ℓ≤2k

Dℓ+k
(
A(x) · ϕ(x)ℓ

)
2ℓ+kℓ!(ℓ + k)!

∣∣∣∣∣∣∣∣
x=0

(5.14)

whereD is the differential operator

D = −
∑

1≤i, j≤d

(
H
−1

)
i j
∂i∂ j.

The total number of derivatives of A in the term Lk(A, ϕ) is at most 2k and the
total number of derivatives of ϕ is at most 2k + 2. □

Interpreting this in our context, we obtain the following.

Corollary 5.17 (full expansion of F-L integral). Assume the hypotheses of
Theorem 5.2 and suppose further that ϕ has a single critical point onN which
lies at the origin. Then the constants in (5.3) satisfy

ck =
(2π)d/2

√
detH

Lk(A, ϕ)

for each k ≥ 0, where Lk is as defined by (5.14).

The fact that Lemma 5.16 requires only smoothness also makes it easy to
localize.

Lemma 5.18. If ϕ has a finite number of critical points on N where the
hypotheses of Corollary 5.17 hold then an asymptotic expansion for I(λ) is
obtained by summing the expansions corresponding to each of these critical
points.

Proof The proof of Theorem 5.2 shows that the contribution from the bound-
ary of the domain of integration may be ignored — we may localize to a neigh-
borhoodN ′ of the critical point that is diffeomorphic to an open ball in Rd. Re-
placing A by the product Aα of A with a compactly supported smooth function
α that is equal to one on N ′, the result follows from Lemma 5.16. □

Exercise 5.12. Verify that when A(0) , 0 the leading constant of (5.3) matches
the expression in Corollary 5.17.

Notes

A number of the results in this section originally appeared in [PW10]. In the
case of purely real or imaginary phase, the results of this chapter are fairly
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standard; see [BH86; Won01] for real phase or [Ste93] for imaginary phase.
We have not seen the complex phase result Theorem 5.2 stated before, though
such a result was certainly understood to be true. The remaining statements
and proofs via complex deformation methods are new, though not surprising.

Theorem 5.4.8 from the first edition has been replaced by Theorem 5.3. The
proof has been split into two parts. The first part, involving stratified Morse
deformations, is a standard stratified construction and is summarized in Ap-
pendix D. The second part, deforming a chain by complexifying and manipu-
lating the chain through complex space, is new as far as we know and spelled
out in Section 5.4.

According to B. Lamel (personal communication), intrinsic complexifica-
tions of strata of any stratified space (see Remark 5.12) should fit together to
form a complex stratified space, provided the (real) tangent spaces E at every
point satisfy E∩ iE = {0}. This would imply that Lemma 5.11 and hence Theo-
rem 5.3 holds for any stratified space of dimension m analytically embedded in
Cm. However, this appears to require some condition about extending the (real)
chart maps of each stratum beyond its boundary, which can be done with ∆p

and Md−1 but not for arbitrary stratified spaces (where the boundary might be
a singularity of the stratum). We could not find such an argument in the exist-
ing literature, which is why Theorem 5.3 is restricted to products of stratified
spaces for which we have explicit complexifications.

The general approach, namely to stay in the analytic category and use de-
formations suggested by stratified Morse theory for complex spaces, is an ex-
tension of our treatment of univariate Fourier-Laplace integrals in Chapter 4.
The main motivation for doing things the way we have is that the analysis of
multiple points in Chapter 10 requires us to integrate over the product of a
chain in V with an abstract simplex; when integrating terms with imaginary
phase over manifolds with boundary, one needs a way to eliminate boundary
terms. A result similar to Theorem 5.3 was proved in [PV19, Theorem 4.2], via
an approach which avoids Morse theoretic contour deformation arguments, re-
placing these by iterated integrals and single parameter steepest descent curves.

The first edition of the book assumed a strong torality hypothesis when de-
riving asymptotics (see, e.g., Corollaries 9.2.4 and 9.2.9 there) which allowed
use of known techniques in the case where the phase is purely imaginary and
the contour of integration has no boundary. In the present edition this overly
strong hypothesis has been replaced by a weaker notion for which Theorem 5.3
has been specifically designed (see Theorem 9.12).
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Additional exercises

Exercise 5.13. Consider an integrand of the form A(x, y, z)e−λS (x,y,z) dz, where
A(x, y, z) = (x2 + y2 + z2)α is not smooth at the origin when α < Z>0. What kind
of asymptotic estimate or expansion can be obtained in this case?

Exercise 5.14. Prove that for critical points on the boundary of the chain of
integration, where the chain is locally diffeomorphic to a halfspace and ϕ has
vanishing one-sided normal derivative, the conclusion of Theorem 5.2 holds
with the leading coefficient multiplied by 1/2. (See Example 10.66 in Chap-
ter 10 for an application of this result.)

Exercise 5.15. (non-isolated critical points) Consider the integral∫ ε

−ε

∫ 1

0
e−λϕ(θ,t)dtdθ

where ϕ(θ, t) = (1− t)g1(θ)+ tg1(θ) and each gi is analytic and vanishes to order
2 at θ = 0, with positive second derivative. Calculate the first order asymptotic
as λ → ∞ in terms of derivatives of g1 and g2 at 0. (This foreshadows the
computations in Section 10.5, in particular Proposition 10.62.)

Exercise 5.16. Use the vanishing to order 3 of ϕ at the origin to write a simpler
expression for L1(A, ϕ). Further simplify it in the cases where A vanishes to
orders one, two and three, respectively, at the origin.

Exercise 5.17. (alternative method to compute higher order terms) This exer-
cise outlines an alternative way of computing higher order terms in the asymp-
totic expansion of a Fourier-Laplace integral. Assume for simplicity that the
phase ϕ has a single critical point, occurring at 0, and that the amplitude A
vanishes outside the closure of a neighborhood of 0. Let S be the standard
quadratic S (z) =

∑d
i=1 z2

i .

(i) Prove that when ϕ = S , the differential operator∑
|r|=k

∂2r1
1 · · · ∂

2rd
d

4kr1! · · · rd!
,

when applied to A and evaluated at 0, gives the coefficient ck from Theo-
rem 5.3.

(ii) The Complex Morse Lemma gives an analytic change of variables z =

ψ(y) such that S (y) = (ϕ ◦ ψ)(y). Apply the result of (i) and solve a
triangular system to compute the derivatives of ψ at 0. Note that this
changes the amplitude function A to (A ◦ ψ) detψ′.



5.5 Higher order terms in the expansions 149

(iii) Use Corollary 5.7 and steps (i) and (ii) to derive an explicit formula for
asymptotics in the case d = k = 1. Check your result against the formula
given in Corollary 5.17.



6

Laurent series, amoebas, and convex geometry

The theory of analytic combinatorics works by encoding a sequence of interest
as a convergent series and applying tools from complex analysis. Although
our results in previous chapters have focused on power series expansions that
converge near the origin, a single rational (or meromorphic) function can be
represented by multiple convergent series expansions over different domains
in Cd.

Example 6.1. The function F(z) = 1/(1 − z) has the convergent power series
representation

F(z) =
∑
n≥0

zn when |z| < 1

and also the convergent Laurent series representation

F(z) =
−1/z
1 − 1

z

= −
∑
n≥0

z−n−1 when |z| > 1.

◁

In this chapter we introduce several constructions that, in addition to be-
ing used in later arguments, expand our viewpoint and help motivate how to
make certain choices while computing on actual examples. The first section of
this chapter develops the theory of convergent Laurent series, their domains of
convergence, and a generalization of the Cauchy Integral Formula. Not only do
Laurent series allow us to deal more naturally with generating functions that
are ratios of Laurent polynomials, which appear frequently in combinatorial
applications, they are also the natural level of generality with which to discuss
polynomial amoebas – algebro-geometric objects that allow us to visualize the
relationship between a rational function and its convergent series expansions.
Furthermore, the algebraic computations that we undertake in order to deter-
mine asymptotics of a series expansion of a rational (or meromorphic) function

150
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naturally capture properties related to all convergent series expansions of the
function. Thus, even if one wishes to stay within the realm of power series, a
knowledge of Laurent expansions provides insight into the analysis that can
help in real applications.

The second section of this chapter surveys basic properties of amoebas, and
describes their use in analytic combinatorics, while the third section introduces
some basics from convex geometry and describes their connection to polyno-
mial amoebas. The fourth section studies the boundary points of amoebas and
minimal singularities, which are very important to our ACSV analysis. The
final section collects some related topics that are needed in later chapters.

Notational remarks
To simplify notation we extend the logarithm and exponential functions coor-
dinatewise to vectors,

log(z) := (log z1, . . . , log zd)

exp(x) := (ex1 , . . . , exd ) ,

and define the coordinatewise log-modulus Relog map

Relog(z) := (log |z1|, . . . , log |zd |).

The inverse image of x ∈ Rd under the Relog map is the exponential torus

Te(x) := Relog−1(x) = {z ∈ Cd : |z j| = ex j for all j} .

Note that the torus T(z) passing through z is equal to Te(Relog(z)). As we will
soon see, the image of the singular set of a multivariate meromorphic function
under the Relog map provides important information about its analytic behav-
ior.

6.1 Laurent series

A Laurent polynomial is a finite complex linear combination of monomials
zr with integer exponents r. The ring of Laurent polynomials C

[
z, z−1

]
=

C
[
z1, z−1

1 , . . . , zd, z−1
d

]
consists of the set of all Laurent polynomials, with addi-

tion and multiplication defined analogously to the polynomial ring C[z]. Since
a Laurent polynomial has only a finite number of terms, the algebraic structure
of C[z, z−1] is similar to the algebraic structure of C[z]. On the other hand, the
space of formal Laurent expressions in z is the complex vector space L(z) of
formal complex linear combinations of monomials zr as r ranges over all of
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Zd. Although the space L(z) is a module over the ring of Laurent polynomials,
it is not itself a ring. Indeed, because a formal Laurent expression can have
indices with negative sign and arbitrarily large magnitude, there is no natural
product structure on L(z).

Example 6.2. If G(z) =
∑

n∈Z zn then attempting to use the usual definition
of series multiplication gives, for instance, that the constant term of G(z)2 is∑

n∈Z 1, which is not well-defined. We also note that (1 − z)G(z) = 0 so, as a
C[z, z−1] module, elements of L(z) can have nontrivial annihilators. ◁

One approach to giving L(z) a ring structure involves restricting the indices
that can appear, for instance requiring that all coordinates of all indices have
a fixed lower bound (this is sufficient to develop a rich theory in one variable,
but the multivariate case is more delicate). Here we work around these formal
difficulties by restricting ourselves to the study of convergent Laurent series.
Let D be an open simply connected subset of Cd

∗ and let LD(z) denote the
subspace of L(z) consisting of series that are absolutely convergent, uniformly
on compact subsets ofD.

When discussing convergence of Laurent series, we always mean uniform
convergence on compact sets of Cd

∗ (we disallow zero coordinates so that we
do not need to worry about dividing by zero in terms with negative indices).

Definition 6.3. The domain of convergence of a Laurent series
∑

r∈Zd arzr

is its open domain of absolute convergence, equal to the interior of the set of
z ∈ Cd

∗ for which
∑

r∈Zd |arz
r | is finite.

As usual, we define a convex set to be a subset S of Rd with the property
that for each x, y ∈ S , and each λ ∈ [0, 1], necessarily (1 − λ)x + λy ∈ S .
It follows easily by induction that each convex set is closed under taking a
convex combination of elements and the Chain Rule. That is, if x1, . . . , xn ∈ S
and λ1, λn ∈ [0, 1] with

∑
i λi = 1, then

∑
i λixi ∈ S .

Theorem 6.4 (domains of convergence of Laurent series).
(1) Let F(z) =

∑
r∈Zd arz

r be a Laurent series. Then the domain of conver-
gence of F has the formD = Relog−1(B) for some convex open set B ⊂ Rd.

(2) The function f defined by f (z) = F(z) for z ∈ D is analytic inD.
(3) Conversely, if B is an open convex subset of Rd and f (z) is an analytic

function on D = Relog−1(B) then there is a unique Laurent series F(z) ∈
LD(z) converging to f (z). For each r ∈ Zd, the coefficient ar = [zr]F(z)
is given by the Cauchy integral

ar =
(

1
2πi

)d ∫
Relog−1(x)

f (z)z−r−1 dz (6.1)
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for any x ∈ B.

Proof To be given after Exercise 6.1 below. □

Theorem 6.4 allows us to define multiplication in LD(z) using multiplication
of analytic functions: if ι is the identification map from LD(z) to the space of
analytic functions on D then ι is invertible, and for G,H ∈ LD(z) we set
G ·H := ι−1(ι(G) · ι(H)). Similarly, if Q is everywhere nonvanishing onD then
there is a unique Laurent series identified with the analytic function 1/Q(z).
We may therefore identify a quotient of Laurent polynomials P(z)/Q(z) with
a unique convergent Laurent series by specifying a point w ∈ Cd

∗ such that Q
does not vanish on T(w) or, equivalently, a point x ∈ Rd such that Q does not
vanish on Te(x) = Relog−1(x).

Exercise 6.1. Let f (x, y, z) = 1/(1−x−y−z) and let B be a small neighborhood
of the point (0, 0, 2). Find a Laurent series for f converging on Relog−1(B).
Hint: You can make 1/z, x/z and y/z simultaneously less than 1/3 on Relog−1(B).

Theorem 6.4 is classical, but a complete proof is difficult to find in the liter-
ature so we provide one here. The technicalities that arise are not essential to
one’s understanding of analytic combinatorics, and the proof may be skipped
on a first reading without much worry.

Proof of Theorem 6.4
Our argument requires the development of a few well-known facts about series
of analytic functions.

Proposition 6.5. If ( fk) is a sequence of analytic functions on a domain U ⊂
Cd and fk converges uniformly to a function f then f is analytic.

Proof Let p ∈ U and let D,T ⊂ Cd be a polydisk and torus around p with
radii r ∈ Rd

>0 such that D ⊂ U. Without loss of generality, we may assume
that p = 0. If w ∈ D then the multivariate Cauchy Integral Formula for power
series (Proposition A.28 in Appendix A) implies

f (w) = lim
k→∞

fk(w) = lim
k→∞

(
1

2πi

)d ∫
T

fk(z)
(z1 − w1) · · · (zd − wd)

dz

=

(
1

2πi

)d ∫
T

lim
k→∞

fk(w)
(z1 − w1) · · · (zd − wd)

dz

=

(
1

2πi

)d ∫
T

f (z)
(z1 − w1) · · · (zd − wd)

dz ,
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where the interchange of limit and integral is permissible because the fact that
fk(z) → f (z) uniformly for z ∈ T implies fk(z)

(z1−w1)···(zd−wd) →
f (z)

(z1−w1)···(zd−wd)
uniformly for z ∈ T . Expanding the final integrand as a series in z gives

f (z)
(z1 − w1) · · · (zd − wd)

=
∑
i∈Nd

f (z)
z1 · · · zd

(
w1

z1

)i1

· · ·

(
wd

zd

)id

,

which converges absolutely and uniformly for z ∈ T since |wk | < rk = |zk | for
each k. Thus, for all w ∈ D we obtain the convergent series expansion

f (w) =
(

1
2πi

)d ∫
T

∑
i∈Nd

f (z)
z1 · · · zd

(
w1

z1

)i1

· · ·

(
wd

zd

)id
 dz

=
∑
i∈Nd

( 1
2πi

)d ∫
T

f (z)z−i−1dz

wi.

□

Remark 6.6. If f (z) is analytic at w and T is a sufficiently small torus around
w then induction from the univariate setting implies(

1
2πi

)d ∫
T

f (z)
(z1 − w1)i1+1 · · · (zd − wd)id+1 dz

=
1

i1!

(
1

2πi

)d−1 ∫
T ′

(∂i1
z1 f )(w1, z2, . . . , zd)

(z2 − w2)i2+1 · · · (zd − wd)id+1 dz

...

=
(∂i1

z1 · · · ∂
id
zd f )(w)

i1! · · · id!
,

where T ′ is the projection of T onto its last d− 1 coordinates and (as usual) ∂zk

denotes the partial derivative ∂/∂zk.

Proposition 6.7 (identity theorem). If f and g are analytic functions on a
connected domain D ⊂ Cd which agree on an open subset of D then they agree
on all of D.

Proof Let K ⊂ D be the interior of the set where f and g agree. It is sufficient
to show J = K ∩D equals K, since then K is open and closed in the connected
set D, meaning K = D. To that end, pick z0 ∈ J and ε > 0 sufficiently small
so that the polydisk of radius (ε, . . . , ε) is contained in D. Since z0 ∈ K there
exists a point z ∈ K contained in the polydisk of radius (ε/2, . . . , ε/2) centered
at z0. Then f and g are analytic and agree in a neighborhood of z, so partial
derivatives of all orders exist for each function at z0 and each function is equal
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to its power series expansion at z. Because the domains of convergence for
these power series contain z0, the functions f and g agree at z0 so z0 ∈ K.
Since z0 ∈ J was arbitrary, J equals K as desired. □

Proposition 6.8 (logarithmic convexity of domains of convergence). Let F(z) =∑
r∈Zd arzr be a Laurent series with domain of convergence D. Then D =

Relog−1(B) for some open convex set B ⊂ Rd.

Proof Convergence depends on z only through the moduli of the compo-
nents, hence D is invariant under any rotation map z j 7→ eiθz j. The domain of
convergence is thus the union of tori T(w) = Te(Relogw) and therefore equal
to Relog−1(B) for some B ⊂ Rd. We claim that the open set B is the interior of

S =
{
x ∈ Rd : sup

r∈Zd
|ar |er·x is finite

}
.

First, if z ∈ Relog−1(x) and
∑

r∈Zd |arzr | =
∑

r∈Zd |ar |er·x converges then
supr∈Zd |arer·x| is finite, so x ∈ B implies x ∈ S and (since it is open) B is
contained in the interior of S .

Now, suppose that x lies in the interior of S . Because we are considering ab-
solute convergence, we may split our series into 2d subseries depending on the
signs of its indices. In particular, using the notation v ⊙w = (v1w1, . . . , vdwd)
for coordinatewise vector product, we have∑

r∈Zd

|ar |er·x ≤
∑

σ∈{±1}d

∑
s∈Nd

|aσ⊙s| e(σ⊙s)·x ,

where the inequality reflects the fact that we have duplicated terms with indices
equal to zero (this simplifies notation and does not affect our argument as we
only need an upper bound). Because x lies in the interior of S , for fixed σ ∈

{±1} and ε = (ε, . . . , ε) for sufficiently small ε > 0 there exists some C > 0
such that ∑

s∈Nd

|aσ⊙s| e(σ⊙s)·x =
∑
s∈Nd

|aσ⊙s|e(σ⊙s)·(x+σ⊙ε) e−s·ε

≤ sup
r∈Zd
|ar |er·(x+σ⊙ε) ·

∑
s∈Nd

e−s·ε

<
C

(1 − e−ε)d .

In particular, if x lies in the interior of S then
∑

r∈Zd |ar |er·x is finite, so x ∈ B
and we have proven that B equals the interior of S . Furthermore, if x,y ∈ S



156 Laurent series, amoebas, and convex geometry

then for any λ ∈ [0, 1]

sup
r∈Zd
|ar |er·(λx+(1−λ)y) ≤ sup

r∈Zd
|ar |λeλ(r·x) · sup

r∈Zd
|ar |1−λe(1−λ)(r·y)

is finite, so λx + (1 − λ)y ∈ S and S is convex. Since B is the interior of S , it
is also convex. □

Proposition 6.9 (uniqueness of expansion). Let
∑

r∈Zd arz
r be a Laurent se-

ries converging uniformly to zero on the torus Relog−1(x). Then ar = 0 for all
r ∈ Zd.

Proof Assume without loss of generality that x = 0, so that
∑

r∈Zd areir·y →

0 uniformly for y ∈ [−π, π)d. For any fixed r ∈ Zd, uniform convergence
implies

ar =
∑
s∈Zd

1
(2πi)d

∫
Te(x)

asei(s−r)·y dy

=
1

(2πi)d

∫
Te(x)

e−ir·y ·
∑
s∈Zd

aseis·y dy

→
1

(2πi)d

∫
Te(x)

0 dy

= 0 ,

as desired. □

We have now proven most of Theorem 6.4: part (1) is Proposition 6.8, while
part (2) follows from Proposition 6.5 because ι(F) is the uniform limit of the
series of partial sums. Uniqueness in part (3) is given by Proposition 6.9, so it
remains only to prove that (6.1) defines a Laurent series F(z) =

∑
r∈Zd arzr

converging uniformly to f .
By analyticity, the integral (6.1) defining ar is independent of the value of

x ∈ B defining the chain of integration Te(x). Following an argument anal-
ogous to the proof of Proposition 6.8 above, for ε > 0 sufficiently small
there exists a neighborhood N(x) of x in Rd and constant C > 0 such that
|arz

r | ≤ C exp(−ε|r|) for any z ∈ Te(x′) with x′ ∈ N(x). If K ⊂ B is any
compact set, covering it with finitely many neighborhoods N(x) shows that
such a bound holds for all z ∈ Relog−1(K). In particular, the series F converges
uniformly on compact subsets ofD, so it is sufficient to prove that ι(F) = f on
a collection of sets with nonempty interior coveringD.

Let B′ =
∏d

j=1[log a j, log b j] be a product of closed rectangles with nonempty
interior strictly contained in B. Proposition A.29 in Appendix A gives a repre-
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sentation

f (w) =
(

1
2πi

)d ∑
η∈{a,b}d

sgn(η)
∫

Tη

f (z)
(z1 − w1) · · · (zd − wd)

dz (6.2)

for all w ∈ Relog−1(B′), where Tη = Relog−1(r) with rk = ak if ηk = a and
rk = bk if ηk = b. Since ak < |wk | < bk for all k, we have the series expansions

1
zk − wk

=


−

∑
n<0

zn
kw−n−1

k if |zk | = |ak |∑
n≥0

z−n−1
k wn

k if |zk | = |bk |
.

In particular, each summand in (6.2) is a distinct Laurent series in w uniformly
converging on compact subsets and, taking the sgn(η) coefficient into account,
we obtain the desired representation

f (w) =
∑
r∈Zd

(
1

(2πi)d

∫
Te(x)

f (z)z−r−1
)
wr

for w ∈ B′. By independence of the Cauchy integral on the point x in B, this
holds for all x ∈ B. □

Example 6.10. For d = 1, we obtain the classical representation

f (w) =
1

2πi

∫
γ2

f (z)
z − w

dz︸               ︷︷               ︸
f2(w)

−
1

2πi

∫
γ1

f (z)
z − w

dz︸               ︷︷               ︸
f1(w)

where γ1 and γ2 are the inner and outer boundaries of an annulus A = {z : ea ≤

|z| ≤ eb}, the point w ∈ A, and the analytic function f is represented by the
convergent series

∑
n∈Z anzn on A. The function f2(w) is analytic on the disk of

radius eb while the function f1(1/w) is analytic on the disk of radius e−a, so
f2(w) =

∑
n≥0 anwn while f1(w) = −

∑
n≤−1 anwn. ◁

6.2 Polynomial amoebas

If f (z) is a Laurent polynomial then the algebraic hypersurface or algebraic
variety defined by f is the zero set V( f ) = {z ∈ Cd

∗ : f (z) = 0}. The amoeba
of f is the set

amoeba( f ) :=
{
Relog z : z ∈ Cd

∗ and f (z) = 0
}
⊂ Rd

consisting of the image under Relog of the nonzero points in the algebraic
hypersurface defined by f .
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Amoebas provide a crucial tool for the study of convergent Laurent expan-
sions because they live in real space (which is much easier to picture than
complex space) and, as we will see in Theorem 6.18 below, the connected
components of amoeba( f )c = Rd \ amoeba( f ) are convex sets corresponding
to the convergent Laurent expansions of 1/ f (z).

Example 6.11. The amoebas of f (x, y) = 2−x−y and f (x, y) = (3−2x−y)(3−
x − 2y) are shown in Figure 6.1; note that the amoeba of a product is the union
of amoebas. Algorithms for drawing amoebas are discussed in Chapter 8. ◁

Figure 6.1 Left: amoeba(2− x−y) with the components of its complement. Right:
amoeba((3 − 2x − y)(3 − x − 2y)).

Exercise 6.2. Identify the convergent Laurent expansions corresponding to the
connected components B1, B2, and B3 of amoeba(2 − x − y) shown on the left
side of Figure 6.1.

Exercise 6.3. Use the definition of an amoeba to transform the sketch of
amoeba(2 − x − y) in Figure 6.1 into a sketch of amoeba(2 − x − y2).

In order to study the connected components of amoeba( f )c, we introduce
some terminology.

Definition 6.12 (Newton polytopes). The convex hull hull(A) of a subset
A ⊂ Rd is the smallest convex set in Rd containing A. The convex hull of A
equals the convex hull of its extreme points: those points x ∈ A which do
not lie in the interior of any line segment contained in A. A polytope P is the
convex hull of any finite set E ⊂ Rd and the vertices of a polytope P are the
extreme points of hull(E). If f (z) is a Laurent polynomial then the support
of the Laurent polynomial f is the (finite) set of exponents of the monomials
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appearing in f , and the Newton polytope N f of f is the convex hull of its
support,

N f := hull
{
r ∈ Zd : arz

r is a nonzero monomial of f
}
.

We now fix a Laurent polynomial f (z) =
∑

i aiz
i. The order map ν :

amoeba( f )c → Rd sends a point x ∈ amoeba( f )c to the vector ν(x) with
kth coordinate

ν(x)k =
1

2πi

∫
|zk |=exk

fzk (e
x1 , . . . , zk, . . . , exd )

f (ex1 , . . . , zk, . . . , exd )
dzk,

where (ex1 , . . . , zk, . . . , exd ) denotes the vector z with z j = ex j for j , k.

Remark 6.13. Recall that if g is any univariate meromorphic function inside
and on a contour γ, with no zeros or poles on γ, then the classical argument
principle from complex analysis states that (counting with multiplicity) the
number of zeros of g inside γ minus the number of poles of g inside γ equals

1
2πi

∫
γ

g′(z)
g(z)

dz.

In particular, 1
2πi

∫
γ

g′(z)
g(z) dz is an integer so the order map sends amoeba( f )c to

Zd.

Exercise 6.4. Use Cauchy’s residue theorem to prove the argument principle.

Exercise 6.5. Prove that for any x ∈ amoeba( f )c,

ν(x)k =
1

(2πi)d

∫
Relog−1(x)

zk fzk (z)
f (z)

dz
z1 · · · zd

.

Note that the order map is continuous, and hence constant on the connected
components of amoeba( f )c, so the order of a component of amoeba( f )c is
well-defined. The order map was introduced by Forsberg et al. [FPT00] as
a multivariate generalization of the argument principle. Our treatment of the
order map closely follows the arguments given in [FPT00].

Lemma 6.14. If x ∈ amoeba( f )c and s ∈ Zd \ {0} then s · ν(x) equals the
number of zeros of as(w) = f (p1ws1 , . . . , pdwsd ) inside the unit circle |w| = 1
minus the order of the pole of as(w) at the origin, where p ∈ Cd

∗ is any point
with x = Relog(p).
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Proof The argument principle implies that the number of zeros of as(w) in-
side the unit circle minus the order of the pole of as(w) at the origin equals

1
2πi

∫
|w|=1

d
dw as(w)
as(w)

dw.

By Exercise 6.16 below, the image of |w| = 1 under the change of variables
z = (p1ws1 , . . . , pdwsd ) is homotopic to the chain of integration s1γ1+· · ·+sdγd,
where γk = {(p1, . . . ,w, . . . , pd) : |w| = |pk |}. Thus, the difference of zeros and
poles is

d∑
k=1

sk

2πi

∫
γk

d
dw as(w)
as(w)

dw =
d∑

k=1

sk

2πi

∫
|zk |=|pk |

fzk (p1, . . . , zk, . . . , pd)
f (p1, . . . , zk, . . . , pd)

dzk

=

d∑
k=1

sk

2πi

∫
|zk |=exk

fzk (e
x1 , . . . , zk, . . . , exd )

f (ex1 , . . . , zk, . . . , exd )
dzk

=

d∑
k=1

skν(x)k

as claimed, where the first equality follows from the chain rule, and the second
follows from the expression for the order map in Exercise 6.5. □

Lemma 6.14 is powerful as it allows us to characterize the order map using
the roots of a univariate polynomial; it forms the basis for all of the results
about the order map that we require.

Corollary 6.15. The image of amoeba( f )c under the order map lies in the
Newton polytope of f .

Exercise 6.6. Prove Corollary 6.15 by showing that s · ν(x) ≤ max
n∈N f

(s · n) for

all s ∈ Zd \ {0}.

Corollary 6.16. If x and x′ lie in distinct components of amoeba( f )c then
ν(x) , ν(x′).

Proof Writing x′ = x + ts for some s ∈ Zd \ {0} and t > 0, we have

s · ν(x′)

= # zeros of f (ex1+ts1 ws1 , . . . , exd+tsd wsd ) inside |w| = 1 minus pole order at 0
= # zeros of f (ex1 ws1 , . . . , exd wsd ) inside |w| = et minus pole order at 0
> # zeros of f (ex1 ws1 , . . . , exd wsd ) inside |w| = 1 minus pole order at 0
= s · ν(x′),

where the inequality follows from the fact that there is at least one root of
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f (ex1 ws1 , . . . , exd wsd ) with 1 < |w| < et since x and x′ lie in different compo-
nents of amoeba( f )c. Thus ν(x′) , ν(x). □

Corollaries 6.15 and 6.16 imply that we can uniquely identify the Laurent
expansions of 1/ f (z) with integer points in the Newton polytope of f .

Figure 6.2 Left: The Newton polytope of (3 − 2x − y)(3 − x − 2y) = 9 − 9x −
9y + 2x2 + 5xy + 2y2. Right: Drawing of amoeba((3 − 2x − y)(3 − x − 2y)), whose
complement contains a connected component for each integer point of the Newton
polytope.

It is of great interest to know which elements ofN f ∩Z
d correspond to Lau-

rent expansions of 1/ f (z). In general this is a very difficult question, however
in one important case we can be definitive.

Corollary 6.17. If v ∈ N f ∩Z
d and there exists x ∈ amoeba( f )c such that

|avzv | >
∣∣∣∣ f (z) − avz

v
∣∣∣∣

whenever z ∈ Te(x) then the Laurent series

1
f (z)

=
1

avzv

∑
k≥0

(
avz

v − f (z)
avzv

)k

(6.3)

has domain of convergence Relog−1(B) for the component B ⊂ amoeba( f )c

with order v. In particular, the vertices of N f are contained in the image of
amoeba( f )c under the order map.

Proof The Laurent series (6.3) converges in a neighborhood of Te(x) as a ge-
ometric series with ratio less than one, meaning it has domain of convergence
Relog−1(B) for the component B ⊂ amoeba( f )c containing x. If s is any vector



162 Laurent series, amoebas, and convex geometry

Figure 6.3 Sketch of amoeba(1 − 4xy + x3 + y3).

in Zd \ {0}, then Rouché’s theorem implies

s · ν(x) = # zeros − # poles of f (p1ws1 , . . . , pdwsd ) inside |w| = 1

= # zeros − # poles of avpvws·v inside |w| = 1

= s · v.

Since this holds for all s ∈ Zd \ {0}, we see that ν(x) = v.
If v is a vertex of N f then there exists r ∈ Rd such that v · r > w · r for all

w , v in the support of f . When p = etr for t > 0 the term |avp
v | = |av |et(v·r)

grows exponentially faster, as t → ∞, than |awpw | = |aw |et(w·r) for all w , v

in the support of f . In particular, when t is sufficiently large then p = etr

satisfies |avzv | >
∣∣∣∣ f (z) − avzv

∣∣∣∣ for all z ∈ T(p). □

Summarizing our results, we have shown the following.

Theorem 6.18. The connected components of amoeba( f )c are convex subsets
of Rd in one-to-one correspondence with the convergent Laurent expansions
of 1/ f (z). The order map sends each component of amoeba( f )c to a different
element of N f ∩Z

d and every vertex of N f lies in the image of amoeba( f )c.

Exercise 6.7. Figure 6.3 displays amoeba(1−4xy+x3+y3). Use Corollary 6.17
to prove algebraically that the amoeba complement contains a bounded com-
ponent and find its order. Prove that for N ≥ 0 the coefficient of xNyN in the
Laurent expansion of F(x, y) = 1/(1 − 4xy + x3 + y3) corresponding to the
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bounded component has the (convergent) infinite series representation

[xNyN]F(x, y) = −
∑
k≥0

4−2N+3k+3 (2N + 3k + 2)!
k! (N + k + 1)!2 .

Give as simple a formula as you can for the coefficient of xNyN in this Laurent
expansion when N < 0.

6.3 Convex cones and exponential bounds

Let f (z) =
∑

r∈Zd arzr be any convergent Laurent series with domain of con-
vergence D = Relog−1(B). The coarsest asymptotic information about the co-
efficients {ar} is their exponential rate of growth (or decay) when r → ∞ in
different directions. Recall the notation |r| = |r1| + · · · + |rd |.

Definition 6.19. A sequence {rn} = r1, r2, . . . in Zd goes to infinity in the
direction r̂ if |rn| → ∞ and rn/|rn| → r̂. We often drop the subscript n,
writing r → ∞ to denote a sequence going to infinity and using shorthand like
limr→∞ p(r) for an expression limn→∞ p(rn) involving a function p : Rd → R.

In the univariate case one can only move forwards or backwards on the real
line, however in multivariate cases there are many directions to study. Typi-
cally the asymptotic behavior of ar changes in a predictable manner with the
direction of a limit r → ∞, however this is not always the case. It can there-
fore be useful to consider both the exponential growth in a fixed direction, and
a smoothed version that can be easier to compute.

Definition 6.20. The (limsup logarithmic) growth rate of a sequence ai in the
direction r̂ is the quantity

β(r̂) := lim sup
s→∞
s/|s|=r̂

1
|s|

log |as|,

while the (limsup logarithmic) neighborhood growth rate of ai in the direction
r̂ is

β(r̂) := lim sup
s→∞

s/|s|→r̂

1
|s|

log |as|.

The (neighborhood) growth rate of a generating function is the (neighborhood)
growth rate of its coefficient sequence.
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Example 6.21. The growth rate of the power series expansion of

f (x, y) =
x − y

1 − x − y
=

∑
r,s≥0

[(
r + s − 1

s

)
−

(
r + s − 1

r

)]
xrys .

in the direction r̂ = (1, 1) is −∞, because an,n = 0 for all n ≥ 0, however the
neighborhood growth rate in the direction r̂ is log 2. For instance, |an,n+k |

1/n →

2 as n→ ∞ whenever k , 0 is a fixed integer. ◁

Computing the growth rate of a multidimensional sequence can be difficult,
however it is possible to bound the growth rate using the behavior of f on
its domain of convergence D. For any w ∈ D, bounding the Cauchy integral
expression

|ar | =

∣∣∣∣∣∣∣
(

1
2πi

)d ∫
T(w)

f (z)z−r−1 dz

∣∣∣∣∣∣∣
by the maximum modulus of its integrand times the surface area of its domain
of integration gives

|ar | ≤ |w
−r | · max

z∈T(w)
| f (z)|. (6.4)

The dual rate of f overD (or B) is the quantity

β∗(r̂) := inf
z∈D
−r̂ · Relog(z) = inf

x∈B
−r̂ · x . (6.5)

Optimizing (6.4) over w ∈ D implies

lim sup
r→∞

|ar |1/|r| ≤ inf
w∈D
|w|−r̂ , (6.6)

so that

β(r̂) ≤ β(r̂) ≤ β∗(r̂) (6.7)

for any direction r̂.

Remark 6.22. Equation (6.7) is the multivariate analogue of relationship (3.5)
between the radius of convergence of a univariate power series and exponential
growth, however in the multivariate case we get an inequality instead of an
equality. The dual rate is an example of a Legendre transform (see the notes at
the end of this chapter).

Remark 6.23. To compute β∗(r̂) it is sufficient to minimize the function |z|r̂

on the closure D. Writing z = x + iy for real variables x and y implies
|z|2v = (x2

1 + y2
1)v1 · · · (x2

1 + y2
d)vd for any v ∈ Rd. Thus, if r̂ has positive rational

coordinates and f represents a rational function then (potentially after taking
powers of some variables to remove fractional powers) we can represent the
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problem of minimizing |z|r̂ on D as a polynomial optimization problem over
a semialgebraic domain. Computing such a minimizer can be done algorithmi-
cally, although in general it is extremely expensive. See [Las15] for a detailed
account of such optimization problems, and computationally feasible relax-
ations.

Because B is an open convex set in Rd, either β∗(r̂) = −∞ of the infimum
in (6.5) is achieved by taking x to a point on the boundary ∂B. In the rest of this
section we examine what happens when β∗(r̂) = −∞, while the next section
studies the case when β∗(r̂) is finite.

Proposition 6.24. Let f (z) = P(z)/Q(z) be a ratio of polynomials P and Q.
If r1, r2, . . . is a sequence of vectors in Zd going to infinity in the direction
r̂ ∈ Rd and the set {−r̂ · x : x ∈ B} is unbounded from below then arn = 0 for
all but finitely many n.

Proof If the linear function −r̂ ·x is unbounded from below on B then, since
P and Q are polynomials, we can find a sequence of points {xk} in B and a
polynomial p(x) such that −r̂ · x ≤ −k and

| f (z)| ≤ p(ek) on Relog−1(xk).

Because rn/|rn| = r̂ + o(1) we have |z−rn | = |e−x·rn | ≤ e−k(|rn |+o(|rn |)) when
z ∈ Relog−1(x), so the maximum modulus bound (6.4) implies

|arn | ≤ p(ek) exp
[
− k(|rn| + o(|rn|))

]
.

If n is sufficiently large then |rn|+o(|rn|) is positive and the upper bound on the
right-hand side goes to zero as k → ∞. Since this bound holds for all k ∈ N, it
follows that arn is zero for all sufficiently large n. □

Remark 6.25. If f (z) is a ratio of analytic functions with a Laurent series
converging on D = Relog−1(B) and −r̂ · x is unbounded from below on B
then the function p giving an upper bound on | f (z)| may no longer be poly-
nomial, and thus the coefficients arn may not be eventually be zero. However,
our argument still proves that the coefficients decay faster than any exponen-
tial function in n. The methods of ACSV we develop are not concerned with
this super-exponential regime, and if the reader encounters such a situation we
recommend trying direct application of the multivariate saddle point methods
described in Chapter 5.

Proposition 6.24 describes the extreme behavior that occurs when {−r̂ · x :
x ∈ B} is unbounded from below, and it is natural to wonder when such behav-
ior can occur. Serendipitously, the connection between the Newton polytope
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Figure 6.4 A convex set (light gray) with three selected boundary points. Parts
of the corresponding tangent cones (facing into the set) and normal cones (facing
away from the set) are displayed. Note that the rightmost normal cone is a one-
dimensional line. The recession cone of this set is {0} since the set is bounded.

of Q and the components of amoeba(Q)c described in Theorem 6.18 above
can be strengthened to help provide such information. In order to state this
relationship we need some additional terminology.

Definition 6.26. Let B be a convex set. A convex cone is a subset of Rd that is
closed under addition and closed under multiplication by positive scalars. The
recession cone of B is the set of vectors {v ∈ Rd : x+v ∈ B for all x ∈ B} and
the (open) tangent cone to B at x ∈ B is

tanx(B) = {s ∈ Rd : x + εs ∈ B for all sufficiently small ε > 0}.

The tangent cone is a generalization of the tangent space of a manifold to
spaces with singularities. The (closed) normal cone to B at x ∈ B is

normalx(B) = {s ∈ Rd : s · x ≥ s · b for all b ∈ B} .

See Figure 6.4 for an illustration of these concepts.

Exercise 6.8. If K is an open convex cone in Rd then its dual cone K∗ ⊂ Rd

is the set of vectors {s ∈ Rd : s · x ≥ 0 for all x ∈ K}. Prove the following
statements.

a) The recession cone, tangent cone, and normal cone are convex cones.
b) Let K and L be open convex cones. Then (K ∩ L)∗ = hull(K∗ ∪ L∗) and if

K ⊂ L then K∗ ⊃ L∗.
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c) Every open convex cone is the intersection of all open half-spaces that con-
tain it.

d) After a translation by x, the tangent cone to B at x is the interior of the
intersection of all halfspaces that contain B and have x on their boundary.

e) If x is an interior point of B then normalx(B) = {0}.
f) The normal cone is the dual cone to the negative of the tangent cone,

normalx(B) = (− tanx(B))∗ .

The result we need comes from the following correspondence.

Proposition 6.27. Let f be a Laurent polynomial and let x be a point in a
component B of amoeba( f )c. Then the recession cone of B equals the normal
cone of N f at ν(x).

Proof Let s ∈ Zd \ {0}. By definition, the ray {x + ts : t > 0} stays in B
if and only if all zeros of f (p1ws1 , . . . , pdwsd ) lie inside |w| = 1 for all p ∈
Relog−1(x), and Lemma 6.14 implies this occurs if and only if s · ν(x) equals
the total number of zeros of as(w) = f (ex1 ws1 , . . . , exd wsd ) in the complex plane
minus the order of the pole of as(w) at the origin. Since as(w) has degree
maxn∈N f (s · n), it follows that

s is in the recession cone of B

if and only if {x + ts : t > 0} ⊂ B for all x ∈ B

if and only if s · ν(x) = max
n∈N f

(s · n) for all x ∈ B

if and only if s ∈ normalν(p)

(
N f

)
,

proving the desired equivalence. □

Exercise 6.9. Prove that the order of any bounded component of amoeba( f )c

is an interior point of N f , then prove that the recession cone of a component
of amoeba( f )c has non-empty interior if and only if its order is a vertex ofN f .

Proposition 6.27 allows us to read off properties of the components of the
complement amoeba( f )c directly from the Newton polytope of f . It also has
strong implications for the asymptotic behavior of sequences with multivariate
rational generating functions.

Corollary 6.28. Assume the hypotheses of Proposition 6.24 and let x ∈ B. If
the ray {ν(x)+ tr̂ : t > 0} does not intersectNQ then arn = 0 for all but finitely
many n.

Proof See Exercise 6.17. □
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Figure 6.5 Left: The Newton polytope of 1 − x − y with the normal cones at each
vertex. Right: A drawing of amoeba(1 − x − y) with the recession cones of each
component of the complement added.

Corollary 6.29. Let f (z) be a rational function and let {rn} be a sequence of
vectors in Zd going to infinity in the non-zero direction r̂ ∈ Rd. Then there
is a component B of amoeba( f )c such that the convergent Laurent expansion
f (z) =

∑
r∈Zd arzr with domain of convergence D = Relog−1(B) has arn = 0

for all but finitely many n.

Proof For any non-zero vector r̂ ∈ Rd there exists a vertex n ∈ N f such
that {n + tr̂ : t > 0} does not intersect N f (any of the vertices of N f on
the hyperplane touching the boundary of N f with outward normal r̂ have this
property). The desired result then follows from Corollary 6.28 where B is the
component of amoeba( f )c with order n, whose existence is guaranteed by The-
orem 6.18. □

Corollary 6.29 turns out to be crucial to our framework for ACSV. Roughly,
we represent a sequence of interest as a Cauchy integral then move the point
x in the domain of integration Relog−1(x) from its starting component of
amoeba( f )c to another component, picking up a residue integral over an in-
tersection cycle along the way. By moving x into a component where series
coefficients are eventually zero, we only need to approximate the residue in-
tegral, which can be done using saddle point techniques. Fully describing this
argument takes up the majority of Chapter 7.
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6.4 Singularities, amoeba boundaries and minimal points

Let f (z) =
∑

r∈Zd arzr be any convergent Laurent series representing an ana-
lytic function f in the domain of convergenceD = Relog−1(B). In this section
we use the analytic behavior of f (z) to study what happens when the dual rate
β∗(r̂) in the upper bound (6.7) is finite.

Definition 6.30. A point w ∈ Cd is a singularity of f if f can be analytically
continued to an open set O ⊂ Cd with w on its boundary but cannot be analyti-
cally continued to w. The set of all singularities of f forms its singular variety
V .

Although Definition 6.30 is stated for general Laurent series, in this text we
almost always consider Laurent expansions of rational functions, in which case
it is easy to characterizeV.

Lemma 6.31. If f (z) = P(z)/Q(z) is a ratio of coprime polynomials P and Q
then the singular variety of f isV = {z ∈ Cd : Q(z) = 0}.

Proof Let w ∈ Cd be any point such that Q(w) = 0. Our stated result holds if
every neighborhood of w in Cd contains a point p with P(p) , 0 and Q(p) = 0,
since then | f (z)| is unbounded in any neighborhood of w. The existence of p
follows from the fact that the intersection of algebraic varieties VP ∩ VQ has
codimension at least two since P and Q are coprime (if Q is irreducible and
P vanishes on a neighborhood of w ∈ VQ then P vanishes on all of VQ, and
thus is in the ideal generated by the radical of Q and not coprime to Q — if Q
is reducible then apply this argument to its irreducible factors). □

See also Melczer [Mel21, Proposition 3.2] for an elementary proof of Lemma
6.31 using the division algorithm.

Remark 6.32. If f (z) is a meromorphic function (i.e., can be locally rep-
resented by the ratio of analytic functions on its domain) then w ∈ Cd is a
singularity of f when there exist analytic functions g and h defined in a neigh-
borhood N of w such that f (z) = g(z)/h(z) on the points of N where f is
defined, h vanishes at w, and g does not identically vanish in any sufficiently
small neighborhood of w. In particular, the singular variety of a meromorphic
function forms an analytic variety. Note that, in contrast to the univariate case,
it is possible for g to vanish at w.

The singular variety of f is defined by its analytic behavior, independent of
its various Laurent expansions. In order to discuss the singularities that are rel-
evant to a specific expansion, we thus need further restrictions. First, we show
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that every point on the boundary of a Laurent series domain of convergence
has the same coordinatewise modulus as a singularity of f .

Proposition 6.33. If w ∈ ∂D then T(w) ∩ V , ∅. Conversely, if p ∈ D
and w ∈ V, and T(z) ∩ V = ∅ for all z in the open line segment between
(|p1|, . . . , |pd |) and (|w1|, . . . , |wd |), then w ∈ ∂D.

Proof (First statement) For simplicity we first prove the result for power se-
ries expansions, then note how the argument changes for the general Laurent
series case. Towards a contradiction, suppose that w ∈ ∂D and T(w)∩V = ∅.
The Cauchy integral expression

ar =
(

1
2πi

)d ∫
T (y)

f (z)z−r−1 dz (6.8)

holds for all y ∈ D and is unchanged if we move y through points where
T(y) ∩ V = ∅. In particular, if T(w) ∩ V = ∅ then for some ε > 0 we
have T(y) ∩ V = ∅ whenever |yk − wk | < 2ε for all k = 1, . . . , d and (6.8)
holds with y = w + ε1. A maximum modulus bound then gives ar ≤ C|w1 +

ε|−r1 · · · |wd +ε|
−rd for some C > 0 and all r ∈ Nd. Our proof of Proposition 6.8

above showed thatD is the interior of{
z ∈ Cd : sup

r∈Nd
|ar | · |z|

r is finite
}

and ar ≤ C|w1 + ε|
−r1 · · · |wd + ε|

−rd implies the supremum is finite for all z
in a neighborhood of w, contradicting that w ∈ ∂D. In the general Laurent
series case, we need to take the sign of the coordinates of r into account. In
particular, we want to prove that

sup
r∈Zd
|ar | · |z|

r = sup
σ∈{±1}d

sup
r∈Nd
|aσ⊙r | · |z|

σ⊙r

is finite for all z in some neighborhood of w, where as above we use the
notation σ ⊙ r = (σ1r1, . . . , σdrd). For fixed σ ∈ {±1}d we apply a maximum
modulus bound to (6.8) with y = w + εσ to get

aσ⊙r ≤ C|w1 + σ1ε|
−σ1r1 · · · |wd + σdε|

−σdrd

for some C > 0 and all r ∈ Nd, and thus

aσ⊙r |z|σ⊙r ≤ C
(

|z1|

|w1 + σ1ε|

)−σ1r1

· · ·

(
|zd |

|wd + σdε|

)−σdrd

. (6.9)

For z in a sufficiently small neighborhood of w in Cd, each term on the right-
hand side of (6.9) is less than 1 if it has a positive power, and greater than 1 if it
has a negative power, so the supremum over all r ∈ Nd is finite. This holds for
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all σ ∈ {±1}d, and once again we have shown z ∈ D for z in a neighborhood
of w, contradicting w ∈ ∂D.

(Second statement) As in the proof of the first statement, if T(z)∩V = ∅ for
all z in the open line segment between (|p1|, . . . , |pd |) and (|w1|, . . . , |wd |) then
all points on this line segment lie in D, so w ∈ D. Since w ∈ V we cannot
have w ∈ D, and thus w ∈ ∂D. □

The singularities on the boundary of the domain of convergence of a Laurent
expansion are very important to the asymptotic analysis of the corresponding
series coefficients.

Definition 6.34 (minimal points). A point w ∈ V is called a minimal point
with respect to the Laurent expansion f (z) =

∑
r∈Zd arz

r (or the domain of
convergence D, or the convex set B) if w ∈ V ∩ ∂D. Equivalently, w ∈ V is
minimal when Relog(w) ∈ ∂B. We further say w is a finitely minimal point if
T(w) ∩ V is finite, and a strictly minimal point if T(w) ∩ V is the singleton
{w}.

Example 6.35. Let 0 < p < 1 and define

Q1(x, y) = 1 − x − y σ1 = (p, 1 − p)

Q2(x, y) = 1 − x2 − y σ2 =
( √

1 − p, p
)

Q3(x, y) = 1 − xy σ3 = (p, 1/p).

Consider σk with respect to the power series expansion of 1/Qk(x, y). Then σ1

is a strictly minimal point since |x + y| < |x| + |y| unless x is a nonnegative real
multiple of y, and σ is the only point on T(σ) ∩VQ1 satisfying that condition.
Similarly, σ2 is a finitely minimal point, but it is not strictly minimal because(
−

√
1 − p, p

)
∈ VQ2 . Finally, σ3 is minimal but it is not finitely minimal as

(pω, 1/(pω)) lies in T(σ3) ∩VQ3 whenever |ω| = 1. ◁

Proposition 6.33 allows us to test minimality.

Corollary 6.36 (minimality test). If y ∈ D then w ∈ V is minimal if and only
if the open line segment

{t Relog(y) + (1 − t) Relog(w) : t ∈ (0, 1)}

from Relog(y) to Relog(w) stays in B. If we consider the power series expan-
sion of f , then w is minimal if and only if T(tw) ∩V = ∅ for all t ∈ (0, 1).

Proof The first statement follows from the convexity of B and the fact that w
is minimal if and only if Relog(w) ∈ ∂B. The second condition follows from
Proposition 6.33: since 0 lies in the power series domain of convergence, if
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Figure 6.6 V does not intersect the open polydisk with the large torus on its
boundary.

T(tw) ∩ V = ∅ for all t ∈ (0, 1) then w is minimal, and if w is minimal then
no point with coordinatewise smaller modulus can lie inV. □

Although the hypotheses of Corollary 6.36 can be checked computationally,
this requires one to decide the satisfiability of inequalities involving the moduli
of coordinates, which is computationally expensive (see Chapter 8 for further
discussion on algorithms to certify minimality). Luckily, there is one special
case that occurs often in applications and greatly simplifies the analysis.

Definition 6.37. A combinatorial series is a Laurent series
∑

r∈Zd arz
r such

that ar ≥ 0 for all but a finite number of r ∈ Zd.

Proposition 6.38 (multivariate Vivanti-Pringsheim). Let f (z) =
∑

r∈Zd arzr

be a convergent combinatorial power series expansion with domain of conver-
gence D. Then w ∈ V∗ is a minimal point if and only if (|w1|, . . . , |wd |) is also
a minimal point (and, in particular, lies inV∗).

Proposition 6.38 is a multivariate generalization of the classical univariate
case [FS09, Theorem IV.6], and is proved analogously.

Proof Towards a contradiction, suppose that w ∈ ∂D∩Rd
>0 and f is analytic

at w. Then there exists some ε > 0 such that f is analytic in ball of radius 4dε
centered at w. The Taylor expansion of f at v = w − ε1 is

f (z) =
∑
r∈Nd

f (r)(v)
r!

(z − v)r ,

where r! = r1! · · · rd!. Differentiating the power series expansion of f at the
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origin, which is valid when z = v ∈ D, gives

f (r)(v)
r!

=
∑
s∈Nd

(
s

r

)
asv

s−r

where
(
s
r

)
= s!

r!(s−r)! if si ≥ ri for all 1 ≤ i ≤ d and 0 otherwise, so

f (z) =
∑
r∈Nd

∑
s∈Nd

(
s

r

)
asvs−r(z − v)r. (6.10)

By construction the expansion (6.10) is valid at z = w+ε1 = v+2ε1, meaning

f (w + ε1) =
∑
r∈Nd

∑
s∈Nd

(
s

r

)
asvs−r(2ε1)r

=
∑
s∈Nd

as
∑
r∈Nd

(
s

r

)
vs−r(2ε1)r

=
∑
s∈Nd

as(v + 2ε1)r,

where we can exchange the infinite series in r and s because all coefficients
as are nonnegative. This series converges, so T(v + 2ε1) = T(w + ϵ1) ⊂ D,
contradicting the fact that w ∈ ∂D. □

Proposition 6.38 is valid for ordinary power series, without regard to the type
of singularity. The proof for polar singularities is even easier, and generalizes
to Laurent expansions.

Exercise 6.10. Let f (z) =
∑

r∈Zd arz
r be a convergent combinatorial Laurent

expansion that represents a meromorphic function on its domain of conver-
gence D. Prove that w ∈ V∗ is a minimal point if and only if (|w1|, . . . , |wd |)
is also a minimal point. Hint: First prove that | f (z)| ≤ f (|z1|, . . . , |zd |) for all
z ∈ D.

Combining this result with Proposition 6.33 immediately gives the following
simplified test for minimality in the rational combinatorial case.

Corollary 6.39 (combinatorial minimality test). Let B be a component of
amoeba(Q)c and f (z) = P(z)/Q(z) be the ratio of coprime polynomials P
and Q with combinatorial series expansion onD = Relog−1(B). If x ∈ D then
w ∈ V is minimal if and only if

Q
(
|x1|

t |w1|
1−t, . . . , |xd |

t |wd |
1−t

)
, 0 for all t ∈ (0, 1).

When considering the power series expansion of f (z), the point w ∈ V is
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minimal if and only if

Q
(
t|w1|, . . . , t|wd |

)
, 0 for all t ∈ (0, 1).

Remark 6.40. When f is a ratio of fixed analytic functions P and Q on D,
Corollary 6.39 can be adapted to give an analogous test for minimality, once
a notion of coprime germs of analytic functions is defined. Of course, compu-
tation is generally harder when dealing with analytic functions because tech-
niques for solving polynomial systems cannot be applied.

Proof Proposition 6.38 and Corollary 6.36 imply that for a combinatorial
expansion w is minimal if and only if(

et log |x1 |+(1−t) log |w1 |, . . . , et log |xd |+(1−t) log |wd |
)
< V

for t ∈ (0, 1) and, in the power series case, if and only if
(
t|w1|, . . . , t|wd |

)
< V

for t ∈ (0, 1). The stated conclusion then follows from Lemma 6.31. □

Perhaps surprisingly, it is an open question even in the univariate case whether
determining combinatorality of a rational function is decidable. In practice,
most multivariate generating functions we encounter are combinatorial, al-
though there are many examples with combinatorially interesting nonnegative
coefficients on a diagonal and negative coefficients in off-diagonal terms. In
some circumstances, the structure of the function under consideration can also
help characterize minimality.

Lemma 6.41. Let f (z) = P(z)/Q(z) be the ratio of coprime polynomials P
and Q, where Q(z) = 1 − q(z) for a combinatorial polynomial q such that
q(0) = 0. Then the following statements hold for the power series expansion of
f .

a) Every root of Q with positive coordinates is a minimal point ofV.

b) If z is a minimal point then so is (|z1|, . . . , |zd |).

c) If q is aperiodic (meaning every element of Zd can be written as an integer
sum of the exponents appearing in q) then the only minimal points of f are
the roots of Q with positive coordinates (and thus each is strictly minimal).

Proof Part (b) follows from Proposition 6.38 applied to 1/Q(z). For the other
parts, note that by assumption we can write q(z) =

∑
r∈Nd qrzr where each

qr ≥ 0. Suppose that w is a root of Q and with positive coordinates and let z
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be any point with the same coordinate-wise modulus. Then

|q(t|z1|, . . . t|zd |)| = |q(tw)| =
∑
r∈Nd

art|r|wr <
∑
r∈Nd

arw
r

= q(w)

= 1

for t ∈ (0, 1), so w is minimal by Corollary 6.39. Furthermore, if q is aperiodic
and z has the same coordinate-wise modulus as a minimal point w but does
not have positive coordinates then the arguments of monomials zr appearing
in q(z) are not all equal, and the triangle inequality implies

|q(z)| =

∣∣∣∣∣∣∣∑
r∈Nd

qrzr

∣∣∣∣∣∣∣ < ∑
r∈Nd

qrwr = q(w) = 1,

so z is not minimal. □

Remark 6.42. When f is a ratio of coprime analytic functions P and Q on
D, where Q(z) = 1 − q(z) for a combinatorial power series q, then the results
of Lemma 6.41 still hold. Without aperiodicity, w may not even be finitely
minimal, as the periodic example q(x, y) = 1 − xy illustrates.

Lemma 6.43 (Grace-Walsh-Szegő theorem). Let Q(z) be a polynomial in
C[z] such that Q is invariant under permuting its variables and is linear in
each variable. If Q(w) = 0 for some w ∈ Cd with |w1|, . . . , |wd | < R then
Q(x, x, . . . , x) = 0 for some |x| < R.

Proof This classical lemma is proved, among other places, in Theorem [BB09,
Theorem 1.1]. It also follows from the Borcea-Brändén symmetrization lemma,
which we return to in Theorem 13.8 of Chapter 13. □

Exercise 6.11. Let Q(z1, z2, z3, z4) = 3− z1 − z2 − z3 − z4 + z1z2z3z4. Determine
whether (1, 1, 1, 1) is a minimal point for Q by using the Grace-Walsh-Szegő
theorem. As a challenge you can also try to prove minimality from first princi-
ples, but this is quite tricky.

Returning to our original motivation, we care about minimal points because
they provide the best upper bound in the exponential growth bound (6.6). A
supporting hyperplane to a convex set C at y ∈ C is a hyperplane through y

such that all elements of C lie on one side of the hyperplane; a normal v to
such a supporting hyperplane is an inward-facing normal if (x−y) ·v ≥ 0 for
all x ∈ C and an outward-facing normal if (x − y) · v ≤ 0 for all x ∈ C (one
of these conditions must be true). The logarithmic gradient of a differentiable
function Q at w ∈ Cd is the vector (∇log Q)(w) = (w1Qz1 (w), . . . ,wdQzd (w)).
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Theorem 6.44. Let f (z) = P(z)/Q(z) be the ratio of coprime polynomials
P,Q ∈ R[z] with series expansion f (z) =

∑
r∈Zd arzr on the domain of con-

vergenceD = Relog−1(B).

a) Let r̂ ∈ Rd \ {0}. If the minimum of −r̂ · x over x ∈ B is finite then it is
achieved by x = Relog(w) for a minimal point w ∈ Cd

∗ and there exists a
supporting hyperplane to B at Relog(w) with outward normal r̂.

b) If w ∈ Cd
∗ is a minimal point then (∇log Q)(w) = λv for some λ ∈ C∗ and

v ∈ Rd. If v , 0 then the hyperplane through Relog(w) with normal v
is a supporting hyperplane to B. If v is an outward-facing normal for this
supporting hyperplane then x = Relog(w) achieves the minimum of −v ·x
on B (if v is an inward-facing normal then the maximum of −v · x on B is
achieved at this point).

The contour of an amoeba amoeba(Q), denoted C(Q), is the collection of
points in VQ ∩ C

d
∗ where ∇log Q is a multiple of a real vector. Theorem 6.44

implies all boundary points of amoeba(Q) lie in the contour which, as we will
see in Chapter 8, can be useful for sketching amoebas.

Proof Part (a) follows from the fact that on the closed convex set B the linear
function −r̂ ·x is either unbounded from below or achieves its minimum on at
least one point y ∈ ∂B, which by Proposition 6.33 corresponds to at least one
minimal point. If r̂ is not an outward-facing normal to a supporting hyperplane
of B through y then there exists b ∈ B with (b − y) · r̂ > 0, contradicting that
y minimizes −r̂ · x on B.

To prove part (b), let log : Cd
∗ → R

d be a branch of the logarithm log(z) =
(log(z1), . . . , log(zd)) and suppose w ∈ V ∩ Cd

∗ with (∇Q)(w) , 0. If w is a
minimal point then the tangent spaces to V and T(w) at w can’t jointly span
all of Cd as a 2d-dimensional real vector space. Thus, since the tangent space to
V has real dimension 2d− 2 and the tangent space to T(w) has real dimension
d, if w is minimal then the tangent spaces of V and T(w) at w intersect in a
subspace of dimension at least d − 1. This final condition is equivalent to the
tangent spaces of log(VQ) and log(T(w)) at log(w) intersecting in a subspace
of dimension at least d − 1. Because

log(T(w)) = {(log |w1| + iθ1, . . . , log |wd | + iθd) for all θ j ∈ (−π, π)} ,

the tangent space to log(T(w)) at log(w) is iRd ⊂ Cd, and w is a minimal
point only if the tangent space to log(VQ) contains d − 1 linearly independent
vectors in iRd. The tangent space to log(VQ) at log(w) is the hypersurface with
normal (∇log Q)(w) = a + ib for some a, b ∈ Rd. When (∇log Q)(w) is normal
to d − 1 purely imaginary vectors then the real matrix with rows a and b has
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r̂

Figure 6.7 The dual rate of an expansion is determined by a point on the boundary
of the amoeba where r̂ is the normal to a supporting hyperplane.

rank one, so b = τa for some τ ∈ R and (∇log Q)(w) = (1+iτ)a is a multiple of
a real vector. Thus (∇log Q)(w) is a multiple of a real vector v whenever w is
a minimal point with (∇Q)(w) , 0. If w is a minimal point with (∇Q)(w) = 0
then the same result holds with v = 0. If the real vector v is non-zero then it is
the normal vector to the tangent plane of a neighborhood of w inV under the
Relog map, meaning it is the normal to a supporting hyperplane of the convex
component B of amoeba(Q)c with w on its boundary. When v is an outward
normal then the point Relog(w) is a minimizer of −v · x on B for the same
reason as our argument in part (a). □

Theorem 6.44 will be used in later chapters to help guide deformations of
domains of integration for Cauchy integrals representing series coefficients of
interest. Unfortunately, even if the minimum of −r̂ · x over x ∈ B is finite and
achieved, the bound it gives on exponential growth may not be tight. There are
two main reasons for this: first, an amoeba is the “real shadow” of a variety
living in complex space, and the real picture may not capture what happens in
complex space; second, in non-generic cases the numerator polynomial P may
cause the coefficients to grow slower than expected in fixed directions, as we
saw already in Example 6.21.

Example 6.45. Let F = 1/Q(x, y) where Q is the product of Q1(x, y) = 3− x−
2y and Q2(x, y) = 3 + 2x + y. The amoeba of Q is the same as the amoeba of
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(3−2x−y)(3−x−2y) and is shown on the right-hand side of Figure 6.2. Consider
the main diagonal direction r̂ = (1/2, 1/2). On the component corresponding
to the power series expansion of F, the minimum of −r̂ · x over x ∈ B is 0,
occurring at x = (0, 0), however we will see in Chapter 10 that the growth rate
in this direction is log(8/9), not 0. Replacing Q2 by the polynomial 3 − 2x − y
does yield a growth rate of 0 (in fact, this growth rate holds for an entire cone of
directions containing r̂). The reason for this difference is that in the first case
the points on the lines defined by Q1 and Q2 that map to (0, 0) under Relog
have different signs, so the amoeba intersection does not reflect an intersection
of varieties, while in the second case both lines contain the point (1, 1). ◁

6.5 Additional constructions

We end this chapter by defining some additional constructions that will be
required in Chapters 10 and 11.

Definition 6.46. If f : Cd → C is analytic at w ∈ Cd then the order of
vanishing of f at w is

deg( f ,w) := sup
{
n ∈ N : f (w + z) = O(|z|n) as |z| → 0

}
,

and the homogeneous part hom( f ,w) of f at w is the sum of all terms of
degree deg( f ,w) in the power series for f (w + z) at z = 0, so

f (w + z) = hom( f ,w)(z) + O
(
|z|deg( f ,z)+1

)
.

The algebraic tangent cone of f at w is the set

algtanw( f ) = Vhom( f ,w).

When w = 0 we omit w from the notation and write hom( f ) = hom( f , 0).

Remark. The algebraic tangent cone is not always a cone. For instance, if
f (x, y) = xy then the algebraic tangent cone Vxy is the union of the x and y
axes.

A more geometric definition of the algebraic tangent cone is that it consists
of lines through x that are the limits of secant lines through x. Thus, for a unit
vector u the line x + tu lies in the algebraic tangent cone if there are points
xn ∈ V f distinct from but converging to x for which (xn−x)/||xn−x|| → ±u.
Equivalence of the two definitions follows from our next result, which we state
after introducing some new terminology.
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Figure 6.8 The real parts ofV andVε with ε = 1/10.

Definition 6.47. If (X, d) is a metric space then the Hausdorff metric ρ on
compact subsets of X is defined stepwise by

d(x,Y) = inf
y∈Y

d(x, y) (x ∈ X and Y ⊂ X)

d(Z,Y) = sup
z∈Z

d(z,Y) (Z,Y ⊂ X)

ρ(Z,Y) = max{d(Z,Y), d(Y,Z)} (Z,Y ⊂ X).

Lemma 6.48 (algebraic tangent cone is the limiting secant cone). Let Q(z)
be a polynomial vanishing to degree m ≥ 1 at the origin. Define the m-
homogeneous part A(z) = hom(Q), the remainder

R(z) = Q(z) − A(z)

and, for ε > 0, the scaled polynomial Qε(z) = ε−mQ(εz). If Vε denotes the
intersection of the zero set of Qε with the unit sphere S 1 and V0 denotes the
intersection of the zero set of A with S 1 thenVε →V0 in the Hausdorff metric
as ε→ 0.

Example 6.49. Let Q(x, y) = x3 − xy+ y3, which vanishes to order m = 2. The
leading homogeneous part is A(x, y) = −xy, the remainder is R(x, y) = x3 + y3,
and Qε(x, y) = ε(x3 + y3) − xy. Figure 6.8 shows V and Vε for ε = 1/10,
illustrating thatVε is close to the union of the x and y axesV0 = VA. ◁

Proof On any compact set, including S 1, the rescaled remainder ε−mR(εz)
goes to zero uniformly. If zn → z and zn ∈ V1/n then, for each n,

|A (zn)| =
∣∣∣Q1/n (zn) − R1/n (zn)

∣∣∣ = ∣∣∣R1/n (zn)
∣∣∣→ 0 ,
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so A(z) = 0 by the continuity of A. Thus, any limit point of Vε as ε → 0 lies
inV0.

Conversely, fix a unit vector z ∈ V0. The homogeneous polynomial A is not
identically zero, therefore there is a projective line along which A has a zero
of finite order k at z. Let γ : C → S 1 denote any analytic curve through z

along which A has a zero of finite order at z. The univariate analytic function
γ ◦Qε converges uniformly to γ ◦ A, and Hurwitz’s Theorem [Con78b, p. 152]
implies that for ε sufficiently small it has k zeros of Qε converging uniformly
to z as ε→ 0. In particular, z is a limit point ofVε as ε→ 0. □

Exercise 6.12. Is it true that the algebraic tangent cone Vhom( f ,z) is always
homeomorphic toV f within a sufficiently small ball around z?

Finally, let A be a homogeneous polynomial with square-free part Ã (equal
to the product of the distinct irreducible factors of A), so VA = VÃ but VA is
locally a manifold near any point where the gradient of Ã doesn’t vanish. Any
hyperplane Hn = {z ∈ C

d : z ·n = 0} through the origin can be identified with
its normal n, viewed as an element in complex projective space CPd−1. We say
the hyperplane Hn is a tangent hyperplane to VA if n = (∇Ã)(w) for some
zero w of A in CPd−1. The closure of all normals n to tangent hyperplanes
of VA in CPd−1 is an algebraic variety V∨A , called the projective dual variety
to A. In generic situations V∨A is defined by the vanishing of a homogeneous
polynomial A∗, called the algebraic dual polynomial to A.

Example 6.50. If A(x, y, z) = x2 + y2 + z2 then (X,Y,Z) ∈ V∨A if and only if
(X,Y,Z) = λ∇A(x, y, z) = λ(2x, 2y, 2z) and x2 + y2 + z2 = 0 for some (x, y, z) ∈
VA and λ , 0. Eliminating x, y and z from these equations gives X2/4λ2 +

Y2/4λ2 + Z2/4λ2 = 0, so the algebraic dual of A(x, y, z) is A∗(X,Y,Z) = X2 +

Y2 + Z2. ◁

Exercise 6.13. Prove that if A is a nonsingular quadratic form A(z) = zT Mz

then A∗ is the quadratic form A∗(Z) = ZT M−1Z.

Exercise 6.14. Find the algebraic dual to A(x, y, z) = xy.

Notes

Perhaps the earliest use of amoebas is the algebraic work of Bergman [Ber71],
although their application to the problems considered here, along with the
coinage of the term amoeba, is generally credited to Gelfand, Kapranov and
Zelevinsky [GKZ08]. That seminal text on discriminants devotes much of its
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Chapter 6 to amoebas and Newton polytopes. The development of basic re-
sults on amoebas [GKZ08, Section 6.1] begins by quoting without proof some
basic facts about Laurent series akin to Theorem 6.4. The reference they give,
namely [Kra01], proves these only for ordinary power series, and the result-
ing wild-goose chase led us to write down a more complete development
(the first author learned much of the material used in our proofs while sit-
ting in on a graduate course at the University of Pennsylvania given by L.
Matusevich in Fall 2004). Additional background material on amoebas can be
found in [FPT00; Mik00; The02; Mik04; dWol13; dWol17; Tim18; For+19].
As noted above, our treatment of the order map and connections between the
Newton polytope and amoeba complement components is heavily based on
Forsberg et al. [FPT00]. Exercise 6.16 is taken from Rudin [Rud69, Theo-
rem 4.6.2]. Our proof of Theorem 6.44(b) is inspired by Mikhalkin [Mik00;
Mik04].

A good part of the theory of amoebas of algebraic hypersurfaces goes through
for analytic hypersurfaces. This and its applications to statistical physics, for
example, make up the content of [PPT13]. Because the theory of amoebas of
analytic hypersurfaces is still being formed, we mostly avoid its use.

The Legendre transform (or convex dual) of a convex function f : Rd → R

is the function f ∗ : (Rd)∗ → R defined by

f ∗(v) = sup
x∈Rd

⟨v,x⟩ − f (x) ,

which satisfies the duality relation f ∗∗ = f — see, e.g., [Roc66], where f ∗

is also called the convex conjugate of f . Legendre transforms are intimately
connected with exponential rates of growth and decay. For example, in prob-
ability theory the large deviation rate function f (λ), defined as the Legendre
transform of the logarithm of the moment generating function, gives the rate of
exponential decay of the probability of the mean of n IID variables to exceed
λ. In our setting, the dual rate β∗(r) = infx∈B −r · x from (6.5) is the negative
of the Legendre transform of the convex function that is 1 on B and∞ on Bc.

Additional exercises

Exercise 6.15. Give a simple necessary condition on f for amoeba( f ) to fail
to be strictly convex (in other words, for amoeba( f ) to be flat by containing a
line segment in its boundary).

Exercise 6.16. If α, β : [0, 1]→ C2
∗ are curves with α(0) = α(1) = β(0) = β(1)

then the product loop α#β : [0, 1]→ C2
∗ obtained by following α and then β is
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defined by

(α#β)(t) =

α(2t) : 0 ≤ t ≤ 1/2

β(2t − 1) : 1/2 ≤ t ≤ 1
.

If α(t) = (a1(t), a2(t)) and β(t) = (b1(t), b2(t)) then the Hadamard loop α ⊙ β :
[0, 1] → C2

∗ obtained by coordinatewise product is defined by (α ⊙ β)(t) =(
a1(t)b1(t), a2(t)b2(t)

)
.

a) Prove that α⊙β is homotopic to [α#u]⊙ [u#β], where u is the constant curve
u(t) = (1, 1).

b) Prove that [α#u] ⊙ [u#β] = [α ⊙ u]#[u ⊙ β].
c) Fix a, b ∈ Z and let p1, p2 : [0, 1] → C2

∗ be the curves p1(t) = (ea2πit, 1) and
p2(t) = (1, eb2πit). Prove that the image of w = e2πit under the map (wa,wb)
is homotopic to p1#p2.

Exercise 6.17. Use Propositions 6.27 and 6.24 to prove Corollary 6.28.

Exercise 6.18. Let P be a d-dimensional polytope with integer vertices and let
f (z) =

∑
m∈P cmzm where cm = exp(−λ|m|2).

(a) Show that if λ > 0 is sufficiently large then there is some x = x(m) ∈ Rd

such that

cm exp(m · x) ≥
∑
m′∈P
m′,m

cm′ exp(m′ · x) .

(b) Conclude that x(m) is not in amoeba( f ).
(c) Show that each x(m) is in a separate component of amoeba( f )c as m

varies over P, establishing that for every polytope with integer coordinates
there is a polynomial whose amoeba complement has a component for
every integer point of the polytope.

Exercise 6.19. Prove that if λ is sufficiently large in Exercise 6.18 then the
boundary ∂ amoeba( f ) equals the contour C( f ). (Be warned this is difficult.)
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Overview of analytic methods for multivariate
generating functions

We now return to the problem at the heart of this book: asymptotically ap-
proximating the coefficients of a convergent Laurent series expansion F(z) =∑

r∈Zd arzr through the Cauchy integral representation

ar =
(

1
2πi

)d ∫
T
z−r−1F(z) dz , (7.1)

for a suitable domain of integration T . We accomplish this by deforming T
and using residue computations to reduce the Cauchy integral into a finite sum
of local integrals that can be asymptotically approximated using the results of
Chapter 5. When this approach succeeds, which it does in generic situations,
it provides asymptotic formulae of the form

ar ≈
∑

w∈critical(r̂)

nwΦw(r) , (7.2)

where the sum is over a finite set of certain critical points w, each Φw is
an asymptotic series that can be computed to any desired accuracy algorith-
mically, and the coefficients nw are integers that may or may not be easy to
compute.

This textbook is designed so that combinatorialists can find easy-to-apply
results with hypotheses and conclusions that are comprehensible with a mini-
mum of cross-referencing to lengthy definitions, while readers with topologi-
cal background can see the larger framework behind the results using advanced
methods, such as those described in Chapters 4 – 6 and the appendices. In or-
der to achieve this goal, the current chapter gives an overview of our approach
and its relationship to the higher-level theories we draw on. Chapter 8 takes a
computational view of the same material, giving explicit descriptions of how
to compute the quantities appearing in the analysis using a computer algebra
system. This material out of the way, Chapters 9 – 11 give our asymptotic
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results for families of generating functions with increasingly complicated sin-
gular behavior, together covering most known examples of rational generating
functions in the combinatorial literature. Chapter 12 then gives a large variety
of examples and applications before Chapter 13 describes further extensions.

In order to guide intuition and introduce the high-level constructions to be
used in later chapters of the book, the current chapter begins by sketching the
analysis on some examples, showing how the computations in the simplest
case are a straightforward generalization of the univariate methods from Part I,
describing the limits of these methods, and illustrating why we require more
advanced techniques for our strongest results. After this we introduce the al-
gebraic and topological constructions necessary for our work, and prove the
theoretical results underpinning later chapters.

The computation of asymptotics is considerably simpler, and easier to ex-
plain, when the set of singularitiesV of F is smooth (meaning it is a manifold,
at least near points dictating asymptotics). Before going into technical details,
we illustrate the smooth case through extended examples in Section 7.1. Read-
ers who want to understand the method but not the details can quit after the
examples and skip to Chapters 8 and 9. In Section 7.2 we describe the theory
whenV is smooth, allowing readers to understand the smooth point formulae
of Chapter 9 without the greater overhead of stratified Morse theory.

Section 7.3 gives a parallel treatment of everything in the previous sections,
without the assumption that V is smooth. This involves the introduction of
stratified Morse theory to explain the corresponding notions of critical points
and quasi-local cycles for non-smooth varieties. The quasi-local cycles are de-
fined in terms of the tangential cycles γ j and homology generators β j for the
normal link at z j. Section 7.4 discusses the types of singular geometry that
arise frequently in combinatorial applications.

The results of (stratified) Morse theory describe the topology of a surface
using a height function mapping the surface to the real numbers. In classi-
cal Morse theory this height function is almost always assumed to be proper,
meaning the set of points with heights in a closed interval forms a compact
set. Unfortunately, we work in situations where the height function is usually
non-proper. To get around this difficulty, Section 7.5 introduces the concept of
critical points at infinity (CPAI) and critical values at infinity (CVAI), which
help characterize when the results of Morse theory we need apply without an
assumption of a proper height function. A fundamental lemma is stated con-
cerning the existence of certain deformations, provided there are no critical
values at infinity, and its proof is cited from the literature. This lemma is then
used to prove the theorems previously stated in the chapter.
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Notational conventions
For the rest of this book we use the following notational conventions. Bold
quantities are reserved for vectors, such as z = (z1, . . . , zd), and we define z◦ :=
(z1, . . . , zd−1). The d-variate function F(z) is a quotient of coprime polynomials
P(z)/Q(z), with the denominator Q vanishing on the singular variety V =
VQ = {z ∈ C

d : Q(z) = 0}. We fix a component B of the complement of
amoeba(Q) and consider the Laurent series expansion F(z) =

∑
r∈Zd arz

r

that converges on D = Relog−1(B). As in previous chapters, for w ∈ Cd
∗ we

use the notation T(w) for the torus T(w) = {z ∈ Cd : |z j| = |w j| for all j}.
The simplest and most common case, of a convergent power series expansion,
occurs when B is the component containing points of the form (−N, . . . ,−N)
for N sufficiently large, so thatD is a neighborhood of the origin.

Remark 7.1. Although we mainly study rational generating functions, most
of our results also hold for meromorphic functions. We point out as we go
which major results still hold for meromorphic functions, and the small ways
in which they differ from the rational case.

Given r ∈ Zd the d-form ω = z−r−1F(z)dz is the integrand of the Cauchy
integral (7.1), with domain of analyticityM = Cd

∗ \V. Unless otherwise stated,
we write |r| for the ℓ1-norm |r| =

∑d
j=1 |r j| and as above define the normalized

vector r̂ = r/|r|. We seek to compute asymptotics for the series coefficients
ar as r → ∞ with r̂ varying over a compact set, typically around some fixed
direction.

7.1 Some illustrative examples

Example 7.2 (Binomial Coefficients). We start with perhaps the simplest non-
trivial bivariate rational function for our purposes: F(x, y) = 1/Q(x, y) with
Q(x, y) = 1 − x − y. The amoeba of Q is pictured in Figure 7.1 (see Chapter 8
for methods to compute amoebas). Because there are three components in the
amoeba complement, there are three convergent Laurent series expansion of
F(x, y). Consider the power series expansion F(x, y) =

∑
i, j≥0

(
i+ j

i

)
xiy j, corre-

sponding to the component of the amoeba complement that lies in the third
quadrant. Since

∑
i, j≥0

∣∣∣∣∣∣
(
i + j

i

)
xiy j

∣∣∣∣∣∣ = ∑
i, j≥0

(
i + j

i

)
|x|i|y| j =

1
1 − |x| − |y|

, (7.3)
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Figure 7.1 Amoeba of the function 1 − x − y.

this series expansion has domain of convergence D = {(x, y) ∈ C2 : |x| + |y| <
1}. For any a, b ∈ (0, 1) with a + b < 1 we can write

(
i + j

i

)
=

1
(2πi)2

∫
T(a,b)

1
1 − x − y

dxdy
xi+1y j+1

=
1

(2πi)2

∫
T(a,b)

1
1 − x − y

e−ϕ(x,y) dxdy
xy

,

(7.4)

where ϕ(x, y) = i log x + j log y. We aim to use residue computations to reduce
the two-dimensional integral (7.4) to a one-dimensional integral over some
path in the singular set V = {(x, y) ∈ C2 : x + y = 1}, and then compute a
saddle point integral. Thus, we set y = 1 − x in ϕ(x, y) and solve for a saddle
point, where the first derivative of the function vanishes. The equation

0 =
d
dx
ϕ(x, 1 − x) =

i
x
−

j
1 − x

implies x = i/(i + j). Hence, we aim to determine asymptotic behavior by
studying the Cauchy integral near (x∗, y∗) = (i/(i + j), j/(i + j)) ∈ V. For
this discussion we fix positive integers r, s > 0 and derive asymptotics of the
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coefficient sequence (i, j) = n(r, s) as n→ ∞. To that end, define

I =
1

(2πi)2

∫
|x|=x∗

(∫
|y|=y∗−ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1

Iloc =
1

(2πi)2

∫
N

(∫
|y|=y∗−ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1

Iout =
1

(2πi)2

∫
N

(∫
|y|=y∗+ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1 ,

where N = {x ∈ C : |x| = x∗ and arg(x) ∈ (−δ, δ)} is any arbitrarily small
neighborhood of x∗ in the circle {|x| = x∗}. As we will see in Chapter 9, both
I − Iloc and Iout grow exponentially slower than I, so (7.4) implies(

nr + ns
rn

)
= I = Iloc − Iout + exponentially negligible term.

Thus, we can use the (univariate) residue theorem to approximate
(

nr+ns
rn

)
by

Iloc − Iout =
1

(2πi)2

∫
N

(∫
|y|=y∗−ε

1
1 − x − y

dy
yns+1 −

∫
|y|=y∗+ε

1
1 − x − y

dy
yns+1

)
dx

xnr+1

=
−1

(2πi)

∫
N

Res
y=1−x

y−ns−1

1 − x − y
dx

xnr+1

=
1

(2πi)

∫
N

dx
xnr+1(1 − x)ns+1 .

Making the change of variables x = x∗eiθ results in the saddle point integral

Iloc − Iout =
x−rn
∗ y−sn

∗

2π

∫ δ

−δ

A(θ)e−nϕ(θ),

where

A(θ) =
1

1 − x∗eiθ =
r + s

s
+ O(θ)

and

ϕ(θ) = r log(x∗eiθ)+ s log(1− x∗eiθ)−r log(x∗)− s log(y∗) =
r(r + s)

2s
θ2+O

(
θ3

)
.

Theorem 4.1 from Chapter 4 then gives an asymptotic expansion(
nr + ns

nr

)
=

( r + s
r

)rn ( r + s
s

)sn
n−1/2

( √
r + s

2rsπn
+ · · ·

)
.

◁
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The approach taken in Example 7.2 is known as the surgery method for
multivariate asymptotics. It works by performing an explicit deformation to
move the torus of integration in the Cauchy integral near a critical point, then
changing the radius in one coordinate to enclose singularities. The ordinary
(univariate) residue theorem, a localization argument, and the saddle point re-
sults from Chapters 4 and 5 then yield asymptotics.

Although this approach can be generalized successfully, as will be done in
Section 9.1 of Chapter 9, such explicit deformations require additional assump-
tions on the singularities where local behavior of F(z) determines asymptotics.
In particular, such singularities need to be minimal in the sense of Section 6.4,
meaning they lie on the boundary of the domain of convergence of the Lau-
rent expansion being considered. In fact, we require finite minimality, meaning
such singularities are minimal and only a finite number of other singularities
have the same coordinatewise modulus. Although this is usually not an unrea-
sonable assumption, in practice it can be very expensive to verify formally (see
Chapter 8 for more details).

Exercise 7.1. Suppose we perturb Example 7.2 by taking Qε(x, y) = 1 −
x − y − εy2 for some ε > −1. Let Dε = {(x, y) ∈ C2 : |x|, |y| < ρε} where
ρε =

(√
1 + ε − 1

)
/ε the positive root of Qε(x, x). When ε = 0, the function

1/Qε(x, y) is the function in (7.3), whose power series domain of convergence
contains D0 = {(x, y) ∈ C2 : |x|, |y| < 1/2}.

(a) As ε→ 0, determine the first two terms of the asymptotic behavior of ρε.
(b) When ε > 0, is there an easy way to see that 1/Q(x, y) is analytic on Dε?
(c) When −1 < ε < 0, can you show that 1/Q(x, y) is analytic on Dε?
(d) What can you say when ε ≤ −1?

We now study an example where the surgery method does not directly apply,
and sketch a more general topological method for multivariate asymptotics.
Although the topological method applies in a wider variety of situations, as its
name suggests it will require more advanced constructions from topology and
differential geometry. Our next example also illustrates how the topological
approach generalizes hands-on surgery in the smooth case to a topologically
characterized contour integration.

Example 7.3 (Non-Minimal Contributing Points). Consider the (1, 1)-diagonal
sequence an,n of the power series expansion

F(x, y) =
1

Q(x, y)
=

∑
i, j≥0

ai, jxiy j
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where Q(x, y) = (1 − x − y)(1 + 3x), so

ai, j =

i∑
k=0

(
k + j

k

)
(−3)i−k.

The singular set V = VQ is the union of the hyperplane V1−x−y from Exam-
ple 7.2 with the hyperplaneV1+3x. It contains the point (x∗∗, y∗∗) = (−1/3, 4/3)
on the intersection of the hyperplanes whereV is not a manifold.

SinceV still contains the hyperplaneV1−x−y, the point (x∗, y∗) = (1/2, 1/2)
identified in Example 7.2 is still of interest for the asymptotic analysis. Fur-
thermore, the topology ofV changes at the non-smooth point (x∗∗, y∗∗), so this
point is also of interest. The function ϕ(x, y) = log x + log y has non-vanishing
derivative when restricted to V1+3x, hence there are no other points where we
could restrict the Cauchy integrand to the singular variety and get a saddle
point integral.

As we will see later, asymptotics of the coefficient sequence an,n are still de-
termined by reducing to an integral near (x∗, y∗). However, unlike Example 7.2
we cannot simply move the contour of integration in the Cauchy integral

an,n =
1

(2πi)2

∫
|x|=ε1

∫
|y|=ε2

1
(1 − x − y)(1 + 3x)

dxdy
xn+1yn+1

to a torus {(x, y) : |x| = x∗, |y| = y∗ − ε} as we would cross the singular set
V at points where x = −1/3. To work around this, we expand y through the
singular variety, resulting in an integral over a tube aroundV1−x−y, reduce to an
integral on V1−x−y through a residue computation, and then move the contour
of integration to the saddle point.

For concreteness, we now take ε1 = ε2 = 1/10, although any positive values
satisfying 0 < ε1+ε2 < 1 and ε1 < 1/3 would work. Let T0 = {|x| = |y| = 1/10}
and, for any M > 0, define the map

KM : T0 × [0, 1]→ C2

(x, y, t) 7→ (x, y(1 + Mt)) .

Then KM is a homotopy from T0 to the torus T1 = {|x| = 1/10, |y| = (M+1)/10}.
As long as M > 10 then F(x, y) is analytic on T0 and T1, the image of KM does
not intersect the coordinate axes of C2, and this image intersects V in the set
C = {(x, 1 − x) : |x| = 1/10}. Furthermore, the image of KM intersects V
transversely, meaning the tangent planes of these sets jointly span C2 at their
common points. See Figure 7.2 for a visualization of the path of this homotopy
after taking the Relog map.

Because F(x, y) is analytic on C2 \ V, Stokes’s theorem (Theorem A.24 in
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Figure 7.2 The amoeba of (1 − x − y)(1 + 3x). We start by integrating over the
torus defined by |x| = 1/10 and |y| = 1/10 and expand |y| to (M + 1)/10 >

11/10, resulting in an integral over a tubular neighborhood ofV. Taking a residue
reduces to an integral over a curve lying on the hyperplane 1 − x − y = 0 then,
avoiding the set of points where 1 + 3x = 0, we slide this contour to a curve
near the point (1/2, 1/2) on V together with points that do not affect dominant
asymptotics.

Appendix A) implies that the Cauchy integral over the boundary of any 3-cycle
in C2

∗ \ V is zero. In particular,

∫
T0

F(x, y)
dxdy

xn+1yn+1 =

∫
ν

F(x, y)
dxdy

xn+1yn+1 +

∫
T1

F(x, y)
dxdy

xn+1yn+1 , (7.5)

where ν is a tubular neighborhood of C: the union of circles normal to the tan-
gent plane of V with centers at the points of C (see Figure 7.3). Furthermore,
because (7.5) holds for any M > 10, and

∫
T1

F(x, y)
dxdy

xn+1yn+1 = O
(
10n(M + 1)−n) ,
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Figure 7.3 A visualization of the tubular neighborhood ν.

taking M → ∞ shows that the integral over T1 is zero for n > 0, and thus

an,n =
1

(2πi)2

∫
ν

F(x, y)
dxdy

xn+1yn+1 =
1

(2πi)2

∫
ν

1
(1 − x − y)(1 + 3x)

dxdy
xn+1yn+1 .

The tubular neighborhood ν is the union of circles with centers on C, and each
point of C corresponds to a simple pole of F(x, y) where 1 − x − y = 0, so a
generalization of the classical univariate residue theorem implies

an,n =
1

2πi

∫
|x|=1/10

Res
y=1−x

1
(1 − x − y)(1 + 3x)

dx
xn+1yn+1

=
1

2πi

∫
|x|=1/10

1
1 + 3x

dx
xn+1(1 − x)n+1 .

(7.6)

As in the last example, the integrand of (7.6) becomes a saddle point integral
near x = 1/2. The difference is that while we previously used a residue to
localize near the saddle point, this time we took a more “convenient” residue
and obtained a univariate integral away from the saddle point. Because we
are dealing with an integrand having a linear denominator, we can move our
domain of integration to pass through the critical point without much difficulty.
We now describe three methods for doing this, listed in decreasing order of
explicitness but increasing order of generality.

Method One: Because the only singularity of the integrand in (7.6) between
the circles |x| = 1/10 and |x| = 1/2 occurs at x = −1/3, the domain of in-
tegration in (7.6) can be replaced by the union of the circle |x| = 1/2 and a
sufficiently small clockwise circle around x = −1/3 (see Figure 7.4 left). The
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|x| =
1

10

Figure 7.4 Left: The circle |x| = 1/10 can be expanded to |x| = 1/2 by intro-
ducing a circle around x = −1/3. This results in an extra residue integral which
is exponentially negligible. Right: Alternatively, we can expand from |x| = 1/10
to hit x = 1/2 while stopping the increase in an arbitrarily small circle around
x = −1/3.

residue theorem then implies

an,n =
1

2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1 +

1
2πi

∫
|x+1/3|=ε

1
1 + 3x

dx
xn+1(1 − x)n+1

=
1

2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1 − Res

x=−1/3
(x + 1/3)−1 1/3

xn+1(1 − x)n+1

=
1

2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1 −

1
3

(
9
4

)n+1

,

and a change of variables yields the saddle point approximation

an,n =
4n

2π

∫ π

−π

1
(1 + 3eiθ/2)(1 − eiθ/2)

e−niθ−n log(2−eiθ)dθ −
1
3

(
9
4

)n+1

=
4n

√
πn

(
2
5
+ O

(
1
n

))
.

Method Two: In general we cannot work around other singularities by tak-
ing residues in such an explicit manner. Although this means we cannot get
an explicit representation for error terms coming from other singularities, all
we really need to determine dominant asymptotics is to bound any potential
asymptotic contributions from these singularities. The only factor of the inte-
grand in (7.6) that depends on n is x−n(1− x)−n, so when n is large the modulus
of the integrand is well-approximated by enh(x) where

h(x) = − log |x| − log |1 − x|.
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Points with smaller height h make the integrand of (7.6) exponentially smaller,
so up to an exponentially negligible error we can ignore points with height
bounded below h(1/2) = log 4. Since h(−1/3) = log(9/4) we could proceed
by expanding the circle |x| = 1/10 to the circle |x| = 1/2 while stopping in
a tubular shape around x = −1/3 (see Figure 7.4 right). The integral over
the resulting curve can be truncated to a neighborhood of x = 1/2 in |x| =
1/2 while introducing an exponentially negligible error. The integral over this
neighborhood of x = 1/2 is again a saddle point integral.

Method Three: Although Method Two is more general than Method One,
it still requires that we know how to explicitly deform around V, which is
not always possible. We thus move to an even more general argument, which
will be fully described below. The key is to use the local geometry of V to
describe how to move the domain of integration |x| = 1/10 to heights below
h(1/2) = log 4, except in a neighborhood of x = 1/2, while avoiding V. This
is accomplished using a gradient flow. Writing x = a + ib for real variables a
and b, so that |x| =

√
a2 + b2, we see that

h(a, b) = h(a + ib) = − log
(
a2 + b2

)
/2 − log

(
(1 − a)2 + b2

)
/2.

We want to move an arbitrary point aθ+ ibθ = eiθ/10 on our starting circle |x| =
1/10 down to points on V of lower height with respect to h. Since (∇h)(a, b)
gives the direction of greatest increase of h, we want to locally move a point
(aθ, bθ) along the direction −(∇h)(aθ, bθ). In other words, we want to solve the
first-order differential system of equations(

a′θ(t)
b′θ(t)

)
= −∇h(aθ(t), bθ(t)), aθ(0) = cos(θ)/10, bθ(0) = sin(θ)/10

for aθ(t) and bθ(t). Figure 7.5 shows the trajectories of points under this (neg-
ative) gradient flow. Here it can be verified in a computer algebra system that
under the flow all points will go below height h(1/2) = log 4, except in a
neighborhood of x = 1/2. Near x = 1/2 the flow approaches a vertical line, ul-
timately resulting in a saddle point integral. The key reason this method can be
generalized is that techniques from Morse theory allow us to know when such
a flow exists, and characterize the resulting domains of integration, without
having to actually compute them.

◁

In our last example the non-smooth point did not affect dominant asymp-
totics, but this will not always be the case.

Example 7.4 (Dealing with Multiple Points). Consider now asymptotics in the
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Figure 7.5 Left: The gradient flow of |x| = 1/10 at three points in time, plotted on
C2 \ {0, 1} when arranged by height h(x) = h(a + ib). Right: The curves under the
flow plotted in the complex plane.

main diagonal direction r = (1, 1) of the power series expansion of F(x, y) =
1/Q(x, y) with Q(x, y) = (1 − x − y)(1 − 3x). The factor 1 − x − y is the same
as in the above examples, but having the second factor change from 1 + 3x to
1 − 3x moves the non-smooth point to (1/3, 2/3). Because the height h(x, y) =
− log x − log y is now larger at (1/3, 2/3) than (1/2, 1/2), we can no longer
easily rule out the non-smooth point. In fact, following Method One from the
last example shows

an,n =
1

2πi

∫
|x−1/3|=ε

1
1 − 3x

dx
xn+1(1 − x)n+1 +

1
2πi

∫
|x|=1/2

1
1 − 3x

dx
xn+1(1 − x)n+1

= Res
x=1/3

(x − 1/3)−1 1/3
xn+1(1 − x)n+1 +

1
2πi

∫
|x|=1/2

1
1 + 3x

dx
xn+1(1 − x)n+1

=
1
3

(
9
2

)n+1

+ O(4n).

More generally, ifV is no longer a manifold then we compute a Whitney strat-
ification, partitioningV into a finite collection of manifolds such that the local
geometry of V is consistent near the points in any fixed element of the par-
tition. We then perform an analysis similar to the smooth case on each of the
manifolds, obtaining a set of equations for each manifold that characterizes
the points of interest for our asymptotic calculations. The asymptotic contri-
bution of such a point depends on the geometry near the singularity. In this
text we study singularities where V is locally smooth (in Chapter 9), looks
like the union of hyperplanes (in Chapter 10), or looks like a cone point (in
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Figure 7.6 The gradient flow of |x| = 1/10 at three points in time, plotted on
C2 \ {0, 1} when arranged by height h(x) = h(a + ib). Left: The flow on V1−y−xy.
Right: The flow onV1−x−y−x2y.

Chapter 11). Studying flows on general algebraic varieties requires us to adapt
tools from stratified Morse theory. ◁

Exercise 7.2. Sketch the vector field −(∇ h)(a, b) on the right-hand side of
Figure 7.5.

Gradient flows form an important component of our analytic toolbox. In-
deed, rather than computing a flow for each example, standard results in Morse
theory usually guarantee the existence of flows that push domains of integra-
tion down to points where saddle point approximations can be computed. Un-
fortunately, these results require the height map to be proper (meaning that the
set of points with height in a closed interval is compact). Because this proper-
ness condition is usually not satisfied in our setting, it is possible for the desired
flows not to exist.

Example 7.5 (Critical Points at Infinity). Consider the diagonal sequences
an,n of the power series expansions of 1/A(x, y) and 1/B(x, y), where A(x, y) =
1−y− xy and B(x, y) = 1− x−y− x2y. The negative gradient flows of the circle
|x| = 1/10 on VA and VB are shown in Figure 7.6. Because y = 1/(x + 1) on
VA, the product xy = x/(x + 1) → 1 as x → ∞, and thus the height function
h(x, y) = − log |x|−log |y| → 0 as x→ ∞ onVA. Since h(x, y) can stay bounded
as (x, y) goes to infinity, the height function is not proper. As seen in the left
of Figure 7.6, the circle |x| = 1/10 stays at bounded height but never reaches a
saddle. In fact, VA contains no saddles, and we say that it has a critical point
at infinity.
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Similarly, because y = (1 − x)/(1 + x2) on VB, the height function h(x, y)
approaches zero as x → ∞ onVB. However, onVB the circle |x| = 1/10 does
flow to a saddle point of height greater than zero. Again we have a critical
point at infinity, but this time it is of lower height than an actual saddle point
on the variety. Thus, non-properness of the height function does not preclude
an asymptotic analysis, as we can ignore points of height bounded below the
saddle point if we care only about dominant asymptotic behavior. ◁

In Section 7.5 we discuss computable conditions, often satisfied in practice,
that imply the conclusions of Morse theory we require apply even without a
proper height function.

Exercise 7.3. Let Q(x, y) = 1− x−y− x2y2 and hr(x, y) = −r1 log |x|−r2 log |y|
be the height function corresponding to the r-diagonal sequence (ar1n, r2n).
Prove that when r = (2, 1) the height function hr(x, y) approaches a finite
limit as y → ∞ and x → 0, and evaluate the limit. Prove that when r = (1, 1)
the height function hr(x, y) has no finite limit as either x or y goes to infinity.

7.2 The smooth case

We now generalize the above argument to any rational function whose singular
varietyV is a complex manifold. The square-free part Q̃ of the polynomial Q
is the product of its distinct irreducible factors over the complex numbers, and
we say that Q is square-free if Q̃ = Q. We call z ∈ V a smooth point if ∇ Q̃(z)
is nonzero, and say that V is smooth if Q̃ and all its partial derivatives never
simultaneously vanish. The implicit function theorem implies that a smooth
singular variety can be viewed both as a (d−1)-dimensional complex manifold
and as a (2d − 2)-dimensional real manifold, and both of these viewpoints will
be beneficial. We introduce the square-free part of Q so that the converse also
holds.

Lemma 7.6. The inequality ∇ Q̃(z) , 0 holds for a point z ∈ VQ if and only
ifV is a smooth manifold in a neighborhood of z.

Proof Sketch The forward implication follows from the implicit function the-
orem. The converse, that ∇ Q̃(z) = 0 implies a geometric singularity, is harder
to prove. Let mx denote the maximal ideal of functions vanishing at x in the
ring of polynomial functions vanishing on V, and let nx denote the maximal
ideal of functions vanishing at x in the ring of germs of analytic functions at
x (as defined in Definition 10.42 below). Then ∇ Q̃(x) = 0 implies mx/m2

x

has dimension d rather than d− 1 (see [Sha13, Exercise 2.2 and Theorem 2.1])
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so that nx/n2
x has dimension d, and this property is invariant under bi-analytic

mapping. At any smooth point of a complex hypersurface there is a coordinate
neighborhood taking x to the origin and making the hypersurface into the coor-
dinate plane where z1 = 0. In this case n0/n2

0 has dimension d−1, which would
be a contradiction, hence V is not a complex manifold in a neighborhood of
x. A little more work showsV is not locally a C∞ manifold either. □

Our starting point, as always, is the multivariate Cauchy Integral Formula

ar =
(

1
2πi

)d ∫
T
z−r−1F(z) dz , (7.7)

which gives an exact representation for ar. We view this representation not as
a standard integral from multivariate calculus, but as the integral of the differ-
ential form ω = z−r−1F(z) dz over the d-chain T . The necessary background
on differential geometry and the basics of integration of forms is discussed in
Appendix A. Appendix B reviews concepts from algebraic topology, including
homology and cohomology classes. In particular, sinceM = Cd

∗ \V is the do-
main of holomorphicity for ω, the Cauchy integral depends only on the class
of T in the singular homology group Hd(M) and the class of ω in the singular
cohomology group Hd(M).

We break our argument into pieces, generally mirroring the final approach
to Example 7.3 above. In this chapter we mainly stick to theoretical consider-
ations; methods for computing the quantities that arise are discussed in Chap-
ter 8.

Step 1: Characterize critical points
We begin by defining the height function

hr(z) := −r · Relog z = −
d∑

j=1

r j log |z j| ,

which captures the magnitude of the Cauchy integrand∣∣∣z−r−1F(z)
∣∣∣ = e|r| hr̂ (z) ·

∣∣∣z−1F(z)
∣∣∣

as
∣∣∣z−1F(z)

∣∣∣ independent of |r|. The ordering hr gives to Cd
∗ does not change if

r is multiplied by a positive scalar, so our arguments about the height function
will hold whenever r is replaced by any positive multiple. This invariance
property means that an analysis of ar as r → ∞ with r̂ = r/|r| converging to
some fixed r̂∗ can usually be accomplished with the fixed height function hr̂∗ .
In particular, if r̂∗ is a fixed direction and hr∗ (x) < hr∗ (y) then, as r → ∞ with
r̂ → r∗, the Cauchy integrand is exponentially smaller at z = x than at z = y.
When r is understood we write simply h for hr.
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Definition 7.7. A smooth critical point z of the rational function F = P/Q in
the direction r̂ is a smooth point ofV∗ that is a critical point of hr̂ : V∗ → R as
a smooth mapping of real manifolds. The set of critical points in the direction
r̂ is denoted by critical(r).

The height function hr̂ is the real part of (a branch of) the analytic function
ϕ(z) = −r · log z, and the Cauchy-Riemann equations imply that the critical
points of F in the direction r̂ can also be computed as the critical points of
ϕ : V∗ → C as a (locally) holomorphic mapping of complex manifolds. In
particular, we have the following explicit definition of smooth critical points.

Lemma 7.8. Assume thatV is a smooth manifold and let Q̃ be the square-free
part of the denominator Q. Then w ∈ Cd

∗ is a critical point in the direction r̂ if
and only if it satisfies the smooth critical point equations

Q̃(w) = rkw1Q̃z1 (w) − r1wkQ̃zk (w) = 0 (2 ≤ k ≤ d) , (7.8)

where Q̃z j denotes the derivative of Q̃ with respect to the variable z j.

Proof The point w is a critical point when Q(w) = 0 and the differential of
ϕ : V∗ → C is zero. Vanishing of this differential occurs exactly when the
differential of ϕ as a map from Cd

∗ to C projects to zero on the tangent space
ofV∗ at w. Since the tangent space toV∗ at w is the hyperplane with normal
(∇Q̃)(w), the differential of ϕ projects to zero if and only if (∇ϕ)(w) is parallel
to (∇Q̃)(w). These vectors are parallel if and only if all 2 × 2 minors of the
matrix (∇Q̃

)
(w)

(∇ϕ) (w)

 = (
Q̃z1 (w) · · · Q̃zd (w)
−r1/w1 · · · −rd/wd

)
vanish. Vanishing of the minors simplifies to give the smooth critical point
equations. □

Remark 7.9. The smooth critical point equations (7.8) form a polynomial sys-
tem with d equations in d variables. It is therefore unsurprising that generically
Q has a finite number of critical points (i.e., this holds for all polynomials Q
except for those whose coefficients come from a fixed algebraic set depending
only on the degree of Q). This follows directly from an algebraic version of
the classical Sard theorem, which can be found in [BPR03, Theorem 5.56];
see also [Mel21, Section 5.3.4] for an explicit derivation.

Exercise 7.4. Continuing Exercise 7.3, let r = (2, 1) and find the critical points
for hr on V. Compute the heights of these critical points and compare them
to the limit height for the sequence approaching infinity in Exercise 7.3. Is the
limit height larger than the heights of all critical points onV?
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Proposition 7.10. Singularity of the Hessian matrix for hr̂ in local coordinates
at a critical point for hr̂ on the smooth varietyV∗ is independent of the choice
of coordinatization ofV∗ as a complex manifold.

Proof At a point p where ∇ hr̂ vanishes, the chain rule under a coordinate
change Ψ simplifies to H ′ = JΨH , where H ′ is the new Hessian, H is the
old Hessian and JΨ is the Jacobian matrix of Ψ at p. The claim follows from
nonsingularity of JΨ at p. □

Definition 7.11. A smooth critical point w of h is called nondegenerate if the
Hessian matrix for h in local coordinates around w is nonsingular.

This definition is generalized to non-smooth points in Definition 7.34 below.
Under our assumption that V is smooth, one of the partial derivatives of the
square-free part of Q is non-vanishing at w. Without loss of generality, we
assume that Q̃zd (w) , 0 is non-zero, so we can parametrizeV near w as zd =

g(z◦) = g(z1, . . . , zd−1) for some analytic function g defined in a neighborhood
of w◦. The critical point w is non-degenerate if and only if the Hessian matrix
of h(z◦, g(z◦)) with respect to z1, . . . , zd−1 has non-zero determinant at z◦ =
w◦. We say h is a Morse height function when all of its critical points are
nondegenerate.

Remark. Most topological works, such as [Mil63; GM88], study spaces using
Morse height functions. However, as discussed in Appendix C, as long as there
are finitely many critical points the basic Morse decompositions hold whether
or not h is Morse: the topology of the space is still generated by attachments at
the critical points. However, the description of the attachments becomes more
complicated for non-Morse height functions.

Step 2: Intersect the torus with the singular variety

The Cauchy integral representation (7.7) holds for any torus T = Relog−1(x)
with x in the component B of amoeba(Q)c corresponding to the convergent
Laurent expansion with coefficients ar. We want to replace the domain of in-
tegration T with a domain of integration close to V that “wraps around” the
singular variety, so we can use a residue computation in Step 3 below to reduce
to an integral “on”V.

If γ is any (d − 1)-chain in V∗ then the Collar Lemma (Lemma C.1 in Ap-
pendix C) shows how to construct the tube oγ around γ, which is a d-chain
in the domain M where the Cauchy integral ω is holomorphic. The tube oγ
can be viewed as a union of circles with centers at the points of γ, and the
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map γ 7→ oγ is well-defined as a map from the homology group Hd−1(V∗) to
Hd(M).

Theorem C.2 of Appendix C implies that o : Hd−1(V∗) → Hd(M) is injec-
tive, and if T ′ is any torus contained inM then pulling back [T −T ′] ∈ Hd(M)
via o gives a well-defined class INT(T,T ′) ∈ Hd−1(V∗) known as the intersec-
tion class of T and T ′. By construction, [T ] − [T ′] = o INT(T,T ′) in Hd(M),
so that

ar =
(

1
2πi

)d ∫
T
ω =

(
1

2πi

)d ∫
o INT(T,T ′)

ω +

(
1

2πi

)d ∫
T ′
ω .

One can picture o INT(T,T ′) by imagining a continuous deformation of T to
T ′. If this deformation is sufficiently generic it will intersect V∗ transversely,
with the intersection yielding INT(T,T ′). The tube around INT(T,T ′) is thus
the chain that needs to be added to account for passing the deformation through
V∗. See Figure 7.7 for an illustration.

Figure 7.7 An intersection class of T and T ′ with respect toV.

If we pick a torus T ′ so that
∫

T ′ ω = 0 then we have succeeded in expressing
the Cauchy integral as an integral over a tube around a curve in V∗. Corol-
lary 6.29 implies the existence of such a torus, giving the following.

Proposition 7.12. Assume F is the ratio of coprime polynomials F(z) =
P(z)/Q(z). As r → ∞ in the direction r̂ there exists a torus T ′ such that
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T ′ ω = 0 for all but finitely many r, and

ar =

(
1

2πi

)d ∫
o INT(T,T ′)

ω (7.9)

whenever the integral over T ′ is zero. □

Exercise 7.5. Let Q(x, y) = 1 − x − y − x2y2, whose amoeba is shown in
Figure 7.8. When r = (1, 1), which components of amoeba(Q)c have hr un-
bounded from below, and which vertices of the Newton polygon for Q do these
regions correspond to under the relationship described in Theorem 6.18?

Figure 7.8 Amoeba of Q(x, y) = 1 − x − y − x2y2.

We can convert the d-dimensional integral in (7.12) to a (d−1)-dimensional
integral over the intersection cycle, which lies in V∗. This is accomplished
using the concept of multivariate residues (also called Leray residues). Ap-
pendix C.2 gives a summary of multivariate residues, but for this discussion
it is sufficient to note that the residue form Res(τ) of a meromorphic d-form τ

with singularities contained inV is a (d−1) form restricted toV. Theorem C.9
implies that

1
2πi

∫
oγ

τ =

∫
γ

Res(τ)

for any (d − 1)-chain γ inV∗ and holomorphic d-form τ onM.
In particular, combining the residue operator with Proposition 7.12 gives the

following.
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Proposition 7.13. If T ′ is a torus described by Proposition 7.12 then

ar =
(

1
2πi

)d−1 ∫
INT(T,T ′)

Resω. (7.10)

□

Exercise 7.6. Suppose d = 1 andV = VQ where Q(z) = 2− 3z+ z2. Let T be
a circle of some small positive radius ε and T ′ be a circle of some large radius
M.

(a) What is the cycle INT(T,T ′)?
(b) What is the form Res(ω) when ω = Q(z)−1z−n−1dz?
(c) What is

∫
INT(T,T ′) Res(ω)?

(d) What is o INT(T,T ′)?
(e) Describe in words why o INT(T,T ′) is homologous to T−T ′ in H1(C∗\V).

Step 3: Determine a Morse-Theoretic Decomposition of the
Singular Variety

Having reduced the Cauchy integral to an integral over an intersection cycle
γ = INT(T,T ′) lying in the singular variety V∗, we now want to deform γ in
V∗ to represent the coefficient sequence of interest as a sum of saddle point in-
tegrals. Because we are currently assumingV is smooth, we could try to com-
pute such a representation by taking a gradient flow of γ onV with respect to
the height function hr̂. If γ can be deformed so that it lies in the neighborhood
of a nondegenerate critical point σ of hr̂, except for points of height at most
σ − ε for some ε > 0, then we can apply the saddle point techniques of Chap-
ter 5 to compute asymptotics (up to an exponentially negligible error, coming
from ignoring points of lower height).

Actually computing such a gradient flow on real examples is usually not
feasible. Fortunately, one of the most important consequences of Morse theory
is that under reasonable conditions there are only a finite number of possi-
bilities for the long-term behavior of such a flow. In particular, as detailed in
Appendix C and summarized here, if the flow does not stay at bounded height
while escaping to infinity onV∗ then we can flow γ until it gets locally “stuck”
on one of the critical points of hr̂.

Our results are phrased in the language of singular homology, reviewed
in Appendix B. Of particular use to us are the notions of relative homology,
which allows us to discuss homology near a critical point while ignoring points
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Figure 7.9 The curve γ is deformed to a curve γz locally draped over a saddle z

centered at a critical point for the height function. The tubes around γ and γz are
also pictured.

of lower height that do not affect dominant asymptotic behavior, and attach-
ments, which describe how to decompose the singular variety by joining to-
gether topologically simpler spaces. Our discussion here summarizes the main
points of the machinery developed in the appendices before applying them to
our situation.

Morse theory represents the topology of a manifold X equipped with a
smooth map h : X → R in terms of successive attachments. The smooth func-
tion h is referred to as a height function on X. As discussed above, we say h
is a Morse if its critical points are non-degenerate, and proper if the inverse
image of any closed interval is compact. Let X≤c denote the subspace of all
points z ∈ X with h(z) ≤ c and suppose that h is a proper Morse function. As
described in Section C.3 of Appendix C, Morse theory describes the change
in topology when the space X≤a is increased to X≤b using the language of at-
tachments. Moving from X≤a to X≤b is a homotopy equivalence (no change in
topology) unless h has critical values in [a, b]. When there is a single critical
point z with height in this interval, the topology changes via a topological at-
tachment: X≤b is homotopy equivalent to X≤a on which a λ-ball B is glued via
an attaching map ϕ : ∂B→ X≤a. The value of λ is the Morse index of the criti-
cal point z, which can be thought of as the dimension of the downward facing
part of the generalized saddle at z and computed in local coordinates using the
Hessian of h at z.

Figure C.3 in Appendix C shows how the decapitated unit sphere S ≤1−ε be-
comes the full unit sphere by the attachment of a cap and the north pole (Morse
index 2), while Figure C.5 in Appendix C shows how a contractible patch near
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the bottom of a torus becomes homotopy equivalent to a circle when a bridge
(homotopy equivalent to an arc) is added at the first Morse index-1 critical
point. These diagrams are reproduced here in Figure 7.10 for convenience.

Figure 7.10 Two examples of attachments.

We now specialize to the case where X = V∗ and h = hr̂ for some fixed
unit vector r̂. It is not true that h will always be proper, however we can work
around this difficulty. If σ ∈ V∗ is a critical point then the gradient (∇hr̂)(σ)
projects to zero on the tangent plane TσV∗ ⊂ C

d. Roughly speaking, a critical
point at infinity is a sequence of points z(k) ∈ V∗ going off to infinity such
that the projection of (∇hr̂)(z(k)) to Tz(k)V∗ approaches zero as k → ∞; the
associated critical value at infinity is the limit of hr̂(z(k)) as k → ∞. Critical
points at infinity are defined formally in Definition 7.42 below. Provided there
are no critical points at infinity, the classic results of Morse theory hold even
when the height function is not proper.

Lemma 7.14. Suppose hr̂ has no critical values at infinity in the interval [a, b].
If there are no critical values in [a, b] then the inclusion X≤a ⊆ X≤b is a ho-
motopy equivalence. If there is a single critical point z with critical value
hr̂(z) = c ∈ (a, b), then the pair (V≤b,V≤a) is homotopy equivalent to a λ-cell
relative to its boundary, where λ is the Morse index of the critical point z for
hr̂.

Exercise 7.7. What is λ in the attachment in the bottom row of Figure 7.10?

It is convenient to postpone the proof of Lemma 7.14 until the more general
setting when we no longer require V to be smooth. After establishing addi-
tional results below, Lemma 7.14 follows directly from Lemma 7.25, which
asserts the homotopy equivalence, and the identification of the attachment in
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Theorem 7.35(b). In the present smooth case, a nice simplification occurs: be-
cause the height function is the real part of a complex (locally) analytic func-
tion, every critical point z ∈ V∗ has Morse index d − 1.

Exercise 7.8. Prove that the real part of a complex analytic function defined
on an open set in Cd has Morse index d, then prove that the real part of such a
function restricted to a smooth hypersurface has Morse index d − 1. Hint: The
Cauchy-Riemann equations yield a lot of information about the eigenvectors
and eigenvalues of the Hessian.

This characterization of the index allows us to show that Hd−1(V∗) is homo-
logically a bouquet of (d − 1)-spheres, one quasi-local to each critical point. A
version of the following theorem, with the stronger assumption that h is proper
replacing the assumption of no CVAI, is stated and proved as Theorem C.39
in Appendix C (the appendices contain background material not specialized
to ACSV). The restriction that the critical values are distinct is removed in
Corollary 7.17.

Theorem 7.15. Assume that V is smooth, hr̂ is a Morse height function, and
there are no critical values at infinity (according to Definition 7.43 below).
Assume further that the critical values c j = hr̂(z j) are distinct and listed in
descending order.

(i) Each projection Hd−1(V∗)→ Hd−1(V≤c j+ε,V≤c j−ε) is surjective. In other
words, the relative homology generator at z j can be chosen to be an
absolute cycle.

(ii) Each inclusion V≤c ⊆ V∗ induces an injection on Hd−1. In other words,
there are no relations: no homology generator ever gets killed.

It follows that Hd−1(V∗) � Zm and that a basis γ1, . . . , γm for Hd−1(V∗) can be
chosen so that each γ j is a cycle on which hr̂ attains its maximum value at z j.

Proof Part (i) of Theorem 7.44 below extends the fundamental Morse lemma,
namely homotopy equivalence ofM≤c as c varies in an interval with no critical
values (Lemma C.27) from the case where h is a proper Morse function to the
case where h need not be proper but there are no CVAI in the interval. Part (ii)
of Theorem 7.44 extends the smooth attachment theorem for a single critical
value c (Theorem C.28) from the case where h is a proper Morse function to
the case where h need not be proper but there are no CVAI in the interval.
Accordingly, the conclusions of Theorems C.38 and C.39 hold for this case,
via the same argument. Specifically, these follow from the identification of the
attachment and from the homology long exact sequence for the filtration of
pairs (M≤b j ,−∞), where b j are real numbers between each successive pair of
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critical values, b0 is above the highest critical value, and −∞ isMb for any b
less than the least critical value. See Section C.4 for details. □

Remark 7.16. The isomorphism Hd−1(V∗) �
⊕m

j=1 Hd−1(Vc j+ε,Vc j−ε) is not
natural. For each attachment at z j there is an arbitrary choice of an absolute
cycle γ j that projects to the generator of the homology group for the attach-
ment. The cycle γ j + α would do equally well for any cycle α supported on
Vc j−ε. One might say that the choice of γ1, . . . , γm, listed in decreasing order
of height, can be altered by an arbitrary upper triangular map, replacing γ j

by γ j +
∑

i> j biγi. This is the so-called Stokes phenomenon, illustrated in Fig-
ure 7.11: the saddle point integral from z j might pass on either side of zi as it
travels downward, with the integrals over the two choices of contour differing
by the integral over γi. Thus, for a cycle C the decomposition [C] =

∑m
k=1 nkγk

is not natural. It is important to note, however, that the leading coefficient n j∗ is
well-defined independent of the chosen basis {γ j}, where j∗ is the least index
such that n j∗ , 0.

Figure 7.11 Stokes’ phenomenon reflects the fact that a curve draped over the
higher saddle can descend on either side of the lower saddle, as shown here by
two possible branches. The difference between these two curves is a curve draped
over the lower saddle.

The simplifying assumption of distinct critical values is not important. To
get rid of this, we define the local homology pairVp,loc at a critical point p at
height c to be the pair (X,Y) where Y = V≤c−ε/2 and X is the union of Y with
the ball Bε(p) for ε > 0 sufficiently small (see Definition C.31 of Appendix C
for full details). Any such pairs are homotopy equivalent as long as ε is small
enough that the 2ε-balls about different critical points are disjoint.

Deformations defined in Appendix C show that if there is a unique critical
point p with height c ∈ [a, b] then, for small ε > 0, the local pair Vp,loc is
homotopy equivalent to the slab (V≤c+ε,Vc−ε). The benefit to replacing the
slab by the local pair occurs when there are multiple critical points sharing a
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critical value. If hr̂(p) = c for all p in some finite set E then

(V≤b,V≤a) ≃
⊕
p∈E

Vp,loc, (C.3.1)

giving the following.

Corollary 7.17. Replacing (Vc j+ε,Vc j−ε) by Vz,loc for each z, the conclu-
sions of Theorem 7.15 hold without the assumption of distinct critical values.
□

We end this subsection with some examples of this topological decomposi-
tion.

Example 7.18 (binomial coefficients). Recall that the binomial coefficients
ars =

(
r+s

r

)
have bivariate generating function F(x, y) = 1/(1−x−y). If r̂ = (r, s)

with r + s = 1 and r, s ∈ (0, 1) then as r varies from 0 to 1, the critical point
w(r̂) of F in the direction r̂ slides from (0, 1) to (1, 0). The homology group
H1(V∗) has a single generator γz∗ . The homology group H2(M) is cyclic as
well, generated by oγz∗ . ◁

Example 7.19 (Delannoy numbers). The Delannoy number generating func-
tion from Example 2.7 in Chapter 2 is 1/(1− x−y− xy). The situation is similar
to Example 7.18, except that as r varies from 0 to 1 the critical point w(r̂) tra-
verses the arc the other way from (0, 1) to (1, 0), and there is another critical
point w′ traversing a hyperbola in the third quadrant. ◁

Exercise 7.9. Consider the amoeba of the denominator Q(x, y) = 1− x−y− xy
of the Delannoy generating function, shown in Figure 7.12.

(a) Compute the critical points w and w′ in the direction determined by r =

(2, 3), then draw dots where p = Relog(w) and p′ = Relog(w′) lie on the
amoeba.

(b) Show a path β from the power series component of the amoeba comple-
ment to a component where the Cauchy integral is zero that enters the
amoeba at p and exits it at p′.

(c) Describe γ = Relog−1(β).
(d) State why [γ] = INT(T,T ′) in H1(V∗) and why

∫
γ

Resω is easy to esti-
mate, where

ω =
x−2n−1y−3n−1

1 − x − y − xy
dx ∧ dy .
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Figure 7.12 Amoeba for the Delannoy generating function Q(x, y) = 1−x−y−xy.
Each point interior to the amoeba is the image of precisely two points ofV under
Relog.

Result: a saddle-point integral decomposition in the smooth case

Theorem 7.15 and Corollary 7.17 give a basis of Hd−1(V∗) consisting of cycles
that attain their maximum values at critical points. Vanishing of dhr̂ |V at z
is equivalent to z−r being in stationary phase at z for any (d − 1)-chain γ j

supported onV∗. Thus, combining Theorem 7.15 and Corollary 7.17 with the
integral representation in Proposition 7.13 gives the following, our ultimate
goal for generating functions with smooth singular varieties.

Theorem 7.20 (Smooth Saddle-Point Integral Decomposition). Assume that
V is smooth, hr̂ is a Morse height function, and that there are no critical
values at infinity (see Definition 7.43 below). Assume further that the critical
values c j = hr̂(z j) for 1 ≤ j ≤ m are listed in descending order. Then there
exist integers κ j ∈ Z and smooth chains of integration γ j with heights uniquely
maximized at z j, such that

ar =
m∑

j=1

κ j

(2πi)d−1

∫
γ j

z−r−1 Res(F(z) dz) . (7.11)

The integral in the jth summand is in stationary phase at z j. The least j such
that κ j , 0, and the homology class

∑
j′∈E κ j′γ j′ for all j′ such that z j′ has

height c j, are uniquely defined. □

There are two important tasks remaining: computing asymptotics of the sad-
dle point integrals and determining the integers κ j. While integral asymptotics
(in this smooth case) follow in a straightforward manner from the results of
Chapter 5, it can be very difficult to determine these unknown integers. We
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discuss both of these questions in Chapter 9, where we derive explicit asymp-
totic formulas for ar in terms of the generating function F(z). Readers who
are interested only in smooth asymptotics (and do not need to see the technical
discussion of critical points at infinity) may go directly to Chapters 8 and 9,
after a brief discussion about removing our simplifying hypotheses.

The requirement of no critical value at infinity is essential: when there are
critical points at infinity, asymptotics are in principle affected. Classifying
these cases and computing the asymptotics remains an open problem discussed
further in Chapter 13. Removing the smoothness assumption involves the ap-
paratus of stratified Morse theory, which we make use of in the next section.
The assumption that hr̂ is nondegenerate is not essential, however in its ab-
sence there is no longer a unique cycle γ j for each j. We handle this case, for
now, by two examples.

Example 7.21 (cubic degeneracy). The simplest degeneracy at a critical point,
a so-called monkey saddle, leads to two independent homology generators as
in Figure 7.13. ◁

Figure 7.13 Two homology generators associated with a monkey saddle.
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While critical points are generically nondegenerate, we now give one com-
binatorial example in which a critical point w is indeed degenerate and con-
tributes more than one generator.

Example 7.22 (bi-colored supertrees). Example 9.32 in Chapter 9 looks at
a rational generating function counting bi-colored supertrees (certain planar
binary trees that need not concern us here). The singular variety is the smooth
surface defined by the vanishing of Q(x, y) = x5y2 + 2x2y − 2x3y + 4y + x − 2.
When r̂ = (1/2, 1/2) then there are two nondegenerate critical points, u and v,
together with a critical point w near which hr̂ is quartic (so doubly degenerate).
Accordingly there is one cycle γu, one cycle γv, and three cycles γ( j)

w which
may be configured all to enter w along the solid arc and exit along one of the
three dashed arcs shown in Figure 7.14. ◁

Figure 7.14 The supertree generating function yields two nondegenerate critical
points and one doubly degenerate critical point.

7.3 The general case via stratified Morse theory

We now drop the assumption that the singular varietyV is smooth. As detailed
in Appendix D, the correct notion for us is the concept of a Whitney stratified
space: every real or complex algebraic (or analytic) variety admits a Whitney
stratification, and the analytic constructions we require for asymptotics can
be built for stratified spaces. In this chapter we recount only the results from
Appendix D that we directly require. Although we typically assume that F is
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a rational function to simplify our presentation, the results discussed here hold
for general meromorphic functions with minor modifications.

Example 7.23. Figure 7.15 shows the zero setV of the polynomial Q = (z3 −

x2)(2 − x − y − z). We can split the variety V into a finite number of semi-
algebraic strata (defined by polynomial equalities and inequalities): two strata
of codimension 1,

S 1 =
{
x + y + z = 2 and z3 − x2 , 0

}
S 2 =

{
z3 − x2 = 0 and x + y + z , 2

}
\ {x = z = 0},

two strata of codimension 2,

S 3 =
{
z3 − x2 = 0 and x + y + z = 2 and (x, z) , (0, 0)

}
,

S 4 = {(x, z) = 0 and y , 2} ,

and one stratum of codimension 3 at the point

S 5 = {z3 − x2 = x + y + z − 2 = x = z = 0} = {(0, 2, 0)}.

Note that we introduce additional strata both to account for multiple irreducible
components ofV and to account for singularities in individual components. ◁

As described in Appendix D, it is usually not sufficient to partition V into
any general set of smooth manifolds — we must also make sure the elements in
such a partition “fit together nicely.” This concept is formalized by the notion
of a Whitney stratification, given in Definition D.3 of Appendix D. For the rest
of this chapter we fix a Whitney stratification of V, which is a partition of V
into manifolds {S α : α ∈ I} indexed by some partially ordered set I such that

(i) S α ∩ S β , ∅ if and only if S α ⊂ S β if and only if α ≤ β, and
(ii) If α < β, if the sequences {xi ∈ S β} and {yi ∈ S α} both converge to y ∈ S α,

if the lines ℓi = xi yi converge to a line ℓ, and if tangent planes Txi (S β)
converge to a plane T , then both ℓ and Ty(S α) are contained in T .

We always take algebraic stratifications defined by polynomial equalities
and inequalities. In fact, we may assume that our Whitney stratification is de-
fined by a finite sequence of nested algebraic setsV = F0 ⊃ F1 ⊃ · · · ⊃ Fm =

∅ such that the connected components of the sets Fi \Fi+1 for all 1 ≤ i ≤ m−1
form the strata. If S is a stratum defined as a connected component of Fi \ Fi+1

then the dimension of the stratum S (respectively the codimension of the stra-
tum S ) is the dimension (respectively codimension) of Fi ⊂ C

d as an algebraic
set. Whitney stratifications exist for all algebraic (and analytic) varieties, and
algorithms to compute them are discussed in Chapter 8 and Appendix D.
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Figure 7.15 The zero set of Q = (z3 − x2)(2 − x − y − z).

Stratified critical points
A point p in a stratum S is said to be a (stratified) critical point for the height
function h = hr̂ if the restriction dh|S vanishes at p. Analogously to the smooth
case above, because h is the real part of ϕ(z) = −r · log z the Cauchy-Riemann
equations imply that p is a critical point if the gradient of ϕ lies in the normal
space to S at p. If S has codimension k then there exists an open set U ⊂

Cd containing p and irreducible polynomials g1, . . . , gk such that S ∩ U =

V(g1, . . . , gk) ∩ U (i.e., S is locally defined by the polynomials gi near p).
The point p is a critical point if and only if the gradient (∇ϕ)(p) lies in the
complex span of the gradients (∇ g1)(p), . . . , (∇ gk)(p). Although ϕ involves
logarithms, its gradient is a rational function, so we may compute stratified
critical point by solving polynomial systems. Computation of stratified critical
points is discussed at greater length in Chapter 8.

Recall from Chapter 6 that the logarithmic gradient of a differentiable func-
tion f at z ∈ Cd is the vector

∇log f (z) =
(
z1 fz1 , . . . , zd fzd (z)

)
, (7.12)

with the word logarithmic coming from the fact that the logarithmic gradient
of f (z) at z = exp(x) is the gradient of ( f ◦ exp)(z) at z = x. If p is a smooth
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point of the algebraic hypersurface defined by the vanishing of Q, then the
vanishing of dhr̂ |V at p is equivalent to the direction vector r̂ being parallel
to (∇log Q)(p). More generally, vanishing of dhr̂ |S at p is equivalent to r̂ lying
in the space spanned by the logarithmic gradients of the functions g j locally
defining the stratum S at p.

Figure 7.16 The point z on a stratum S defined by the vanishing of two trans-
versely intersecting smooth sheets in three dimensions is a critical point in the
direction r̂ if r lies in the log-normal plane to S at z.

Example 7.24. If V is the union of two transversely intersecting smooth
sheets defined by the vanishing of two polynomials g1 and g2 then z is a critical
point onVg1 \Vg2 in a direction r̂ if r is parallel to (∇log g1)(z), and the anal-
ogous criteria holds for critical points on Vg2 \ Vg1 . A critical point z on the
intersection stratum S = Vg1 ∩Vg2 , pictured in Figure 7.16, has r lying some-
where in the log-normal plane spanned by (∇log g1)(z) and (∇log g2)(z). ◁

Exercise 7.10. Describe the set of directions r ∈ R2
∗ such that dhr̂ |S = 0 at a

point (x, y, z) of the codimension 2 stratum S 3 in Example 7.23.

Obstructions are critical points
The fundamental lemma of Morse theory, described in Lemma 7.14 above,
states that, in the absence of critical values at infinity, critical values are the
only places the topology of the sublevel sets of a manifold can change. The
fundamental lemma of stratified Morse theory says that (stratified) critical val-
ues are still the only places the topology of M≤c and V≤c can change, and
thus are the only places obstructions to pushing down cycles of integration
can occur. Lemma 7.14 also specifies the nature of the attachment at a critical
point, but since this requires a more lengthy explanation, we state the stratified
version of Lemma 7.14 without describing the attachment. As a reminder, we
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postpone the formal definitions of critical points at infinity and critical values
at infinity until Definition 7.42 below.

Lemma 7.25. If hr̂ has no critical values (including at infinity) in [a, b], then
the inclusionM≤a ⊆ M≤b is a homotopy equivalence. The same is true of the
inclusionV≤a ⊆ V≤b.

Remark 7.26. The fact that stratified critical values isolate all the topological
change inV∗ may be less surprising than the fact that they do so inM.

Let p be a stratified critical point for hr̂ in some stratum S . Mirroring our
definition ofVp,loc above, we let

Mp,loc := (M≤c−ε ∪ B2ε(p),M≤c−ε) ,

for any sufficiently small ε > 0, which is defined up to homotopy equivalence.
The simplifying assumption of distinct critical values often fails in ACSV,

for example if there is a pair of complex conjugate critical points, necessitating
one further definition. Let c be a critical value, let p1, . . . ,pm be the critical
points at height c, and assume ε is sufficiently small so that the balls B2ε(pi)
are disjoint.

Definition 7.27 (all attachments at height c). Under the setup above, the total
attachment pair at height c is

(Mc+,Mc−) :=

M≤c−ε ∪

m⋃
j=1

B2ε(p j),M≤c−ε

 . (7.13)

By disjointness of the balls B2ε(p j), this is a direct sum in the category of pairs

ofMp j,loc, hence the homology H∗(Mc+,Mc−) is the direct sum
m⊕

j=1

H∗(Mp j,loc).

Lemma 7.28. Suppose hr̂ has no critical values at infinity in [a, b] and has a
single critical value c in [a, b], occurring in the interior (a, b). Then the pairs
(M≤b′ ,M≤a′ ) are naturally homotopy equivalent for any a ≤ a′ < c < b′ ≤ b.

Lemmas 7.25 and 7.28 are taken from [BMP22]; a sketch of the proof is
reproduced in Section 7.5.

Building by attachment
We now fit together the attachments at critical points of all possible heights.
This involves classical topological facts, and works without knowing the ho-
motopy type of any individual attachment.

Let c1 > c2 > · · · > cm denote the critical values in the interval [cm,∞)
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Figure 7.17 Building M via successive attachments at the critical values c1 >

c2 > · · · > cm. In this case we attach three bumps toMcm− around critical points
at height cm, then attach a single bump, and so on until attaching two final bumps.

and assume there are no CVAI in [cm,∞). For each j let c j− denote c j − ε

where ε > 0 is sufficiently small so that there are no critical values or CVAI in
[c j−ε, c j), and let c j+ denote c j+εwhere ε > 0 is sufficiently small so that there
are no critical values or CVAI in (c, c j + ε]. Intuitively, we think of building up
the spaceM from the spaceMcm− by successive attachment. First, we attach
(Mcm+,Mcm−) to arrive at the space Mcm+ which, by Lemma 7.28, is homo-
topy equivalent to the spaceMcm−1−. Next we attach the pair (Mcm−1+,Mcm−1−).
Repeating this until the pair (Mc1+,Mc1−) has been attached, we have built the
spaceMc1+, which is homotopy equivalent toM≤b for all sufficiently large b,
and hence toM itself. This process is illustrated in Figure 7.17. The “bump”
N(p) near a point p is the intersection of M with a ball of sufficiently small
radius δ. Shrinking ε if necessary, (Mc j− ∪N(p),Mc j ) has the homotopy type
of the local pairMp,loc discussed above.

Each attachment has a long exact homology sequence. Because all of the
spaces involved are cell complexes of real dimension at most d (see Section D.4
of Appendix D), the homology groups Hk of dimension k ≥ d+1 vanish. Thus,
the long exact sequence for any j ≤ m always begins

0→ Hd(Mc j−)→ Hd(Mc j+)→ Hd(Mc j+,Mc j−)→ · · · . (7.14)

Definition 7.29. For each critical point p at height c j, let G(p) denote the
image in Hd(Mc j+,Mc j−) of the map projecting Mc j− ∪ N(p) to the pair
(Mc j− ∪N(p),Mc j ), as in Figure 7.17. In other words, G(p) are those relative
d-homology classes, once the bumpN(p) near p is added, that are represented
by absolute cycles. We further define G = G(c j) :=

⊕
h(p)=c j

G(p).
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The sequence (7.14) gives rise to the short exact sequence

0→ Hd(Mc j−)→ Hd(Mc j+)→ G → 0 . (7.15)

As we are working with coefficients in C, there is no torsion, hence the short
exact sequence implies a (not natural) direct sum

Hd(Mc j+) � Hd(Mc j−) ⊕ Hd(Mc j+,Mc j−) . (7.16)

Assuming Lemmas 7.25 and 7.28, we have proved the following.

Theorem 7.30. Suppose there are no critical values at infinity above height a
and finitely many critical values c1 > · · · > cm in [a,∞). Then the homology of
M is given by

Hd(M) � Hd (M<a) ⊕
⊕
p

G(p) ,

where G(p) is defined in Definition 7.29 and the sum is over critical points p
such that hr̂(p) ≥ a. If there are no critical values at infinity and finitely many
critical values then

Hd(M,M−∞) �
⊕
p

G(p)

where M−∞ denotes M≤a for any a less than the least critical value, and the
sum is over all critical points. □

Description of the attachments
Next we describe the attachment cycles forM. We could also develop the at-
tachment cycles forV∗ in the stratified setting, however our asymptotic results
don’t need them so we skip this extra step.

The key to understanding attachments in Whitney stratified spaces is a lo-
cal product structure described in Theorem D.9 of Appendix D, which follows
from the famous (and somewhat difficult) Thom’s Isotopy Lemma (Lemma
D.16 in Appendix D). The Isotopy Lemma says that for a fixed stratum S of
dimension j and any point p ∈ S there is a neighborhood of p where the space
V looks like R j × N where N is the normal slice of the strata (see Defini-
tion 7.32 and Figure 7.18 below).

What does the local product structure imply for our attachments? Let p ∈ S
be a critical point for the height function h, and consider S as a complex mani-
fold of dimension i (where it has dimension j = 2i as a real manifold). Because
h is the real part of (a branch of) an analytic function, it is harmonic and all
critical points have Morse index i. Thus, when S is arranged by height near
p there is an i-dimensional part that ‘bends downwards’ and an i-dimensional
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part that ‘bends upwards’. By the local product structure, the pair for the at-
tachment ofM at p is (homotopy equivalent to) the product of a pair (Bi, ∂Bi)
in the tangent space to S and a pair (L,L ∩M≤c−ε), where c is the height of
p, the constant ε > 0 is sufficiently small, and L denotes the normal link (the
intersection ofM with the normal space to S at p in a suitable small neighbor-
hood of p, described in Definition 7.32 below).

Figure 7.18 An example of an attachment given by the product of a torus with an
arc (a relative 3-torus).

Example 7.31. Figure 7.18 shows an example of an attachment on a stra-
tum S 1 with complex dimension 1 defined by the intersection of two trans-
versely intersecting smooth sheets. In one direction it curves down, as shown;
in the other direction it curves up (this is not shown). The level set defined
by h(z) = c − ε is the horizontal line and the pair (B1, ∂B1) is the black arc
modulo its endpoints. The normal link is the complement of two intersecting
complex lines in complex 2-space, which is homotopy equivalent to a 2-torus.
The 2-torus can be drawn arbitrarily close to p, so it can be chosen as an abso-
lute cycle and the pair (L,L ∩M≤c−ε) is simply (L, ∅) ≃ L. The attachment
pair is obtained by sliding the 2-torus along the black arc from one endpoint
to the other, with the second element in the pair being the starting and ending
positions. Because an arc modulo its boundary is a circle, this means the at-
tachment is a 3-torus, manifested as a 2-torus times an arc that localizes to a
1-torus. ◁

Formal statement of the attachments
The following definitions and results are special cases of material in Sec-
tion D.3 of Appendix D. Attachments are defined in the category of (homotopy
types of) topological pairs, as are both the tangential and normal Morse data.
Products in this category are defined by

(A, B) × (C,D) = (A ×C, A × D ∪ B ×C) , (7.17)
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and the homology of a product obeys the usual Künneth formula for homology
with complex coefficients,

Hk(U × V) =
k⊕

j=0

H j(U) × Hk− j(V) . (7.18)

For the spaceM, we define the Morse data for the attachment at a critical point
p ∈ V∗ by the following steps.

Definition 7.32 (Morse data). Let S be a stratum of complex codimension k
containing a critical point p at height c.

(i) The tangential Morse data T (p) at p is the homotopy type of the pair
(Bd−k, ∂Bd−k) consisting of a ball of codimension k modulo its boundary.
A representative of this class is the unstable manifold for the negative
gradient flow induced by hr̂ on V (the set of points that flow into the
critical point under the positive gradient flow, see [HPS77, Section 4]
or [Con78a]).

(ii) The normal plane Np(S) to S at p is the (complex) orthogonal comple-
ment of the tangent space Tp(S).

(iii) The normal slice N at p is the mutual intersection of V, a sufficiently
small ball about p, and the normal plane Np(S).

(iv) The normal linkL(p) is the mutual intersection ofM, a sufficiently small
ball about p, and N.

(v) The normal Morse data L(p) is the pair (L(p)≥c,L(p)=c), where L(p)=c

is the intersection of the normal link with the real codimension 1 surface
where hr̂(z) = c.

(vi) The Morse data at p is the product of the tangential and normal Morse
data.

The following result, which is the main result in the monograph [GM88], is
stated as Theorem D.21 in Appendix D.

Theorem 7.33. The homotopy type of the attachment pairMp,loc is the Morse
data at p. □

Theorem 7.33 yields a general topological decomposition of Hd(M,−∞),
which is a stratified version of Theorem 7.15.

Definition 7.34. A critical point p in direction r̂ on a stratum S is called non-
degenerate if hr̂ |S is nondegenerate in the sense of Definition 7.11 (meaning
the Hessian for hr̂ |S in local coordinates around p is nonsingular).
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Theorem 7.35. Fix r̂ and assume there are no critical values at infinity. Let
z1, . . . ,zm enumerate the stratified critical points of V∗ in (weakly) decreas-
ing order of the height function hr̂, where the stratum containing z j has com-
plex codimension k j. If all critical points are quadratically nondegenerate then
there are cycles γ1, . . . , γm on V∗, along with a basis β j,1, . . . β j,s j for the k j-
homology of the normal Morse data, with the following properties.

(a) hr̂ achieves its maximum on γ j at z j

(b) γ j ≃ (Bd−k j , ∂Bd−k j )
(c) A basis for the integer homology group Hd(M,−∞) can be formed by cy-

cles σ j,i = γ j × β j,i which, for fixed j, form a basis for G(z j).

Proof Theorem 7.33 and part (i) of Definition 7.32 imply (a) and (b). Com-
paring parts (v) and (vi) of the definition with Theorem 7.30 gives (c). The
fact that {σ j,i} is an integer homology basis follows from the lack of torsion in
Hd(M), which follows from the fact thatV∗ andM have the homotopy type of
a d-dimensional cell complex (see Theorem D.23), with no boundaries in di-
mension d. Because the Morse theoretic results identify the homotopy type of
the attachments, not just the relative homology groups, the cycles σ j,i generate
homology with both integer and rational coefficients. □

While this theorem may look somewhat abstract, its power lies in its gener-
ality, and typical applications can be simple. For instance, in Figure 7.19 we
have a surface V with complementM := C2

∗ \ V where H2(M) has one gen-
erator local to a critical point in a stratum of complex dimension 0 and two
quasi-local to critical points in strata of dimension 1; the former has a 2-torus
for its normal link, while the latter have normal links of dimension 1 which
may be taken to be topological circles.

A further generalization removes the assumption of quadratic nondegener-
acy. We do not use this generalization in this text, as we directly compute
integral manipulations for the few quadratically degenerate cases that arise.

Corollary 7.36. Without the assumption of quadratic nondegeneracy of hr̂ at
each critical point p, a modified version of Theorem 7.35 still holds. Instead of
a pair (B, ∂B) consisting of a ball and its boundary, the tangential Morse data
is replaced by a more general collection of (d − k j)-cycles {γ j,k : 1 ≤ k ≤ r j}

where r j is the rank of Hd−k j (V≤c,V≤c−ε). Consequently, the basis in part (d)
of Theorem 7.35 is instead formed by cycles γ j,k × β j,i for 1 ≤ j ≤ m with
1 ≤ k ≤ r j and 1 ≤ i ≤ s j.

Exercise 7.11. LetM be a manifold of real dimension d in Rn for d < n. Many
classical Morse theoretic analyses use the height function h(x) = d(p,x),
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Figure 7.19 Critical points and their normal and tangential homology generators.
On the right are two index-1 smooth critical points with tangential relative ho-
mology generators γ and normal homology generators β ≍ S 1. On the left is an
isolated self-intersection point γ of V, thus a zero-dimensional stratum, pictured
with a two-dimensional normal link homotopy equivalent to (and in the picture
homeomorphic to) a 2-torus.

where d is distance and p is a fixed point in Rn \ M. Explain why this is not
a good Morse function to use if trying to establish the “bouquet of spheres”
result for smooth varieties – described before Theorem 7.15 above – via The-
orem 7.35(b).

7.4 Geometry

Theorems 7.15 and 7.35 allow us to express the Cauchy integral for coefficients
as a finite sum of integrals localized near critical points (up to negligible error).
Asymptotically approximating these integrals depends on the geometry of the
singular set near the critical points, after which the coefficients nz appearing
in (7.2) must be determined. To make this process more concrete, and give an
idea of its implications for coefficient asymptotics, we discuss some special
cases arising often in combinatorial examples. These situations are covered in
great detail in Chapters 9 – 11.
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Smooth points
As seen above, the quasi-local cycle σw corresponding to a smooth critical
point w is a tube oγw around a (d − 1)-chain γw in V∗ such that hr̂ is maxi-
mized on γw at w.

Figure 7.20 A quasi-local cycle near a smooth point.

The residue form is a complex (d−1)-dimensional saddle integral of the type
discussed in Chapter 5. Assuming quadratic nondegeneracy, the asymptotic
formula for the contribution to ar from the integral over σw has the form

Φw(r) = wr · |r|−(d−1)/2 ·
(
C(r̂) + O

(
|r|−1

))
, (7.19)

where C(r̂) is a constant arising from saddle point asymptotics and, as usual,
|r| = |r1| + · · · + |rd |. As r̂ varies, the critical point w varies smoothly except
for bifurcation values where hr̂ becomes quadratically degenerate. The ampli-
tude C also varies smoothly with r̂ away from bifurcation values where the
topology may change, which are also points where the coefficient nw in (7.2)
may change. The values of r̂ for which hr̂ is quadratically degenerate can be
computed using the methods of Section 8.4 in Chapter 8. Removing “bad”
directions partitions the set of directions into open cones over which the esti-
mate (7.2) is uniform over compact subsets.

Transverse multiple points
When Q(z) =

∏k
j=1 Q j(z) is a product of (potentially non-polynomial) ana-

lytic functions in a neighborhood of some w ∈ C and the zero sets of Q j are
smooth and intersect transversely at w, then we call w a transverse multiple
point; see Figure 7.21. Note that every smooth point is trivially a transverse
multiple point.

The quasi-local cycle σw defined by such a point w is the product of a k-
torus βw and a (d − k)-chain γw. The torus βw is a product of circles about w
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Figure 7.21 Left: A singular variety containing only transverse multiple points
(including smooth points). Right: A singular variety with smooth points, a ray of
(non-smooth) transverse multiple points, and a non-transverse multiple point (the
origin of that ray).

in the complex normal space to each divisor Q j. The chain γw is supported in
the stratum defined as the common intersection of the varieties defined by the
factors vanishing at w, and achieves its maximum height at w.

Example 7.37. If p is the common intersection of all three surfaces on the left
of Figure 7.21 then d = k = 3 and the stratum of p is zero-dimensional. In this
case σp = βp is a three torus defined by the product of circles about p in each
of the three complex normal spaces to the surfaces. ◁

Example 7.38. Let V be the union of two complex hypersurfaces in dimen-
sion three. Any point w on the stratum S defined intersection of these two
hypersurfaces is a (non-smooth) transverse multiple point. The stratum S has
codimension k = 2 and the homology of the normal link is generated by a
2-torus βw. ◁

There is a theory of multiple residues for transverse multiple points, not too
much more difficult than the residue forms already introduced, and asymptotics
for an integral over a quasi-local cycle may be computed rather neatly using
this approach. Such residues can be used even when the denominator is irre-
ducible as a polynomial but locally factors into power series that converge in a
neighborhood of the critical point w and each define smooth analytic varieties
that intersect transversely at w (see, for instance, Example 10.4 in Chapter 10
for such a situation). The d-dimensional Cauchy integral over γw × βw is re-
duced by residue computations to a (d−k)-dimensional integral over γw. When
d = k the resulting residue integral is simply a function of r, while if k < d
then the integral over γw is asymptotically approximated via the saddle point
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method. Ultimately, we typically obtain an asymptotic formula of the form

Φw(r) = wr · |r|−(d−k)/2 ·
(
C(r̂) + O

(
|r|−1

))
, (7.20)

where again w varies smoothly with r̂ away from quadratic degeneracies and
certain cone boundaries, and the value w(r̂) is constant over a set of r̂ of
dimension k−1. Since a smooth point is a special case of a transverse multiple
point with k = 1, (7.19) is a special case of (7.20).

Figure 7.22 The logarithmic gradients of two transversely intersecting sheets at a
critical point p decompose the first quadrant of R2 into three cones.

Example 7.39. Figure 7.22 illustrates two transversely intersecting smooth
curves defined by the vanishing of two-dimensional functions Q1(x, y) and
Q2(x, y) that meet at a single point p. There are two one-dimensional strata
S 1 = V(Q1) \ p and S 2 = V(Q2) \ p, containing points on exactly one of the
curves, together with a zero-dimensional stratum containing only p. Given r̂

there is at most one critical point z j on each stratum S j, and hr̂ is quadratically
nondegenerate for any r̂ in the positive quadrant. As r̂ varies from x = (1, 0)
to y = (0, 1) it crosses through two “bad” directions, given by the logarithmic
gradients N1 = (∇log Q1)(p) and N2 = (∇log Q2)(p) shown emanating from p.
The zero-dimensional stratum p remains fixed, but the critical points z j move
smoothly with r̂ on their respective strata S j. As r̂ crosses the log-normal di-
rection N2 the critical point z2 collides with p, then when r̂ crosses N1 the
point z1 collides with p. The positive quadrant in R2 can thus be broken into
three regions: the cone R1 defined by the positive real span of x and N2, the
cone R2 defined by N2 and N1, and the cone R3 defined by N1 and y. It turns
out that nz1 = nz2 = 1 on all regions, but np is equal to one on R2 and zero
on R1 ∪ R3. Accordingly, the asymptotic expansion expressed in (7.2) changes
across the boundaries of these regions. ◁
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Multiple and arrangement points
When varieties intersect tangentially instead of transversely, the resulting in-
tegrals are more challenging to asymptotically approximate. However, if the
intersection lattice for smooth sheets of the variety coincides with the intersec-
tion lattice for the tangent planes of these sheets then non-transversality can
be handled combinatorially. Such a point is called an arrangement point, after
hyperplane arrangements such as the one in Figure 7.23.

Figure 7.23 When V is a hyperplane arrangement, all points are arrangement
points.

Exercise 7.12. For which of the polynomials Q1(x, y, z) = z(x−y)(x−y+z−x2)
and Q2(x, y, z) = z(x − y)(x − y + z − xyz) is the origin an arrangement point?

The generators βp, j for the normal link of an arrangement point are the same
as for a transverse multiple point, only there are more of them.

Example 7.40. Figure 7.24 shows a case where d = 2 and k = 3. Here three
one-dimensional sheets intersect pairwise transversely in a point p. Instead of
one two-torus βp there are two tori βp,1 and βp,3, where βp,1 is the product of
circles about p inV2 andV3, and βp,3 is the product of circles about p inV1

andV2. One might have expected a third torus βp,2, a product of circles about
p in V1 and V3, and indeed there is such a torus, however this final torus is
not linearly independent of the first two because βp,1 − βp,2 + βp,3 = 0 in the
relevant homology class. ◁

A similar multivariate residue computation as in (7.20) leads to a formula of
the form

Φw(r) = wr · |r|−(d−k)/2 ·
(
Pr(w) + O

(
|r|−1

))
, (7.21)

where Pr(w) is a polynomial of degree at most m − k with m the number
of sheets intersecting at w and k the codimension of the stratum containing
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Figure 7.24 Quasi-local cycles at an arrangement point with d = k = 2.

w. This approach also works when Q has repeated factors, provided that m is
counted with the right multiplicity. Further details are given in Chapter 10.

Cone points
Beyond the above cases are critical points near which V does not look like a
union of smooth sheets. We give a general analysis only in one case, namely
whenV is locally diffeomorphic to a cone

∑d
j=1 z2

j = 0. Such an isolated singu-
larity is called a cone point singularity, and is illustrated in Figure 7.25. Cone
points arise, among other places, in statistical physics.

Figure 7.25 Two examples of cone point singularities.

Chapter 11 is devoted to the analysis of cone-point singularities. For any
isolated singularity w we have d = k, so the stratum containing w is zero-
dimensional, the cycle γw is just a point, and σw = βw. General theory de-
rived in [ABG70] indicates what to expect for the leading asymptotic term of∫
βw

z−r−1P(z)/Q(z) dz at an isolated singularity w: it is given by the inverse
Fourier transform of the reciprocal of the leading homogeneous term of Q near
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w. For a cone point, the inverse Fourier transform yields an asymptotic contri-
bution

Φw(r) = C(w) · q̃(r)1−d/2 ·
(
1 + O

(
|r|−1

))
(7.22)

where q̃ is the dual quadratic form in r-space to the quadratic leading term of
Q at w.

Example 7.41. The so-called cube grove creation generating function, anal-
ysed in Example 11.43 of Chapter 11, is the rational function

F(x, y, z) =
1

1 + xyz − (1/3)(x + y + z + xy + xz + yz)
. (7.23)

The variety V is smooth except at the single point (1, 1, 1) where, after an
orthogonal affine change of variables and a translation of the origin to (1, 1, 1),
the denominator of F looks asymptotically like the quadratic cone 2xy+ 2xz+
2yz = 0. The asymptotic formula given in Corollary 11.44 implies

arst ∼
1
π

[
rs + rt + st −

1
2

(r2 + s2 + t2)
]−1/2

when (r, s, t) lies inside the dual to the tangent cone to the denominator of
F. ◁

For more general isolated singularities, analysis via inverse Fourier trans-
forms lead to asymptotic contributions of the form

Φw(r) = wr · |r|−d−κ ·
(
C(r̂) + O

(
|r|−1

))
, (7.24)

which are valid as r̂ varies over the open dual cone to the tangent cone toV at
w, and uniform if r̂ is restricted to any compact subcone. The constant κ is the
homogeneous degree of F at w.

Exercise 7.13. Give a simple reason why cone points can never be multiple
points.

Examples from the literature of these further variants include isolated singu-
larities where Q is locally homogeneous of degree three [KP16] or four [BP21],
or where V is the union of a quadratic cone with a smooth sheet passing
through the cone point [BP11].

The first two of these examples are illustrated in Figure 7.26. Figure 7.27
shows the final example, where V is locally the union of a quadratic cone
and a smooth sheet; an asymptotic formula is derived in [BP11]. In general
asymptotics for this sort of geometry would be expressed in terms of an elliptic



7.4 Geometry 229

Figure 7.26 Isolated singularities of degree greater than 2.

integral, but in this case there is an explicit formula (see Theorem 11.49)

arst ∼
1
π

arctan

 √1 − 2r̂2 − 2ŝ2

1 − 2ŝ

 .
A plot of this limiting behavior against r̂ is shown on the right side of Fig-
ure 7.27.

Figure 7.27 Left: A singular set consisting of a cone and a smooth sheet. Right:
Asymptotic behavior of the corresponding coefficient sequence.

Exercise 7.14. Which of the two graphs in Figure 7.26 have arrangement
points that are not smooth points?
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7.5 Deformations

Finally, we end this chapter with a treatment of critical points and critical val-
ues at infinity. After giving a rigorous definition of such points we show how, in
their absence, to construct the deformations that prove Lemmas 7.25 and 7.28.
These two lemmas then imply Theorems 7.15 and 7.30.

7.5.1 Critical points at infinity

As described above and in Appendix C, the results of Morse theory typically
require a proper height function so that certain gradient flows are guaranteed
to reach points of low height, except when they get stuck near critical points.
This properness condition is often satisfied in classical contexts by studying
compact spaces, however our singular varieties are not compact and we often
have non-proper height functions.

Our goal, therefore, is to formulate weaker but still sufficient conditions for
there to be no topological obstructions to deforming our Cauchy integral to
points of low height, proving results like Lemma 7.14 and Theorem 7.35 above.
A considerable stream of topological research has gone into defining bifurca-
tion values, at which the height function is not a locally trivial fibration and the
topology of the space changes. While exact conditions for these topological
obstructions remain murky, we care only about pushing down domains of in-
tegration to lower height, and may thus proceed by generalizing our definition
of critical points (and critical values) to include “points at infinity.”

We begin by defining the binary relation R ⊆ Cd
∗ × CP

d−1 that holds for a
pair (z, r̂) when the differential dhr̂ |S of the height function hr̂ restricted to
the stratum S containing z vanishes at z. To facilitate computation we view r̂

as an element of CPd−1.

Definition 7.42 (CPAI). Let R be the closure in CPd ×CPd−1 of the relation R.
A critical point at infinity (CPAI) in the direction r̂∗ is a limit point (z∗, r̂∗) in
R of points (z, r̂) ∈ R such that z∗ < Cd

∗ . When necessary we refer to our usual
notion of critical points (not at infinity) as affine critical points to distinguish
them from critical points at infinity.

In other words, a critical point at infinity in the direction r̂∗ is a limit, lying
either at infinity or on a coordinate plane, of a sequence z(k) of critical points
contained in strata S k such that the projection of r̂∗ to the tangent space of Nk

at z(k) converges to zero as k → ∞ (i.e, r̂∗ lies in the “limit normal space” of
the sequence z(k)) – see Figure 7.28.

To track the heights of CPAIs, given r̂ ∈ CPd−1 we define the ternary relation
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Figure 7.28 A sequence of points moving out to infinity, such that the logarith-
mic gradient of Q approaches the vector v pointing straight up. This sequence
witnesses a critical points at infinity in the direction v.

T (r̂) ⊆ Cd
∗ × CP

d−1 × R containing elements (z,y, η) such that (z,y) ∈ R and
hr̂(z) = η.

Definition 7.43 (CVAI). Let T ⊆ CPd×CPd−1×R be the closure of the ternary
relation T in CPd × CPd−1 × R. We call η a critical value at infinity (CVAI) if
some point (z∗, r̂∗, η) is in T and z∗ < C

d
∗ .

7.5.2 Vector fields and flows

The results we prove in this section are based on [BMP22, Theorem 1].

Theorem 7.44 (homotopy equivalences in the absence of CVAI). Fix a direc-
tion r̂ and a Whitney stratification {S α : α ∈ I} of (Cd

∗ ,M).

(i) If there are neither affine critical values nor CVAI in the interval [a, b]
then the inclusion ofM≤a intoM≤b is a homotopy equivalence. The same
is true replacingM by any stratum S ofV∗.

(ii) If there are no CVAI in [a, b] but there is a single affine critical value c ∈
[a, b] and it corresponds to the set of critical points z1, . . . ,zm then there
is a stratified flow deforming any chain C in M down to a chain in the
union of M<c with sufficiently small balls about each zi. When [c − ε, c +
ε] ⊆ (a, b), this induces a homotopy equivalence between (Mc+ε,Mc−ε)
and the direct sum of attachment spaces Mz,loc defined in Section 7.3
above (see also Definition C.31 and Figure C.6 in Appendix C).

The first part Theorem 7.44 directly implies Lemma 7.25. The main work
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in proving Theorem 7.44 comes from establishing the following result, which
requires bounding elements of a vector field. Although general stratified spaces
do not come equipped with Riemannian metrics, we deal only with spaces
embedded in Cd � R2d and the norm of any vector or covector refers to the
norm inherited from this embedding.

Lemma 7.45 ([BMP22, Lemma 2]). Suppose a < b are real numbers such that
hr̂ has no CVAI in the interval [a, b] and one affine critical value in c ∈ [a, b],
not at either endpoint. Then there is a vector field v on Cd

∗ ∩ h−1
r̂ [a, b] with the

following properties.

(i) v is smooth on strata and continuous on Cd
∗;

(ii) v is tangent to strata;
(iii) v is a controlled vector field in the sense of [Mat70, Section 9];
(iv) v is bounded;
(v) v has unit downward speed, meaning dhr̂(v) ≡ −1.

The first, relatively easy, step in establishing Lemma 7.45 is to show that
|dhr̂ | is bounded away from zero except near critical points.

Lemma 7.46 ([BMP22, Lemma 1]). Suppose h is a Morse function on a strat-
ified space V∗ ⊆ Cd

∗ , with no CVAI in [a, b]. Then, excluding an arbitrarily
small neighborhood N of critical points, the differential dh has its magnitude
bounded away from zero, meaning |dh| ≥ δ(N) > 0.

Proof It suffices to prove the result when dh is restricted to an arbitrary
stratum S . Let S [a,b] denote the elements of S with height in [a, b] and let
L = Rd × (R/2πR)d denote the logarithmic parametrizing space for Cd

∗ via
the exponential map exp : L → Cd

∗ . In this parametrization, hr̂ becomes
h̃ = hr̂ ◦ exp. This parametrization is useful because dh̃ is the constant vec-
tor r̂ (formally, dh̃ =

∑d
j=1 r jdx j + 0dy j is a constant with respect to the

embedding in L obtained from the embedding in Cd
∗ , pulled back via exp).

We use tildes to denote inverse images under this parametrization, meaning
˜critical = exp−1[critical] is the inverse image of the set of critical points

of the Morse function h.
Assume towards a contradiction that the norm of the tangential differential is

not bounded from below on S̃ [a,b]\N , whereN is a neighborhood of ˜critical

in L, and let x̃k be a sequence in S̃ [a,b] \ N for which |dh̃S̃ (x̃k)| goes to zero.
This sequence has no limit points whose height lies outside of [a, b] and no
limit points in ˜critical[a,b]. There are also no affine limit points outside of
˜critical, because if x → y with y in a substratum S̃ y then |dh̃S̃ y

(y)| ≤
lim infx→y |dh̃S̃ (x)| since the projection of the differential onto a substratum is
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at most the projection onto S̃ . By compactness, {xk}must have a limit point x ∈
CPd. It follows from ruling out noncritical points, and affine stationary points
with heights inside or outside of [a, b], that x lies at infinity. The sequence
therefore defines a CPAI of height c, contradicting the hypothesis and proving
the lemma. □

With Lemma 7.46 in hand, we outline the proof of Lemma 7.45 before re-
turning to Theorem 7.44.

Sketch of proof of Lemma 7.45 This lemma for proper height functions is the
usual Morse theoretic construction of stratified gradient-like vector fields, as
found in standard references [GM88; ABG70]. It is proved by using a partition
of unity to piece together the unit-speed downward gradient of hr̂ restricted
to each stratum and then extended to a neighborhood of the stratum in Cd

∗ via
the local product structure. Property (v), unit downward speed, then follows
from Lemma 7.46. In the nonproper case, the biggest headache is extending to
the product; this was the motivation for the notion of control data, developed
in [Mat70]. When hr̂ is not proper, there is no a priori guarantee that the de-
scent rate divided by the magnitude of the vector remains bounded away from
zero, even locally. This is because the Whitney condition fits these C∞ strata
in a way that is in principle only C0. In fact, Mather’s argument contains the
seeds of a proof for this fact, which is accomplished via some linear algebra
and further explicit use of the Whitney conditions. See [BMP22, Lemma 2] for
full details. □

Proof of Theorem 7.44 Let v be the vector field constructed in Lemma 7.45,
altered so as to be zero on M≤a. This vector field defines a flow Φ(x, t) such
that

•
d
dt
Φ(x, t) = v(x) when hr̂(x) ∈ (a, b];

• Φ(x, t) is defined for 0 ≤ t ≤ hr̂(x) − a and, for t in this range, hr̂(Φ(x, t)) =
hr̂(x) − t;

• the map ψ(x) = Φ(x, b − a) is a continuous map on M≤b with range M≤a

and fixingM≤a.

It follows from these properties that the inclusion ι : M≤a → M≤b is a ho-
motopy equivalence: ψ ◦ ι is the identity map onM≤a while ι ◦ψ is homotopic
to the identity map onM≤b via the homotopy Φ onM≤b × [0, b − a]. This is
sufficient to imply conclusion (i) of Theorem 7.44, and also proves the weaker
version of (ii) found in [BMP22], namely that any cycle in M≤b may be de-
formed to lie in the union of M≤c−ε with arbitrarily small neighborhoods of
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each critical point. However, this argument does not imply that the deforma-
tion is induced by a homotopy equivalence.

To that end, let κ(x) = min{|x − z| : z ∈ critical} denote distance to the
critical set. For s > 0, define a new vector field vs by

vs(x) =


v(x) κ(x) ≥ s

ρ(κ(x))v(x) κ(x) ∈ [s/2, s]

0 κ(x) ≤ s/2

where ρ is a smooth nondecreasing function with ρ(s/2) = 0 and κ(s) = 1.
Fix ε > 0 with [c − ε, c + ε] ⊆ (a, b) and let Φs(x, t) denote the flow defined

similarly to Φ but with vs in place of v. Let τ(x) = Φs(x, 2ε) denote the time
2ε map for the flow Φs. Because h = hr̂ is nonincreasing along Φs, points in
M≤c−ε remain inside M≤c−ε, hence the flow defines a homotopy equivalence
between the pairs (Mc+ε,Mc−ε) and (X,Mc−ε), where X = τ[Mc+ε].

Define a modified height function g = h ◦ τ. We claim that g has the same
critical points as h in h−1([c−ε, c+ε]). To see this, first observe that trajectories
of Φs are either rest trajectories at points in the set V0 = {x : vs(x) = 0} or else
never enter V0. Indeed, this follows from the fact that vs is tangent to all strata,
smooth on every stratum, and that trajectories of a flow defined by a smooth
vector field cannot merge. Inside V0, the height functions h and g are equal,
and hence have the same critical points. Outside V0, the differential dg|S can
never vanish because dg|S (v) < 0; this follows from the fact that for v ∈ S , the
map dg(v)(x) = d(h ◦ τ)(v)(x) sends v to dh(Dτ(v)). On trajectories, the map
Dτ carries vs ∈ Tx(S ) to ρ(τ(x)) ∈ Tτ(x)(S ), where ρ(τ(x)) > 0. Thus

dg(vs)(x) = ρ(τ(x))dh(vs)(τ(x)) = −ρ(τ(x)) < 0 ,

showing that dg|S is nonvanishing outside V0 and proving the claim.
The map τ takes all points ofM≤c+ε intoM≤c−ε, except possibly for those

whose trajectories come within distance s of the critical set within time 2ε.
Because v is bounded, trajectories coming within s of the (finite) critical set
within time 2ε are all contained in some compact set K, independent of s ∈
[0, 1]. Therefore, the difference X \ Mc−ε is bounded and g is a proper height
function on the pair (X,Mc−ε), in the sense that the inverse image of a compact
set in X \Mc−ε is compact.

We may now apply the results of stratified Morse theory (see Theorem D.21
in Appendix D). The result is that the pair (X,M≤c−ε) is homotopy equivalent
to the direct sum of pairs (N(z) ∪ Mc−δ,Mc−δ) as z varies over the critical
points of height c and N(z) can be chosen to be arbitrarily small neighbor-
hoods of these, after which δ is chosen sufficiently small. We have seen, in
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addition, that each cycle in X may be deformed into the union ofMc−δ and the
neighborhoods N(z) by running the flow vs, hence the homotopy equivalence
is induced by this flow. Finally, having shown that the flow induces a homotopy
equivalence between (Mc+ε,Mc−ε) and (X,Mc−ε), we can pick s sufficiently
small and N(z) and δ so that δ < ε, finishing the proof of part (ii). □

Notes

The rigorous foundation of the main theorems of this book in the framework of
Morse Theory is new to the second edition. Before the appearance of [BMP22],
Morse-theoretic results were not available because hr̂ is not, in general, a
proper function. Therefore, in the first edition, Morse theory was used only as
a motivation and individual results were obtained via hands-on deformations
and surgeries, informed by Morse theory but proved as special cases, tailored
to the individual hypotheses.

Asymptotic formulae in the presence of smooth strictly minimal points first
appeared in [PW02], followed by formulae for strictly minimal multiple points
in [PW04]. Results proving the irrelevance of non-critical minimal points were
derived in [Bar+10], and then in greater generality in [BP11], with an overview
presented in [Pem10]. The proof sketch of Lemma 7.6 was suggested to us by
Tony Pantev.

The second part of Theorem 7.44 is an improvement on the result originally
published in [BMP22]. There, it shown that cycles may be pushed down into
the union of levels below the critical value and neighborhoods of the critical
points, but not that this union is homotopy equivalent to the space at a level
above the critical value. The sticking point is that the latter requires a defor-
mation remaining at all times within the union, which requires geometric facts
developed at length throughout [GM88]. The present proof avoids this by us-
ing the results of [BMP22] to eliminate escape to infinity, then finishing by
using results of [GM88] as a black box.

Additional exercises

Exercise 7.15. When d = 2, the map Relog : V∗ → Rd is locally one-to-one at
most points. We say that amoeba( f ) is a doublet if Relog−1(x) has cardinality
precisely 2 for all x in the interior of amoeba( f ). Give a proof by picture that
if amoeba( f ) is a doublet then there is a natural isomorphism κ between the
reduced homology group H̃0(amoeba( f )c) and H1(V∗), defined by κ([x′] −
[x]) = INT(T(x),T(x′)).
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Exercise 7.16. Let Q(x, y) = 5 − x − x−1 − y − y−1 and F(x, y) = 1/Q(x, y).

(a) Sketch the amoeba of Q and mark a point in each component of amoeba(Q)c.
(b) Recall that the Fourier series of F is the series F̂(x, y) =

∑
a,b∈Z ca,bei(ax+by),

where

ca,b =
1

(2π)2

∫ π

−π

∫ π

−π

F(x, y)e−in(ax+by)dxdy.

The Fourier series F̂ is related to the Laurent expansion of F corresponding
to one component of amoeba( f )c. Identify this component, and describe
the relation.

(c) Prove that amoeba(Q) is a doublet.
(d) Let x = (0, 0) and x′ = (0, 2). Show that x and x′ are in different

components of the complement of amoeba(Q), and describe or sketch
INT(T(x),T(x′)).

(e) Find all critical points ofV∗ in the direction r = (1/3, 2/3) and mark them
on your sketch from part (a).

(f) Deform the intersection cycle γ you found in part (d) until its highest and
lowest points are critical points in direction r = (1/3, 2/3). At which of
these points is the phase hr̂ maximized on γ?

(g) What does your result tell you about the coefficients of the Fourier series
for F?

Exercise 7.17. For Q(x, y, z) = z(x − y)(x − y + z − xyz), as in Exercise 7.12,
state the dimension of the stratum containing the origin, describe the normal
link, and describe the local homology group H3(Mp,loc) when p is the origin
and r is a direction of your choice (as usual,M = Cd

∗ \ VQ).
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Effective computations and ACSV

In this chapter we revisit the key ACSV concepts introduced in Chapters 6
and 7 — critical points, minimal points, Whitney stratifications, and polyno-
mial amoebas — through the viewpoint of explicit computation. First, Sec-
tion 8.1 describes techniques for manipulating the solutions of polynomial sys-
tems. Section 8.2 then illustrates how to use these techniques to characterize
the critical points of a rational function by determining an algebraic Whitney
stratification, computing a set of polynomial equalities and inequalities for the
critical points on each stratum, and reducing these polynomial equalities into
a convenient form. Our most explicit results hold for minimal critical points,
which are the critical points on the boundary of the domain of convergence of
the series under consideration. Section 8.3 describes how to verify minimal-
ity of critical points, which can be viewed as determining boundary points on
amoeba complements. Finally, Section 8.4 describes additional computations
that must be performed in order to find coefficient asymptotics.

Throughout this chapter we fix a ratio F(z) = P(z)/Q(z) of coprime poly-
nomials P and Q and a convergent Laurent expansion F(z) =

∑
r∈Zd arz

r that
holds in the domain of convergence D = Relog−1(B) for a component B of
amoeba(H)c (the most common case occurring when D is the domain of con-
vergence of a power series expansion). We say that a property involving Q is a
generic property if it holds for all choices of Q except those whose coefficients
lie in a proper algebraic set depending only on the degree of Q (this is an al-
gebraic analog of a property holding almost surely). Our goal is to determine
asymptotics of a coefficient sequence ar = [zr]F(z) as r → ∞ with r̂ varying
in some compact set of directions.

Because the vanishing set of a polynomial is the same as the vanishing set of
any positive integer power of that polynomial, we recall from Chapter 7 that the
square-free part Q̃ of a polynomial Q is the product of its distinct irreducible
factors over the complex numbers.

237
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Exercise 8.1. Show that Q̃ can be computed by dividing Q by the greatest
common divisor of all of its first order partial derivatives.

8.1 Techniques for polynomial systems

Before turning to the computations used in our asymptotic analyses, we first in-
troduce the algebraic background needed to describe our approach. The critical
points of a multivariate generating function are described by a finite collection
of polynomial equalities and inequalities, and we manipulate the solutions to
these polynomial systems by encoding them in polynomial ideals and applying
techniques from computer algebra. Once we have a convenient representation
for the critical points of a rational function, related quantities can be computed
via the same representation, as we show below.

We work here in a polynomial ring K[z] over a field K of characteristic zero:
in applications K is typically the field Q or the field Q(r) of rational functions
in the parameters r encoding a generic direction. A polynomial ideal in K[z]
is a non-empty subset I ⊂ K[z] that is closed under addition of elements in I
and closed under multiplication by any element of K[z]. Hilbert’s basis theo-
rem [CLO07, Section 2.5] states that every ideal I has a finite generating set
{g1, . . . , gr} ⊂ K[z] such that the elements of I are precisely the K[z]-linear
combinations of g1, . . . , gr. We write I = ⟨g1, . . . , gr⟩ when I is generated by
g1, . . . , gr.

If I ⊂ K[z] is a polynomial ideal then we use the notationV(I) to denote the
algebraic variety consisting of all roots of all elements of I over the algebraic
closure of K. If I = ⟨g1, . . . , gr⟩ thenV(I) is the set of solutions, in an algebraic
closure of K, to the polynomial system

g1(z) = · · · = gr(z) = 0

defined by the generators. Typically, we start with an ideal I defined by a spe-
cific generating set and want to compute another generating set that allows
us to better understand properties of V(I). This area of computer algebra is
well-established, with algorithms for manipulating polynomial ideals already
implemented in many computer algebra systems.

Term orders and polynomial division

One of the most basic questions we can ask about an ideal is whether or not it
contains a specific element f ∈ K[z]. In one variable every ideal I is generated
by a single polynomial, I = ⟨g⟩, so f ∈ I if and only if f (z) = a(z)g(z) for
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some a(z) ∈ K[z]. The (univariate) polynomial division algorithm for f (z)/g(z)
produces a quotient a(z) and a remainder r(z) such that f (z) = a(z)g(z) + r(z)
and the degree of r is less than the degree of g. Thus, f ∈ I if and only if the
division algorithm returns a remainder of zero.

The division algorithm works because we can repeatedly divide the high-
est degree term of g into the highest degree term of f until the degree of the
remainder is less than the degree of g. To duplicate this approach in several
variables we therefore need to define an ordering on multivariate monomials.
Our ordering must be compatible with multiplication, and there must be no
infinite chains of ever-smaller elements, motivating the following definition.

Definition 8.1. A monomial order on K[z] is a relation > on the set of mono-
mials zr such that

(i) > is a well-order (i.e., it is a total order and every nonempty subset of
K[z] has a minimal element), and

(ii) if α, β, γ ∈ Nd and zα > zβ then zα+γ > zβ+γ.

One common term order is the lexicographic term order, where zα > zβ if
and only if α j > β j for some index j and αi = βi for all i < j. Another common
order is the total degree term order, in which zα > zβ if and only if either
the degree of zα is greater than the degree of zβ or the degrees are equal and
zα > zβ in the lexicographic order.

Exercise 8.2. Rank the monomials

y10 xz3 yz x2z xyz

in increasing order, first under the lexicographic term order and then under the
total degree term order.

Definition 8.2. For a polynomial p(z) =
∑
α∈A cαzα with non-zero coefficients

cα for α ∈ A, the leading term of the polynomial p under a monomial ordering
> is the term LT(p) := cαzα with maximum monomial zα according to >.

Monomial orders allow one to run a multivariate division algorithm to divide
a polynomial f by a list of polynomials L = [g1, . . . , gm] to obtain quotients ai

and a remainder r such that p(z) =
∑

i ai(z)gi(z) + r(z) and LT(r) is not divis-
ible by any LT(gi). Roughly, we run through the elements of L in order, trying
to divide the leading term of f by the leading term of the gi under considera-
tion. If LT(gi) divides LT( f ) then we add c = LT( f )/ LT(gi) to the quotient ai,
replace f by f − cgi, and repeat. If the leading term of f is not divisible by
any LT(gi) then we add the leading term of f to the remainder r, replace f by
f − LT( f ), and repeat from the previous step.
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In order to make the multivariate division algorithm deterministic, it is im-
portant to check divisibility of LT( f ) by LT(gi) in the order the gi appear in L,
as the remainder returned by the division algorithm can be different for differ-
ent orderings of the gi. Related to this technicality is a large problem: even if
f can be written as a polynomial combination of the gi, meaning f lies in the
ideal I = ⟨g1, . . . , gm⟩, it is possible for the multivariate division algorithm to
return a non-zero remainder. The trick to working around this difficulty is to
compute a particularly nice generating set for the ideal I = ⟨g1, . . . , gm⟩, which
also allows us to resolve many other questions about polynomial ideals.

Gröbner bases

Fix a monomial order > and let I be an ideal in K[z] where K is algebraically
closed.

Definition 8.3. A Gröbner basis for I with respect to the monomial order > is
a generating set G = {g1, . . . , gk} for I with the property that for any nonzero
f ∈ I the leading term LT( f ) is divisible by LT(gi) for some i. The basis is a
reduced Gröbner basis if for all i , j no monomial of gi is divisible by LT(g j).

Every non-zero ideal has a Gröbner basis with respect to any ordering, re-
duced Gröbner bases are unique and algorithmically computable, and algo-
rithms to find them have been implemented in most computer algebra systems.
The size and computation time of finding a Gröbner basis can depend heavily
on the term order used. If G is a Gröbner basis for I and f ∈ K[z] then

• the remainder when f is divided by the elements of G is unique (it doesn’t
depend on the order in which the elements of G are listed),

• f ∈ I if and only if the remainder when f is divided by G is zero,
• V(I) is empty if and only if G contains the constant 1,
• V(I) is finite if and only if there are a finite number of monomials not divis-

ible by a leading term of the elements of G, and
• if G is a Gröbner basis for the lexicographical order and V(I) is finite then

G contains a non-zero univariate polynomial in f ∈ K[zd].

The first two items here follow directly from the properties of Gröbner bases,
while the third item is Hilbert’s Nullstellensatz [CLO07, Section 4.1]. The
fourth item is proved in [CLO07, Section 3.5] and the final item, sometimes
known as the elimination theorem, can be found in [CLO07, Section 3.1]. The
elimination theorem, which shows how lexicographical Gröbner bases general-
ize the classical resultant beyond two bivariate polynomials, is key as it allows
us to conveniently encode the solutions of a polynomial system.
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Example 8.4. Consider the generating function

F(x, y) =
∑
r,s≥0

arsxrys =
xy(1 − x)3

(1 − x)4 − xy(1 − x − x2 + x3 + x2y)
,

discussed further in Example 12.23 of Chapter 12. If P and Q denote the
numerator and denominator of F, then the ideal I formed by Q and all its
partial derivatives characterizes points where V could be non-smooth. Us-
ing the lexicographic term order with x > y we obtain a Gröbner basis B =[
x2 − 2x + y + 1, xy − y, y2

]
. Solving the last polynomial of B, which contains

only y, implies that any point inV(I) must satisfy y = 0, and substituting this
into the first element of B givesV(I) = {(1, 0)}. Thus,V is a locally a manifold
near any of its points except (1, 0). A Taylor expansion of Q near (1, 0) shows
that it locally looks like two curves touching at a point. ◁

Example 8.5. The fact that V(I) contains only points with explicit rational
coordinates in Example 8.4 is not reflective of the general situation. Often, one
has a point w of interest with (non-rational) algebraic coordinates defined only
implicitly and wants to simplify another algebraic quantity depending on w.
When all the quantities involved are algebraic, the results can be simplified
using the multivariate division algorithm and Gröbner bases.

For instance, suppose we want to compute an expansion of Q in Example 8.4
at one of the points (a, b) ∈ V where a =

√
2 (there are two such points,

each of which has y a degree four algebraic number). Dividing the polynomial
Q(X + a,Y + b) by the ideal [a2 − 2,Q(a, b)] using, for instance, the Gröbner
basis with respect to the lexicographic order where a > b > X > Y gives the
polynomial

−(6ab + 6b2 − 20a − 5b + 28)X − (4ab − a + 2)Y + · · · − X4Y

describing the expansion of Q at (a, b) in terms of X = x − a and Y = y − b.
The coefficients have been reduced using the algebraic relations satisfied by a
and b, in this case showing that Q vanishes to first order at (a, b). ◁

Gröbner basis computations also serve as primitives in algorithms to com-
pute many other fundamental properties of ideals I, J ⊂ K[z], including

• the radical
√

I =
{
f ∈ K[z] : f k ∈ I for some k ∈ N

}
;

• the prime decomposition of I, which is the set of prime ideals P1, . . . , Pr

such that
√

I = P1 ∩ · · · ∩ Pr (an ideal is prime if f g ∈ I implies f ∈ I or
g ∈ I);
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• the irreducible decomposition of V(I), which is the set of irreducible vari-
etiesV1, . . . ,Vs such thatV(I) = V1 ∪ · · · ∪ Vs (an irreducible variety is
a variety that cannot be written as the union of two proper subvarieties);

• the ideal quotient I : J, which is the ideal { f ∈ K[z] : f g ∈ I for all g ∈ J};
• the ideal saturation I : J∞, which is defined as the largest ideal in the even-

tually stable increasing chain of ideals

I ⊂ I : J ⊂ I : J2 ⊂ · · · .

Geometrically, V(I : J∞) is the smallest algebraic set containing all points
inV(I) \ V(J);

• the dimension of an ideal I, equal to the dimension of the algebraic setV(I)
and defined as the maximum d ∈ N such that there exist irreducible varieties
V1, . . . ,Vd withV0 ⊊ V1 ⊊ · · · ⊊ Vd ⊊ V(I).

Describing algorithms for these operations is the domain of a computer algebra
textbook, such as [BW93], and we simply use implementations in computer
algebra software as black boxes.

Example 8.6. Consider the ideals I = ⟨3 − x − 2y, 3 − 2x − y⟩ and J = ⟨x − y⟩.
Then I is prime and

√
I = I, and the quotient and saturation of I by J both

equal the ideal ⟨1⟩ = Q[x, y]. The ideal I has dimension 0, since V(I) is the
single point (1, 1). ◁

8.2 Computing critical points

The results of Chapter 7 illustrate that the main objects involved in our asymp-
totic analysis are the critical points of F in directions r. In order to describe
the critical points of F, we must first decompose the singular set V of F into
a Whitney stratification. Recall from Section 7.3 (or Appendix D) that this is a
partition ofV into smooth manifolds of various dimensions satisfying specific
conditions on how they fit together.

8.2.1 Effective Whitney stratification

The algebraic set V(Q) = V(Q̃) forms the singular variety V. Lemma 7.6
from Chapter 7 implies that the algebraic set W1 defined by the polynomial
system

Q̃(z) = Q̃z1 (z) = · · · = Q̃zd (z) = 0 (8.1)
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encodes the points whereV is not a smooth manifold. In particular, if a Gröbner
basis of the ideal I = ⟨Q̃, Q̃z1 , . . . , Q̃zd ⟩ contains the element 1 thenW1 = ∅, so
V is everywhere a smooth manifold and a Whitney stratification of V is just
V itself.

Remark 8.7. The algebraic Sard theorem [BPR03, Theorem 5.56] states that
V is generically a manifold, which is unsurprising as (8.1) contains d + 1
polynomial equations in d variables; see also [Mel21, Section 5.3] for an ele-
mentary derivation in our context.

IfW1 is non-empty, then it is an algebraic set whose dimension is smaller
than the dimension of V. The singularities ofW1, in turn, form an algebraic
setW2 of dimension smaller than the dimension ofW1. Thus, we can obtain
a nesting of structures

V =W0 ⊋W1 ⊋W2 ⊋ · · · ⊋Wr = ∅

such that each differenceWk \Wk+1 is a smooth manifold. The polynomials
defining the algebraic set Wk+1 can be computed recursively from the poly-
nomials definingWk using algorithms for ideal dimension and prime decom-
position, and the Jacobian Criterion [Eis95, Corollary 16.20] for singularity.
Since V is the union of all consecutive differences Wk \ Wk+1, this gives a
partition ofV into smooth manifolds.

Although conceptually simple, this approach does not, in general, compute
a Whitney stratification of V. Thankfully, there is a Whitney stratification of
the same form. In the early 1980s, Teissier [Tei82, Proposition VI.3.2] proved
the existence of the canonical Whitney stratification ofV, defined by a nested
sequence of algebraic sets

V = F0 ⊋ F1 ⊋ F2 ⊋ · · · ⊋ Fm = ∅ (8.2)

such that the set of all connected components of Fk \ Fk+1 for all k form
a Whitney stratification of V and every Whitney stratification of V is a re-
finement of this canonical stratification. Older algorithms to compute Whitney
stratifications use quantifier elimination and cylindrical algebraic decomposi-
tion [Ran98; MR91], while recent work [DJ21; HN22] gives more practical
algorithms1 based around Gröbner basis computations.

Remark 8.8. All combinatorially interesting multivariate generating functions
that the authors have encountered in the literature have Whitney stratifications
that can be computed directly by hand. Often, this is because V is either a

1 Helmer and Nanda [HN22] give Macaulay2 implementations at
http://martin-helmer.com/Software/WhitStrat/.

http://martin-helmer.com/Software/WhitStrat/
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smooth manifold or can be expressed as the union of smooth manifolds in-
tersecting transversely. However, even in applications with more complicated
singularities, such as the isolated quartic singularity of Example 11.47, a Whit-
ney stratification is obvious from inspection.

Example 8.9. Recall the generating function

F(x, y) =
∑
r,s≥0

arsxrys =
xy(1 − x)3

(1 − x)4 − xy(1 − x − x2 + x3 + x2y)

from Example 12.23. The singular variety V admits a Whitney stratification
with strata {p} andV \ {p} where p = (1, 0). ◁

8.2.2 Critical point equations

From now on we assume that we have the canonical Whitney stratification (8.2)
of V, computed either by a computer algebra system or by hand. For each
1 ≤ k ≤ m let Ik denote the set

Ik = { f ∈ K[z] : f (z) = 0 for z ∈ Fk}.

Exercise 8.3. Prove that, for each k, the set Ik is an ideal with Ik =
√

Ik.

Fixing a value of k ∈ {0, . . . ,m − 1}, our goal is to compute polynomial
equalities and inequalities characterizing the critical points on each connected
component of Fk \Fk+1 = V(Ik) \V(Ik+1). First, we use a Gröbner basis based
algorithm to compute the prime decomposition Ik = P1 ∩ · · · ∩ Pℓ. Because all
points in an intersection V(Pi) ∩ V(P j) with i , j are non-smooth points of
Fk, they are contained in Fk+1. This means we can compute the critical points
on the zero set V(P j) of each prime ideal in the decomposition of I, remove
the points of Fk+1, then take the union of these sets.

The dimension δ of the prime ideal P j can be computed using a Gröbner
basis algorithm, from which we can compute the codimension c = d−δ. If P j =

⟨p1, . . . , ps⟩ then, after translation to the origin, the tangent space to V(P j) at
each smooth point p ∈ V(P j) is the codimension c linear subspace of Cd

normal to all of the gradients (∇ p1)(p), . . . , (∇ ps)(p); see Mumford [Mum95,
Section 1.A].

Recall the logarithmic gradient ∇log f = (z1 fz1 , . . . , zd fzd ). Because the height
function hr is the real part of h̃r(z) = −r · log(z), the point p is a critical point
lying in V(P j) \ Fk+1 if and only if the gradient vector −(r1/p1, . . . , rd/pd) of
h̃r at z = p is normal to the tangent space of V(P j) at p. Since the tangent
space is a linear subspace of codimension c, and we consider only points with
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non-zero coordinates, we see that p is a critical point if and only if the matrix

M(z, r) =


(∇log p1)(z)

...

(∇log ps)(z)
r1 · · · rd

 (8.3)

has rank c when z = p, which occurs if and only if all (c + 1) × (c + 1) minors
of M(p, r) vanish. Thus, the critical points of F contained inV(P j) \ Fk+1 are
defined by the vanishing of the polynomials p1(z), . . . , ps(z) together with the
(c + 1) × (c + 1) minors of M and the non-vanishing of a generating set of Ik+1

together with the polynomial z1 · · · zd (since we only search for critical points
with non-zero coordinates). Because our Whitney stratification is defined by a
finite number of algebraic sets, we ultimately obtain the following.

Proposition 8.10. The set critical(r) of all (stratified) critical points of any
rational function F ∈ Q(z) in a direction r̂ is defined by a finite collection of
polynomial systems overQ[r][z], each involving polynomial equalities and in-
equalities. The polynomials in these (in)equalities can be computed explicitly.

The complexity of computing critical points, discussed in Melczer and Salvy
[MS21], is typically lower than the complexity of verifying which (if any) are
minimal points.

Example 8.11. In the simplest case V = V(Q) is a smooth manifold, so the
canonical Whitney stratification ofV is specified by F0 = V and F1 = ∅. Then
I0 = (Q̃) is generated by the square-free part of Q and critical(r) is defined
by Q̃(z) = 0 and the vanishing of the 2 × 2 minors of

M(z, r) =
(
z1Q̃z1 (z) · · · zdQ̃zd (z)

r1 · · · rd

)
,

matching Lemma 7.8. Note that we can skip the step of decomposing I0 = ⟨Q̃⟩
into its prime factors: V being smooth implies that the prime factors of I0 are
distinct and each corresponds to a variety of codimension 1. ◁

Remark 8.12. Given z ∈ V let L(z) denote the logarithmic normal space to
the stratum S containing z, given by the span of the logarithmic gradients of
the functions locally defining S at z. Then z ∈ critical(r) if and only if
r ∈ L(z), and this defines a binary relation on (V,Rd).

We end this section with some examples in low dimensions.
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Example 8.13 (binomial coefficients). Recall the binomial coefficient gener-
ating function

1
1 − x − y

=
∑
r,s≥0

(
r + s
r, s

)
xrys.

Since Q(x, y) = 1− x− y we find ∇Q = (−1,−1) never vanishes, so the variety
V is a smooth manifold. The smooth critical point equations (7.8) form the
polynomial system

1 − x − y = 0

−sx = −ry,

which we solve to obtain the unique critical point (x, y) =
( r
r + s

,
s

r + s

)
= r̂.

◁

Example 8.14 (Delannoy numbers). Recall from Example 2.7 that the denom-
inator for the Delannoy generating function is given by Q(x, y) = 1− x−y− xy.
To check whether V is a manifold, we form the ideal I = ⟨Q,Qx,Qy⟩ and
compute the reduced Gröbner basis [1], meaningV(I) = ∅ andV is a smooth
manifold.

To characterize the critical points in a direction r̂, where r = (r, s), we
form the ideal J = ⟨Q, sxQx − ryQy⟩ and compute the reduced Gröbner basis
G = {p(x, y), g(y)} of J, where p(x, y) = rx− sy− r+ s and g(y) = sy2+2ry− s.
Solving the quadratic g(y) for y gives

y =
−r ±

√
r2 + s2

s
and back substitution into p(x, y) implies that critical(r, s) consists of the
two points √r2 + s2 − s

r
,

√
r2 + s2 − r

s

 and

−√r2 + s2 − s
r

,
−
√

r2 + s2 − r
s

 .
(8.4)

We will see later that the first point is the one that determines the asymptotics
of ars as r, s→ ∞. ◁

Example 8.15 (two intersecting planes). Let Q(x, y, z) = A(x, y, z)B(x, y, z)
with A(x, y, z) = 4 − x − 2y − z and B(x, y, z) = 4 − 2x − y − z. The zero set
V = V(Q) is the union of two hyperplanes V1 = V(A) and V2 = V(B)
that intersect transversely in the line ℓ = V(A, B). The canonical Whitney
stratification ofV is given by the algebraic sets

V = F0 ⊃ F1 ⊃ F2 = ∅
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with F1 = ℓ, and corresponding ideals I0 = ⟨AB⟩ and I1 = ⟨A, B⟩. The ideal I0

has the prime decomposition I0 = ⟨AB⟩ = P1∩P2 with P1 = ⟨A⟩ and P2 = ⟨B⟩,
and the strata ofV are

S 1 = V1 \ ℓ, S 2 = V2 \ ℓ, and S 1,2 = ℓ ,

see Figure 8.1.

Figure 8.1 Critical points on different strata whenV is two intersecting planes.

Critical points in the direction r̂, where r = (r, s, t), on the stratum S 1 are
defined by the vanishing of A(x, y, z) and the 2 × 2 minors of the matrix(

xAx yAy zAz

r s t

)
together with the non-vanishing of B(x, y, z). Solving

4 − x − 2y − z = tx − rz = 2ty − sz = 0

in (x, y, z) gives the point σ = 1
r+s+t (4r, 2s, 4t) = (4r̂, 2ŝ, 4t̂) which lies in S 1

unless 2r = s, in which case the point is in ℓ. Finding the critical point on
S 2 is analogous and gives the point τ = (2r̂, 4ŝ, 4t̂) unless 2s = r. These
critical points are the two points marked with dots that are not on the line of
intersection in Figure 8.1.

Critical points on ℓ are defined by the vanishing of A(x, y, z), B(x, y, z), and
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the 3 × 3 minor (i.e., determinant) of the matrix
xAx yAy zAz

xBx yBy zBz

r s t

 .
Solving the resulting polynomial system

4 − x − 2y − z = 0

4 − 2x − y − z = 0

ryz + sxz − 3txy = 0

gives the point ω = (4/3)(r̂ + ŝ, r̂ + ŝ, 3t̂), which is the unique point on ℓ at
which (r, s, t) lies in the plane spanned by the logarithmic tangents (x, 2y, z)
and (2x, y, z) to the planes defined by A and B.

Thus, critical(r, s, t) consists of the points σ, τ , and ω, which are distinct
unless 2r = s (in which case σ = ω) or r = 2s (in which case τ = ω). For
z ∈ ℓ the space L(z) is the two-dimensional span of the log-gradient vectors
of A and B at z, while for z in S 1 (respectively S 2) the space L(z) is the one-
dimensional space defined as the span of the log-normal to A (respectively B)
at z. ◁

The last three examples have critical points that are either rational functions
of r or require only square roots. In general we may obtain algebraic functions
of arbitrary complexity, and it is often best to encode critical points via their
minimal polynomials.

Example 8.16. Again consider the generating function

F(x, y) =
∑
r,s≥0

arsxrys =
xy(1 − x)3

(1 − x)4 − xy(1 − x − x2 + x3 + x2y)
.

The smooth critical points of F in the direction r̂, where r = (r, s), are encoded
by the ideal ⟨Q, sxQx − ryQy⟩. Writing λ = s/r, the Gröbner basis of this ideal
with respect to the lexicographic term order where y > x (which gives a simpler
result than x > y) contains a polynomial of the form (1 − x)5βλ(x) where

βλ(x) = (1+λ)x4+4(1+λ)2x3+10(λ2+λ−1)x2+4(2λ−1)2x+ (1−λ)(1−2λ)

is irreducible for generic λ. There is some simplification for particular values
of λ, for instance the roots of the polynomial β1/2(x) = x2(x2 + 6x − 5/3) lie in
a quadratic extension of Q. ◁
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8.2.3 Critical points at infinity

As seen in Chapter 7, our Morse-theoretic decompositions hold in the absence
of critical points at infinity (CPAI). In this section we give an algebraic test,
using Gröbner bases, to certify the absence of CPAI.

So far in this chapter we have dealt with affine critical points, and we now
extend this to consider points in projective space. A polynomial P(z) is a ho-
mogeneous polynomial if every monomial appearing in P has the same degree
δ; equivalently, P(λz) = λδP(z) when λ is a variable. The homogenization
of a polynomial P ∈ K[z] is the homogeneous polynomial Ph ∈ K[z0, z] de-
fined by Ph(z0, z) = zdeg P

0 P(z1/z0, . . . , zd/z0), and the homogenization of an
ideal I ⊂ K[z] is the ideal Ih = {Ph : P ∈ I} ⊂ K[z0, z]. If {g1, . . . , gr} is a
Gröbner basis of I with respect to any monomial order where zα > zβ when-
ever |α| > |β| then Ih is generated by the set of homogenizations {gh

1, . . . , g
h
r }

(see [CLO07, Section 8.4]). Because Ih is generated by homogeneous polyno-
mials, p ∈ V(Ih) implies λp ∈ V(Ih) for all λ ∈ C so we can view the variety
V(Ih) as a subset of complex projective space CPd.

Remark 8.17. The elements of V(I) can be viewed as the elements of V(Ih)
with z0 = 1, while the limit of points inV(I) “at infinity” can be viewed as the
elements ofV(Ih) with z0 = 0. If I = ⟨ f1, . . . , fr⟩ for an arbitrary generating set
{ f1, . . . , fr} then J = ⟨ f h

1 , . . . , f h
r ⟩ is an ideal of K[z0, z] contained in Ih, how-

ever J may be strictly smaller than Ih. Nonetheless, this containment implies
thatV(Ih) = ∅ wheneverV(J) = ∅.

Fix a direction r and let P be an element of the prime decomposition of an
ideal I(Fk) coming from the canonical Whitney stratification F0 ⊃ F1 ⊃ · · · ⊃

Fm of V. As seen above, the critical points on a stratum of V(P) \ Fk+1 ⊂

Fk \ Fk+1 in a direction y are encoded by the vanishing of a finite collection C
of polynomials containing a generating set p1, . . . , ps of P together with appro-
priate minors of the matrix M(z,y) in (8.3). To detect CPAI in the direction
r, it is tempting to homogenize the polynomials in C to obtain a new set of
polynomials C′ and then search for any common solutions to the elements of
C′ where z0 = 0 and y = r. Unfortunately, this approach is too weak to form a
useful test: homogenizing the elements of C means thatV(C′) can have com-
plicated behavior at infinity that is completely unrelated to the behavior of
V(C).

We get around this difficulty by using ideal saturation. Recall from above
that the saturation of an ideal I by another ideal J is an ideal I : J∞ whose
zero setV(I : J∞) is the closure ofV(I) \V(J). Saturating the ideal generated
by the elements of C′ with the ideal ⟨z0⟩ leaves only the points of V(C′) that
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are limits of points in V(C). Note that it is crucial to leave the direction y as
a vector of variables when performing the saturation: CPAI in the direction r

are limits of critical points in directions approaching r, and substituting y = r

before performing the saturation will leave only points that are limits of critical
points in the precise direction r. Performing this saturation, then substituting
y = r and searching for non-trivial solutions at infinity forms an effective
test to certify the absence of CPAI. Note that CPAI also occur when one of
the variables zk is zero, and we test for this analogously. Ultimately we obtain
Algorithm 1, taken from [BMP22], along with the simplified Algorithm 2 that
works when the singular varietyV is a smooth manifold.

Algorithm 1: Algorithm to compute CPAI.
Input: Polynomial Q ∈ K[z], direction r and polynomial generators of

algebraic sets F0 ⊃ F1 ⊃ · · · ⊃ Fm defining the canonical
Whitney stratification ofV(Q).

Output: Set S of pairs of ideals in K[z0, z] such that if there is a CPAI
in the direction r then there exists (A, B) ∈ S with
V(A) \ V(B) , {0}.

Set S = ∅
For j from 1 to m − 1:

Compute the prime decomposition F j = P1 ∩ · · · ∩ Pr

For each I ∈ {P1, . . . , Pr}:
Let c be the codimension of I
Let C be the ideal generated by I and the (c + 1) × (c + 1)

minors of M(z,y)
Homogenize C in the z variables with the new variable z0 to

obtain the ideal C′

Saturate C′ by z0z1 · · · zd to obtain the ideal D
Let A be the ideal generated by D and z0z1 · · · zd after

substituting y = r

Let B be the homogenization of I(F j+1)
Add (A, B) into S

Return S

Example 8.18. Let

F(z1, z2, z3, z4) =
1

1 − z1 − z2 − z3 − z4 + 27z1z2z3z4

and consider the main diagonal direction. Applying Algorithm 2, we see that
there are no CPAI. ◁
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Algorithm 2: Simplified algorithm to compute CPAI assuming V is
smooth.

Input: Polynomial Q ∈ K[z] withV(Q) smooth and direction r.
Output: Ideal I ⊂ K[z0, z] such that if there is a CPAI in the direction

r thenV(I) , {0}.
If Q is not square-free then replace it with its square-free part Q̃
Let C be the ideal generated by Q and the polynomials

y jz1Qz1 − y1z jQz j for 2 ≤ j ≤ d
Homogenize C in the z variables with the new variable z0 to obtain the

ideal C′

Saturate C′ by z0z1 · · · zd to obtain the ideal D
Substitute y = r into D and return the resulting ideal with the generator

z0z1 · · · zd added

When r ∈ Nd
∗ we can furthermore characterize the heights of any CPAI by

adding the polynomial p(η, z0, z) = ηz|r|0 −z
r to the ideal C in Algorithm 1 (or

Algorithm 2 in the smooth case), where η is a new variable. The height of any
CPAI are given by − log |η| as η ranges among its values at the CPAI encoded
by the output of this modified algorithm. This technique can be extended to
any r ∈ Qd

∗ by scaling variables — replacing each zk by an integer power of zk

— and taking numerators of the (now rational function) generators of the ideal
C.

Example 8.19. The following two examples are taken from [BMP22]. Let
Q = 1 − x − y − xy2 and consider the main diagonal direction. The adapted
algorithm of the previous paragraph yields a CPAI (0, 1) with height 0, and an
affine critical point (1/2,

√
2 − 1) of greater height.

Now consider Q = −x2y − 10xy2 − x2 − 20xy − 9x + 10y + 20, again with
respect to the main diagonal. The algorithm in this case yields a critical point
at infinity having height 0, and several affine points having lower height.

In the first case, the CPAI does not contribute to dominant asymptotics,
which are determined by the affine critical point of higher height. In the second
case, however, the CPAI does contribute to dominant asymptotics. ◁

8.3 Verifying minimal points

Our most explicit asymptotic results hold for minimal critical points. In a typ-
ical application we encode a finite number of critical points by polynomial
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equations computed through the techniques of Section 8.2, and want to verify
which are minimal. Verifying minimality requires testing inequalities between
the moduli of coordinate variables, a real algebraic problem that is more ex-
pensive than simply computing critical points, but effective tests for minimality
follow from the results in Section 6.4 of Chapter 6.

Combinatorial expansions
The simplest situation holds for combinatorial power series expansions, which
we recall are power series expansions with all but a finite number of coeffi-
cients being nonnegative. Corollary 6.39 implies that a point w ∈ V is minimal
with respect to such an expansion if and only if

Q(t|w1|, . . . , t|wd |) , 0 (0 ≤ t ≤ 1),

which we can test algorithmically using Gröbner bases.

Example 8.20. We return again to the generating function

F(x, y) =
∑
r,s≥0

arsxrys =
xy(1 − x)3

(1 − x)4 − xy(1 − x − x2 + x3 + x2y)

from Example 12.23 which, as a multivariate generating function, is combina-
torial.

In the direction r̂ = (3/4, 1/4) there are 4 smooth critical points correspond-
ing to the 4 roots of the quartic for x derived in Example 8.16. The point (1, 0)
also occurs as a solution to the critical point equations, but is not a smooth
point, and we ignore it for now. Only one of the four smooth critical points
σ = (0.45040 . . . , 0.39142 . . . ) lies in the first quadrant, and there are no other
critical points with the same coordinate-wise modulus. Thus σ is the only
smooth critical point which could be minimal. To verify that it is minimal,
we need only check that the variety defined by adding Q(tx, ty) = 0 to the
critical point equations has no solutions with (x, y) = σ and 0 < t < 1. An-
other Gröbner basis computation shows that this new variety has 21 solutions,
including the 5 critical points which correspond to t = 1. The only element of
the variety where (x, y) = σ has t = 1, proving that σ is minimal. ◁

The difficult part of this approach is working with the critical points implic-
itly through their defining algebraic equations. Gröbner basis computations can
be slow, and theoretical complexity guarantees are weak in the worst case. Mel-
czer and Salvy [MS21] give a complexity analysis for smooth varieties using a
Kronecker representation, which parametrizes the generically finite set of crit-
ical points by the roots of a univariate polynomial in a new variable that is an
integer linear combination of z1, . . . , zd, t. Other alternatives include homotopy
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methods for polynomial system solving [LMS22], or proving minimality by
hand using specialized results like the Grace-Walsh-Szegő theorem discussed
in Section 6.4.

For a combinatorial Laurent expansion, Corollary 6.39 implies that w ∈ V
is minimal if and only if

Q
(
|x1|

t |w1|
1−t, . . . , |xd |

t |wd |
1−t

)
, 0 for all t ∈ (0, 1)

where x is a point inside the domain of convergence of the series. This non-
equality can still be rigorously tested using truncation bounds for functions sat-
isfying linear differential equations [Mez19] and zero certification of analytic
functions based on Smale’s α-theory [HL17]; however, this is more expensive
than the algebraic methods in the power series case.

General expansions
If we consider a (not necessarily combinatorial) power series expansion then
Corollary 6.36 implies that w ∈ V is minimal if and only if

T (t|w1|, . . . , t|wd |) ∩V = ∅ (0 ≤ t < 1). (8.5)

In order to describe the moduli of complex values using polynomial equa-
tions we write z = x + iy for real variables x,y ∈ Rd and decompose any
polynomial f (z) ∈ R[z] into

f (z) = f (x + iy) = f R(x,y) + i f I(x,y)

for f R, f I ∈ R[x,y]. The condition (8.5) is then equivalent to the polynomial
system

QR(x,y) = 0

QI(x,y) = 0

x2
k + y2

k = t|wk |
2 (1 ≤ k ≤ d)

having no solution (x,y, t) ∈ R2d+1 with 0 < t < 1. Melczer and Salvy [MS21]
analyse algorithms testing this condition using techniques from real algebraic
geometry, working implicitly with critical points through their defining alge-
braic equations.

Unfortunately, the complexity of these real algebraic methods and the in-
crease in dimension corresponding to the change from Cd to R2d mean that
most current implementations fail to terminate for anything beyond low degree
bivariate examples. An approach using efficient algorithms for homotopy con-
tinuation to solve polynomial systems can rule out non-minimal critical points
for higher dimensional rational functions via a Julia implementation [LMS22],



254 Effective computations and ACSV

however this approach cannot usually prove minimality without additional, by
hand, arguments. Minimality for general Laurent expansions can be tested us-
ing similar methods, but only becomes even more expensive to compute. As of
the publication of this book, completely automatic detection of minimal critical
points is practical only for combinatorial power series expansions.

8.4 Further computations for asymptotics

We end this section with additional computational results that will be necessary
for our asymptotic arguments in later chapters.

8.4.1 Local Hessian and quadratic degeneracy

Let S be a stratum of codimension s < d, locally defined near some w ∈ S
by the vanishing of functions H1, . . . ,Hs, and assume that there exist distinct
coordinates {σ1, . . . , σs} such that the Jacobian matrix

H[σ1]
1 (w) · · · H[σs]

1 (w)
...

. . .
...

H[σ1]
s (w) · · · H[σs]

s (w)


is non-singular, where H[b]

a denotes the partial derivative of Ha with respect to
zb. If π = {π1, . . . , πd−s} = {1, . . . , d} \ {σ1, . . . , σs} denotes the remaining co-
ordinates, then the implicit function theorem implies the existence of analytic
functions g j(zπ1 , . . . , zπd−s ) for j < π and a sufficiently small neighborhood O of
w in Cd such that for all z ∈ O, z lies in S if and only if z j = g j(zπ1 , . . . , zπd−s )
for all j < π.

To derive asymptotics, we will ultimately apply the saddle point analyses of
Chapters 4 and 5 to phase functions of the form

ϕ(θ) =
∑
j<π

r j log

g j

(
wπ1 eiθ1 , . . . ,wπd−s e

iθd−s
)

w j

 + i
d−s∑
j=1

rπ jθ j, (8.6)

obtained by substituting z j = g j(zπ1 , . . . , zπd−s ) for j < π into log(zr/wr) and
then switching to exponential coordinates near w. In order to use saddle point
techniques in later chapters, we verify the following.

Lemma 8.21. If w is a critical point of S then ϕ(0) = 0 and (∇ϕ)(0) = 0.

Proof By construction g j(wπ1 , . . . ,wπd−s ) = w j for all j < π, so ϕ(0) =∑
j<π r j log(w j/w j) = 0.
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By permuting variables if necessary we may assume, without loss of gen-
erality, that (σ1, . . . , σs) = (1, . . . , s) and, to simplify notation, we write ẑ =
(zs+1, . . . , zd). Since, by construction,

H1(g1(ẑ), . . . , gs(ẑ), ẑ) = · · · = Hs(g1(ẑ), . . . , gs(ẑ), ẑ) = 0

for all ẑ sufficiently close to (ws+1, . . . ,wd), we can differentiate these equations
with respect to zs+1 and use the implicit function theorem to get the linear
system 

H[1]
1 (w) · · · H[s]

1 (w)
...

. . .
...

H[1]
s (w) · · · H[s]

s (w)

︸                           ︷︷                           ︸
M


g[s+1]

1 (ŵ)
...

g[s+1]
s (ŵ)

 = −

H[s+1]

1 (w)
...

H[s+1]
s (w)

︸        ︷︷        ︸
b

.

Because M is non-singular, if we let Mk denote M after replacing its kth col-
umn with the vector b then Cramer’s rule implies

g[s+1]
k (ŵ) = −

det(Mk)
det(M)

for all 1 ≤ k ≤ s. If w is a critical point on S then the matrix
(∇log H1)(w)

...

(∇log Hs)(w)
r1 · · · rd


has rank s, so the determinant of the (s + 1) × (s + 1) sub-matrix

H[1]
1 (w) · · · H[s]

1 (w) H[s+1]
1 (w)

...
. . .

...
...

H[1]
s (w) · · · H[s]

s (w) H[s+1]
s (w)

r1
w1

· · ·
rs
ws

rs+1
ws+1


vanishes. A cofactor expansion of the determinant along the bottom row gives,
after carefully accounting for signs, that

0 =
rs+1

ws+1
det(M) −

s∑
j=1

r j

w j
det(Mk),

so
s∑

j=1

r j

w j
g[s+1]

j (ŵ) = −
rs+1

ws+1
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and thus (
∂ϕ

∂θs+1

)
(0) = i

s∑
j=1

r j

w j
g[s+1]

j (ŵ)ws+1 + irs+1 = 0.

Repeating this argument with indices s + 2, . . . , d shows that the gradient of ϕ
vanishes at θ = 0. □

Recall from Definitions 7.11 and 7.34 that a nondegenerate critical point w
is a critical point where the Hessian of ϕ at the origin is non-singular; integrals
near nondegenerate critical points are those to which we can apply the tech-
niques of Chapter 5. Although the Hessian matrix can always be computed in
terms of derivatives of the g j, which themselves can be determined through
implicit differentiation or the determinant expressions derived in our proof of
Lemma 8.21, in the smooth case things are simple enough to derive an explicit
expression for the Hessian matrix itself.

Lemma 8.22. Suppose w is a critical point where Hzd (w) , 0 and let

ϕ(θ) = log

g
(
w◦eiθ

)
wd

 + i
(r◦ · θ)

rd

in the variables θ = (θ1, . . . , θd−1), where
(
w◦eiθ

)
=

(
w1eiθ1 , . . . ,wd−1eiθd−1

)
.

Then the (d − 1) × (d − 1) Hessian matrix of ϕ at θ = 0 has (i, j)th entry

H i, j =


ViV j + Ui, j − V jUi,d − ViU j,d + ViV jUd,d : i , j

Vi + V2
i + Ui,i − 2ViUi,d + V2

i Ud,d : i = j
(8.7)

where

Ui, j =
wiw jHziz j (w)

wdHzd (w)
and Vi =

ri

rd
(8.8)

for all 1 ≤ j ≤ d. If, more generally, Hzk (w) , 0 then the same formula holds
when d is replaced by k.

Exercise 8.4. Use the chain rule to prove Lemma 8.22.

8.4.2 Numeric analytic continuation of D-finite functions

Recall from Chapter 2 that a D-finite equation is a linear differential equation
with polynomial coefficients, and a D-finite function is one that satisfies a D-
finite equation. Because the diagonal of any multivariate rational function is
D-finite, we can use D-finite equations as data structures to manipulate and
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compute with diagonals. Given a multivariate rational function with a con-
vergent power series near the origin, an annihilating D-finite equation for the
diagonal in any fixed integer direction r ∈ Zd can be computed using the
methods of creative telescoping. Briefly, one represents the diagonal D(z) as
a parameterized complex integral D(z) =

∫
γ

I(z,x)dx over a closed contour
γ, with the integrand I constructed from the rational function F and direc-
tion r. If L is a linear differential operator in z with polynomial coefficients
such that L(I) = ∂x1 A1(z,x) + · · · + ∂xd Ad(z,x) for suitable rational functions
A1, . . . , Ad then, under mild conditions, the fact that γ is closed implies that
D(z) satisfies the D-finite equation L(D) = 0. Methods to compute such dif-
ferential operators have been the source of immense study in the computer
algebra community, with currently optimal techniques relying on a reduction
framework known as the Griffiths–Dwork method [BLS13; Lai16]. An imple-
mentation of this method in the MAGMA computer algebra system was cre-
ated by Lairez [Lai16].

Consider a D-finite equation

cr(z) f (r)(z) + · · · + c1(z) f ′(z) + c0(z) f (z) = 0 (8.9)

which admits a generating function F of interest as a solution f (z) = F(z),
and assume that F is analytic at the origin. The points ρ ∈ C where the lead-
ing coefficient cr(z) vanishes are called singular points of the ODE (8.9), and
non-singular points are called ordinary points of the ODE. Because D-finite
equations are linear, the solutions to (8.9) form an r-dimensional complex vec-
tor space, and the Cauchy existence theorem for ordinary differential equa-
tions [Poo60, Chapter 1.2] implies that in any sufficiently small neighborhood
of an ordinary point there exists a basis of analytic solutions to (8.9).

A collection of deep results due to André, the Chudnovsky brothers, and
Katz jointly imply that for a D-finite function with integer coefficients and
at most exponential growth (i.e., the types of generating functions we con-
sider), a minimal order defining equation admits only regular singular points;
see [And89, Section VI]. Skipping over the definition of a regular singular
point, this is important because if ρ is a regular singular point then in any suf-
ficiently small slit disk centered at ρ (a disk with a ray from its center to its
boundary removed to account for branch cuts) there is a basis of solutions of
the form

(z − ρ)ν
κ∑

k=0

ϕk(z) logk
(

1
1 − z/ρ

)
,

where ν is algebraic and each ϕk is analytic at ρ; see [Poo60, Chapter 5] for
details.
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To determine asymptotic behavior of the power series coefficients of F we
need to represent F in terms of the local basis expansions near the singular
points of (8.9) (which can contain the singularities of F, the singularities of
other solutions to the differential equation, and spurious points). In practice,
this is accomplished using the series expansion of F at the origin to express it
in terms of a basis near the origin, then approximating change of basis matrices
from analytically continuing series centered at the origin to series centered at
the singular points of (8.9). Using ideas going back to Cauchy’s method of
majorants, implemented by Mezzarobba [Mez16] in the Sage ore algebra
package, it is possible to rigorously compute numerical approximations of the
entries of the change of basis matrices to any desired accuracy.

Ultimately, one can use these techniques to compute expansions of F near
the singularities of (8.9) with rigorously approximated coefficients. This can
often be used to identify the dominant singularities of F, and compute asymp-
totics of its power series coefficients up to constants that are rigorously approx-
imated. Unfortunately, it is an open problem to identify when approximated
coefficients that are zero to many decimal places are identically zero. This
connection problem means that it not always possible to identify the dominant
asymptotics of a D-finite function directly from a D-finite equation it satisfies
(although using current implementations one can get the relevant constants to
thousands of decimal places, so even if a rigorous proof can’t be found very
strong heuristic evidence is always possible).

Example 8.23. Let an denote the number of lattice paths with the set of allow-
able steps {(−1,−1), (1,−1), (−1, 1), (1, 1)} that start at the origin and stay in
the nonnegative quadrant N2. The kernel method [Mel21, Chapter 4] implies
that the generating function A(t) of (an) satisfies the D-finite equation

0 = t2(4t + 1)(1 − 4t)2A′′′(t) + t(1 − 4t)(112t2 − 5)A′′(t)

+ 4(8t − 1)(20t2 − 3t − 1)A′(t) + (128t2 − 48t − 4)A(t).

The dominant singularities of A occur at t = ±1/4, and the Sage package of
Mezzarobba computes expansions

A(t) =
( [
−0.636 ± 3 · 10−3

]
+

[
±4 · 10−12

]
i
)

log(t − 1/4)

+
( [

2.54 ± 7 · 10−3
]
+

[
±1.56 · 10−11

]
i
)

(t − 1/4) log(t − 1/4) + · · ·

near t = 1/4, where the notation [a ± b] denotes a constant in the interval
[a − b, a + b], and

A(t) =
[
1 ± 7 · 10−18

]
+

[
1.273 ± 3 · 10−3

]
(t − 1/4) log(t − 1/4) + · · ·
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near t = −1/4. Translating these singular expansions into asymptotic behavior
implies

an =
4n

n

([
0.636 ± 3 · 10−3

]
+ O

(
n−1

))
.

The constants here are given to three decimal places for readability, but can be
computed to hundreds of decimal places in under a second on modern comput-
ers. ◁

Example 8.24. Let bn denote the number of lattice paths with the set of allow-
able steps {(0, 1), (−1,−1), (0,−1), (1,−1)} that start at the origin and stay in
the nonnegative quadrant N2. The kernel method now implies that the generat-
ing function B(t) of (bn) satisfies a D-finite equation of order 3 whose leading
coefficient has a root at t = 1/4, and no non-zero roots closer to the origin,
suggesting that this might be a dominant singularity of B(t). The Sage package
of Mezzarobba can be used to compute an expansion

B(t) =
[
±10−1000

]
(t − 1/4)−1/2 + · · ·

near t = 1/4, whose leading coefficient is zero to 1000 decimal places. In fact,
although t = 1/4 is a singular point of this ODE satisfied by B, it is not a
singularity of B. The dominant singularities of B(t) occur at t = ±

√
3/6 and

bn ∼ cn(2
√

3)nn−2 where cn takes one value when n is even, and another when
n is odd, but this cannot be proven without using additional information beyond
properties of this ODE. ◁

Asymptotics for many lattice path problems, including those in Examples 8.23
and 8.24, can be derived using ACSV [Mel21, Chapters 6 and 10].

Notes

Modern methods for solving polynomial systems can be traced back at least to
work of Newton in the seventeenth century. After the work of Newton, and later
work of Cramer and Bézout bounding the number of solutions to multivariate
polynomial systems, the nineteenth century work of Sylvester illustrated the
power of the resultant in effectively solving polynomial systems. Further work
by Macaulay and his contemporaries developed a mature theory of multivariate
resultants for use beyond bivariate systems; see [GKZ08] for a modern and far-
reaching generalization of these techniques. Gröbner bases were introduced
by Buchberger [Buc65] in his 1965 PhD thesis, and form the backbone of
much modern work in computer algebra. The theory of effective methods for
algebraic geometry is eloquently presented in the splendid volumes [CLO07;
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CLO05] and the monograph [Stu02], and further historical details can be found
in the survey [Cox20].

The theory of D-finite functions has a long history, going back at least to
Abel. Major contributions were made by Fuchs, Frobenius, and G. D. Birkhoff,
among others. Their use in combinatorial applications was pioneered by Zeil-
berger. The book [Mel21] gives further details on computational approaches to
D-finite generating functions.

We have tried to present this book in such a way as to ensure a long shelf-
life. In the present chapter it was useful for concreteness to mention specific
implementations, even though these implementations may no longer be the
state of the art in the future. Nevertheless, the specific packages we mention,
in addition to the entire Sage computer algebra system, have open source code
and practice modern version control and archiving. We thus expect they will
prove useful for a long time to come.

Additional exercises

Exercise 8.5. Let R be an integral domain. The resultant of two polynomials
P(x) = p0 + · · · + pr xr and Q(x) = q0 + · · · + qsxs in R[x] with prqs , 0 is a
polynomial resx(p, q) in p0, . . . , pr, q0, . . . , qr that vanishes if and only if P and
Q share a root in the algebraic closure of R. Let α and β be algebraic numbers
with P(α) = 0 and Q(β) = 0 for P,Q ∈ Z[x]. Find annihilating polynomials in
Z[x] for the sum α + β, the product αβ, and, when β , 0, the quotient α/β in
terms of the resultants of explicit polynomials depending on P and Q.

Exercise 8.6. Suppose that a set of algebraic equations has a single solution
z = (z1, . . . , zd). Prove that z is a rational point by showing that each co-
ordinate z j is the solution to a univariate algebraic equation having only one
solution. Similarly, prove that if a zero-dimensional variety consists of two
points {z,w} then either it is reducible and the two points are rational, or it is
irreducible and both are quadratic and algebraically conjugate.
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Smooth point asymptotics

After discussing the overall framework of ACSV in Chapter 7, and the com-
putational tools needed to carry out the analysis in Chapter 8, we are now
ready to prove asymptotic theorems. As usual, we begin with a convergent
Laurent expansion F(z) =

∑
r∈Zd arzr in some domain D ⊂ Cd and try to

determine asymptotic behavior of ar as r → ∞ with the normalized vector
r̂ = r

|r| =
r

|r1 |+···+|rd |
restricted to compact sets. In this chapter we give results

when dominant asymptotic behavior is determined by the local behavior of F
near a finite set of points where its set of singularities V forms a manifold.
Typically we assume F is rational, although we also state results when F is
meromorphic.

Remark 9.1. The smoothness assumption of this chapter is generic, meaning
(for instance) that it holds for all rational functions except for those whose co-
efficients lie in a fixed proper algebraic set depending only on the degree of the
denominator. Although this might suggest that every example encountered in
practice is handled by the techniques of this chapter, non-generic behavior does
occur in many combinatorial applications. Nonetheless, a large fraction of the
multivariate generating functions encountered by the authors can be handled
by the techniques presented here, without going into the more general theory
of Chapters 10 and 11.

The Main Results of Smooth ACSV
We begin by stating the main theorems of this chapter. Let F(z) = P(z)/Q(z)
be the ratio of coprime polynomials, where Q ∈ C[z] has square-free part
Q̃ (equal to the product of its distinct irreducible factors). Recall from past
chapters that w ∈ Cd

∗ is a smooth critical point for the direction r̂ ∈ Rd if and
only if (∇Q̃)(w) , 0 and

Q̃(w) = r̂iwdQ̃zd (w) − r̂dwiQ̃zi (w) = 0 (1 ≤ i ≤ d − 1). (9.1)

261
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The case when the direction vector r̂ is the zero vector is trivial, so we
always assume that r̂ has a non-zero coordinate. When the series expansion
of F under consideration is a power series we can further assume the stronger
condition that r̂ has no zero coordinates, because asking for terms where (say)
rd = 0 corresponds to extracting terms from the (d − 1)-variate series obtained
by setting zd = 0. In this case, because our results hold only for critical points
with non-zero coordinates, the smooth critical point equations imply that none
of the partial derivatives of Q̃ vanish.

For Laurent expansions, on the other hand, there are combinatorially inter-
esting cases where r̂ has zero coordinates. Even so, if there are to be smooth
critical points with non-zero coordinates then the critical point equations imply
the existence of a coordinate k such that rk , 0 and Q̃zk (w) , 0. Without loss
of generality, we may assume this coordinate k is the final coordinate d.

Consider a Laurent expansion of F with domain of convergence D. Theo-
rem 6.44 from Chapter 6 implies that if w is a smooth minimal critical point
(see Definition 7.7) for the direction r̂ then the hyperplane with normal r̂ going
through the point Relog(w) is a support hyperplane to B = Relog(D).

Definition 9.2 (contributing and nondegenerate points). The smooth minimal
critical point w described above is called a contributing point for the direction
r̂ if r̂ points away from B at Relog(w), meaning x · r̂ < Relog(w) · r̂ for
all x ∈ B. The point w is nondegenerate if the Hessian matrix H defined by
Lemma 8.22 in Chapter 8 is nonsingular with H = Q̃.

Remark 9.3. If we consider the power series expansion of F(z), where r̂ has
positive coordinates, then every smooth minimal critical point is contributing.
This definition of nondegeneracy is equivalent to our previous definitions in
terms of the Hessian of the height function h(z) = −r · log z restricted toV.

Definition 9.2 is constructed so that contributing points are minimizers of the
height function hr̂ on D, which turn out to be the points determining asymp-
totic behavior. Conversely, non-contributing smooth minimal critical points are
maximizers of hr̂ onD; see Figure 9.1.

Exercise 9.1. Which of the components of the complement of the amoeba in
Figure 9.1 have a contributing point in the direction (1,−1)?

We break our main result into three versions, depending on the assumptions
required and the proof techniques used. Our first version is the most restric-
tive, however it still holds in a wide variety of applications and has the ad-
vantage that it can be derived purely through complex analysis and classical
saddle point techniques, without the need for the homological framework of
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Figure 9.1 The amoeba complement component B1, corresponding to a power
series expansion, has one point on its boundary where its support hyperplane has
normal r = (1, 1), which corresponds to contributing points. On the other hand,
the component B2 has two boundary points with support hyperplanes having nor-
mals r = (1, 1), only one of which (the upper-most one) corresponds to contribut-
ing singularities.

Chapter 7. In order to simplify our presentation, we begin by stating it in the
common special case where Q is square-free and there is a single minimal
contributing point.

Theorem 9.4 (Main Theorem of Smooth ACSV (Local Version, Square-Free
Case)). Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials P and Q
with convergent Laurent expansion F(z) =

∑
r∈Zd arz

r. Suppose that there is
a compact set R ⊂ Rd of non-zero directions such that if r̂ lies in R then F has
a smooth strictly minimal nondegenerate contributing point w = w(r̂) ∈ Cd

∗ ,
and let H = H(r̂) be the Hessian matrix defined by (8.7) and (8.8) when
H = Q. If Qzd (w) , 0 then

ar ≈ Φw(r)

uniformly as r → ∞ with r̂ ∈ R, where Φw(r) is an asymptotic series

Φw(r) = w−r |rd |
(1−d)/2 (2π)(1−d)/2 sgn(rd)√

det(sgn(rd)H)

∞∑
ℓ=0

Cℓ(r̂)r−ℓd . (9.2)

The square-root of the matrix determinant is the product of the principal branch
square-roots of its eigenvalues (which will have nonnegative real parts). The
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constants Cℓ are explicitly computable in terms of the derivatives of P(z) and
Q(z) evaluated at z = w(r̂). In particular,

C0 =
P(w)

−wdQd(w)
. (9.3)

□

Theorem 9.4 is a special case of the following, which holds for poles of
general order.

Theorem 9.5 (Main Theorem of Smooth ACSV (Local Version)). Let F(z) =
P(z)/Q(z) be the ratio of coprime polynomials with convergent Laurent ex-
pansion F(z) =

∑
r∈Zd arzr. Suppose there exists a compact set R ⊂ Rd of

non-zero directions such that if r̂ lies in R then F has a smooth strictly mini-
mal nondegenerate contributing point w = w(r̂) ∈ Cd

∗ , and let H = H(r̂) be
the Hessian matrix defined by (8.7) and (8.8) when H = Q̃. If (∂p

d Q)(w) , 0
and (∂q

dQ)(w) = 0 for all 0 ≤ q < p then

ar ≈ Φw(r)

uniformly as r → ∞ with r̂ ∈ R, where Φw(r) is an asymptotic series

Φw(r) = w−r |rd |
p−1+(1−d)/2 (2π)(1−d)/2 sgn(rd)p√

det(sgn(rd)H)

∞∑
ℓ=0

Cℓ(r̂)r−ℓd . (9.4)

The square-root of the matrix determinant is the product of the principal branch
square-roots of its eigenvalues (which will have nonnegative real parts). The
constants Cℓ are explicitly computable in terms of the derivatives of P(z) and
Q(z) evaluated at z = w(r̂). In particular,

C0 =
(−1)pP(w)p
wp

d (∂p
d Q)(w)

.

If w is a finitely minimal point (instead of being strictly minimal) such that
all points in the set W(r̂) = T (w) ∩ V vary smoothly with r̂ in R and are
contributing points satisfying the conditions above then

ar ≈
∑

y∈W(r̂)

Φy(r),

where each Φy is given by (9.4).

Exercise 9.2. What, in general, can go wrong pulling a factor of sgn(rd)d−1

out of the square-root in the denominator of (9.4)?
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Remark 9.6. An explicit (but unwieldy) formula for all coefficients in (9.4)
is given in Section 9.4 below. If Q = Hp for some square-free H with ∇H
nonvanishing at w then

C0 =
(−1)pP(w)

(p − 1)! (wd∂dH(w))p .

Remark 9.7. Our surgery approach below singles out the coordinate zd for a
residue computation, leading to an asymptotic expansion in powers of the non-
zero coordinate rd. With some extra work, the Fourier-Laplace integral used to
deduce asymptotics can be modified to provide an asymptotic series in powers
of |r|, giving an expansion of the form

Φw(r) = w−r
1√

det(2π|r| H ′)

∞∑
ℓ=0

C′ℓ(r̂)|r|−ℓ (9.5)

for a new Hessian matrixH ′. We leave details of such symmetric formulae to
Chapter 10, where asymptotics are computed using multivariate residue forms
that do not privilege individual coordinates.

Remark 9.8. If R = {s} contains a single point with sd > 0 then r = ns and

Φw(ns) ≈ w−ns np−1+(1−d)/2 (2π)(1−d)/2√
det(H)

∞∑
ℓ=0

Dℓn−ℓ

for constants Dℓ with D0 = (sd)p−dC0.

Example 9.9. The hypotheses of Theorem 9.5 can be simplified for bivariate
power series. In particular, suppose that F(x, y) = P(x, y)/Q(x, y) =

∑
i, j≥0 ai jxiy j

admits a strictly minimal critical point w = w(r) ∈ C2
∗ that varies smoothly

as r̂ varies in a compact neighborhood R of directions. If both P(x, y) and the
expression

Q(x, y) = −xy2Q2
y Qx − x2yQyQx − x2y2(Q2

y Qxx + Q2
xQyy − 2QxQyQxy) (9.6)

are nonzero when (x, y) = w(r̂) for each r̂ ∈ R then

ar,s ∼
P(x, y)
−yQy

1
√

2π
x−ry−s

√
(−yQy)3

sQ

=
P(x, y)
−xQx

1
√

2π
x−ry−s

√
(−xQx)3

rQ

(9.7)

as |r| → ∞ after setting (x, y) = w(r̂), uniformly over r̂ ∈ R. ◁

Exercise 9.3. Prove (9.7) by simplifying (9.2) in the bivariate case.
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Example 9.10 (binomial coefficients continued). If F(x, y) = 1/(1− x−y) then
the coefficient of xrys in the power series expansion of F is

(
r+s

s

)
. Solving the

smooth critical point equations yields the unique critical point

w =
( r
r + s

,
s

r + s

)
= (r̂, ŝ) ,

which is strictly minimal by Lemma 6.41. We obtain(
r + s

s

)
∼

(r + s)r+s

rr ss

√
r + s
2πrs

as r, s → ∞ with r/s bounded away from zero and infinity. For example, the
central binomial coefficients given by r = s = n satisfy

(
2n
n

)
∼ 4n/

√
πn. ◁

Example 9.11 (Delannoy numbers continued). If F(x, y) = 1/(1 − x − y − xy)
then we have the critical points

(x∗, y∗) =

 √r2 + s2 − s
r

,

√
r2 + s2 − r

s

 or

−√r2 + s2 − s
r

,
−
√

r2 + s2 − r
s

 ,
the first of which is strictly minimal by Lemma 6.41. Writing d =

√
r2 + s2,

we directly compute

ars ∼

( r
d − s

)r ( s
d − r

)s
√

rs (d2 + (r − s))
2π (r + s − d)

(
d2 + d(r − s)

)
as r, s→ ∞ with r/s bounded away from zero and infinity. ◁

We give a proof of Theorem 9.5 in Section 9.1 using the surgery method for
ACSV, which works in the presence of smooth finitely minimal contributing
points. Although the requirement of finite minimality makes proofs simpler, it
is computationally difficult to check, and rules out cases that can be handled by
our other results. In Section 9.2 we use more advanced techniques (including
the theory of hyperbolic polynomials developed in Chapter 11) to prove an
extension of Theorem 9.5 that ignores non-critical points and only requires
that the torus T (w) contains a finite number of critical points. This gives a
large computational advantage, because generically there are a finite number
of critical points described by a zero-dimensional algebraic set.

Theorem 9.12 (Main Theorem of Smooth ACSV (Minimal Point Version)).
Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials with convergent
Laurent expansion F(z) =

∑
r∈Zd arzr. Suppose there exists a compact setR ⊂

Rd of non-zero directions such that F has a smooth minimal nondegenerate
contributing point w = w(r̂) ∈ Cd

∗ whenever r̂ ∈ R. If the set W(r̂) of solutions
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to (9.1) with the same coordinatewise modulus as w(r̂) is finite and contains
only smooth nondegenerate contributing points that vary smoothly with r̂ then

ar ≈
∑

y∈W(r̂)

Φy(r), (9.8)

uniformly as r → ∞ with r̂ ∈ R, where Φy is defined in (9.4).

Example 9.13 (negative binomial coefficients). If F(x, y) = −x/(1− x−y) then
the coefficient of x−rys in the Laurent series expansion of F converging in the
domain 1 + |y| < |x| is (−1)s

(
r
s

)
. There is a unique critical point

w =
(
−r
−r + s

,
s

−r + s

)
where now, because r > s, the first coordinate of w is positive while the sec-
ond is negative. This point is minimal, since it lives on the boundary {(x, y) ∈
C2 : 1 + |y| = |x|} of the domain of convergence of this Laurent series, and
contributing. Ultimately, we obtain

[x−rys]F ∼ (−1)s rr

(r − s)r−sss

√
r

2π(r − s)s
.

Note that if we replace x by 1/x in F, we obtain G = 1/(1 − x + xy), whose
(r, s)-coefficient is (−1)s

(
r
s

)
. This is consistent with the usual identity(
−r
s

)
= (−1)s

(
r + s − 1

s

)
for binomial coefficients when r, s > 0. Replacing y by −y, we are led back
to the generating function 1/(1 − x − xy) for binomial coefficients examined
above. ◁

Example 9.14 (Chebyshev polynomials). Let F(z,w) = 1/(1−2zw+w2) be the
generating function for Chebyshev polynomials of the second kind [Com74].
To use Theorem 9.12 for an arbitrary direction (r, s) with nonnegative indices
and r/s ∈ (0, 1), we first compute the critical points w± =

(
i
(
β − β−1

)
/2, iβ

)
,

where β = ±
√

s−r
s+r . These points are minimal by Corollary 6.36 because if

we substitute (z,w) = (tx, ty) in the denominator then |2xy − y2| is at most
t2

(
1 − β2 + β2

)
< 1, and hence T (tw±)∩V = ∅ for all t ∈ (0, 1). These points

are contributing because any smooth minimal critical points are contributing
for power series expansions.

Summing the asymptotic contributions given by the two points implies

ars ∼

√
2
π

(−1)(s−r)/2
(

2r
√

s2 − r2

)−r √ s − r
s + r

−s √
s + r

r(s − r)
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when r + s is even, while ars = 0 when r + s is odd. These asymptotics are
uniform as r/s varies over any compact subset of (0, 1). ◁

Exercise 9.4. Redo Examples 9.13 and 9.14 using Theorem 9.5 instead of
Theorem 9.12. What extra conditions do you need to check?

In the presence of minimal critical points we do not need to rule out the
critical points at infinity (CPAI) discussed in previous chapters. However, if
we do rule out CPAI then Theorem 7.20 applies and we get the following.

Theorem 9.15 (Main Theorem of Smooth ACSV (No CPAI Version)). Sup-
pose that, as r̂ varies over a compact set R ⊂ Rd of non-zero directions, the
function F has no CPAI with height at least M ∈ R, and that the set W =W(r̂)
of critical points with height larger than M is finite and consists of smooth non-
degenerate points. Then there exist κw ∈ Z for w ∈W with

ar ≈
∑
w∈W

κw Φw(r) + O(eM|r|) , (9.9)

where each Φw is the asymptotic series defined by (9.4).

To determine dominant asymptotic behavior, it is necessary to identify the
highest critical points w with non-zero coefficients κw. This seems to be a
very difficult task in general, but we can say more in some circumstances.
For instance, κw = 1 for any smooth minimal contributing points, and if ar
is not eventually zero and M = −∞ then at least one κw is non-zero. If the
exponential growth of a sequence can be determined or bounded using other
means, this can also be used to identify the highest coefficients which are non-
zero, and thus pin down asymptotics up to these unknown integers.

Although Theorem 9.15 is the most abstract of our main theorems, it follows
directly from the large amount of technical background in Chapter 7 and the
appendices, and some computations from the proof of Theorem 9.12 below.

Proof of Theorem 9.15 Fix a direction r̂. In the absence of CPAI at height M
or above, Theorem 7.20 in Chapter 7 shows that, for some ε > 0, the homology
group Hd(M,M≤M−ε) has a basis indexed by the critical points σ1, . . . ,σm for
Q whose elements are smooth cycles γ j such that hr̂ attains its maximum on
γ j at σ j and

ar =
m∑

j=1

κ j

(2πi)d−1

∫
γ j

Res
(
F(z)z−r−1 dz

)
+ O(eM|r|).

We will determine this residue integral and its uniform error term with r̂ in our
proof of Theorem 9.12 below, giving the stated expansion. □
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Sections 9.3.1 and 9.3.2 complement the decomposition (9.9) by presenting
an algorithm to determine the integer coefficients kw for bivariate series, the
only case beyond minimal points and rational functions with linear denomi-
nators where we know a general strategy for their calculation. Section 9.3.3
also gives an asymptotic formula for degenerate critical points in the bivariate
case. Finally, Section 9.4 ends this chapter with some related results, including
explicit formulas for higher-order terms and a coordinate-free formula (9.23)
in terms of geometric invariants such as the Gaussian curvature.

9.1 Finitely minimal points and the surgery method

To prove Theorem 9.5 we show that the Cauchy integral representation for se-
ries coefficients is negligible outside a small neighborhood of w, reduce to a
lower-dimensional integral using a univariate residue computation, parametrize
the simplified integral to obtain a saddle point integral, and then apply the the-
orems of Chapter 5 to the result.

Localization and residue

We start by assuming that W(r̂) contains a strictly minimal contributing sin-
gularity w = w(r̂).

Definition 9.16. For simplicity, we write v◦ = (v1, . . . , vd−1) for any vector
v ∈ Cd.

Our hypotheses imply that Q̃zd (w) , 0, so the implicit function theorem
states that zd is locally analytically parametrized by z◦ near w on V. More
specifically, if rd > 0 and we define ρ = |wd | then there exist a sufficiently
small real number δ > 0, a neighborhood N of w◦ in T (w◦), and an analytic
function g : N → C such that for z◦ ∈ N ,

(i) Q(z◦, g(z◦)) = 0,
(ii) ρ ≤ |g(z◦)| < ρ + δ with equality only if z◦ = w◦, and

(iii) Q(z◦, t) , 0 if t , g(z◦) and |t − wd | < δ.

If rd < 0 then the same conditions hold except w being contributing means the
inequality in (ii) is replaced by ρ − δ < |g(z◦)| ≤ ρ.

Let C1 denote the circle of radius ρ− δ centered at the origin of the complex
plane and let C2 denote the circle of radius ρ+δ. The fact that w is contributing,
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combined with the Cauchy integral formula, implies that the series coefficients
of interest can be represented by an iterated integral

ar =



(
1

2πi

)d ∫
T(w◦)

[∫
C1

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1
if rd > 0

(
1

2πi

)d ∫
T(w◦)

[∫
C2

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1
if rd < 0

.

(9.10)
In either case, the key observation is that the inner integral is exponentially
smaller than ρ−rd away from w◦. Indeed, if rd > 0 under our assumptions then
for each fixed z◦ , w◦ the function f (t) = F(z◦, t) has radius of convergence
greater than ρ and the inner integral is O((ρ+ε)−rd ) for some ε > 0; by continu-
ity of the radius of convergence, a single ε > 0 may be chosen for all compact
subsets of T(w◦) not containing w◦. Similarly, if rd < 0 then the inner integral
is O((ρ + ε)−rd ) for some ε ∈ (−ρ, 0). Thus,

|wr (ar − I)| → 0 (9.11)

exponentially quickly, where I is any integral in (9.10) with T(w◦) replaced by
any neighborhood of w◦ in T(w◦). We now take the neighborhood defining I
to be the setN on which the properties (i)–(iii) for the parametrization g hold,
and compare the inner integral in (9.10) to one pushed ‘beyond’ the singular
set. Note that in general we cannot do this without first ‘cutting out’ the small
neighborhood N .

Assume that rd > 0 and compare

I =
(

1
2πi

)d ∫
N

[∫
C1

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1

to the integral

I′ =
(

1
2πi

)d ∫
N

[∫
C2

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1

with the inner contour C1 replaced by C2. Because the points on C2 have larger
modulus than ρ, ∣∣∣wr I′

∣∣∣→ 0 (9.12)

exponentially quickly. Furthermore, our assumption of strict minimality im-
plies that the common inner integrand of I and I′ has a unique pole in the
annulus ρ − δ ≤ |t| ≤ ρ + δ, occurring at t = g(z◦). If

Ψ(z◦) = Res
(
F(z◦, t)t−rd−1 ; t = g(z◦)

)
(9.13)
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then the difference of I and I′ can be computed in terms of Ψ. If rd < 0 the
argument is the same, with the roles of C1 and C2 reversed, changing the sign
in front of the residue integral. Ultimately, we obtain the following, which may
be thought of as the computational analog of the fact that one can integrate in
relative homology at the expense of an exponentially small error (see Proposi-
tion B.10 in Appendix B).

Theorem 9.17 (reduction to residue integral). Let

χ = I − I′ =
− sgn(rd)
(2πi)d−1

∫
N

Ψ(z◦)(z◦)−r
◦ dz◦

z1 · · · zd−1
, (9.14)

with Ψ given by (9.13). Assuming the hypotheses of Theorem 9.5 when W(r) =
{w(r̂)},

|wr (ar − χ)| → 0

exponentially in |r|, uniformly as r → ∞ with r̂ varying overM.

The fact that we can obtain explicit asymptotic expansions is a consequence
of the following result.

Lemma 9.18. Under the hypotheses of Theorem 9.5, the residue Ψ has the
form Ψ(z◦) = −g(z◦)−rdΨp(z◦) where

Ψp(z◦) =
p−1∑
k=0

(rd + 1)(p−k−1)

k!(p − k − 1)!
Rk(z◦). (9.15)

Here (a)(b) = a(a − 1) · · · (a − b + 1) and

Rk(z◦) = (−g(z◦))−p+k lim
zd→g(z◦)

∂k
d ((zd − g(z◦))pF(z)) .

In particular, Ψp is a polynomial of degree p − 1 in rd with leading coefficient

(−1)pg(z◦)−p p
P(z◦, g(z◦))

(∂p
d Q)(z◦, g(z◦))

.

Proof Our assumptions imply that F(z◦, t) has a pole of order p at t = g(z◦),
and (9.15) comes from the classic residue formula

Res
(
F(z◦, t)t−rd−1 ; t = g(z◦)

)
=

1
(p − 1)!

lim
zd→g(z◦)

∂
p−1
d

(
(zd − g(z◦))pF(z)z−rd−1

d

)
together with Leibniz’s rule for derivatives. The leading term in rd comes from
the summand where k = 0. □

Remark 9.19. The results of this section only require that F be meromorphic
in a neighborhood of the domain of convergenceD. If F is locally the ratio of
analytic functions P and Q in a neighborhood of w then all formulas are still
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valid, provided Q̃ is interpreted to be a square-free factorization in the local
ring of germs of analytic functions (see Definition 10.42 below).

Exercise 9.5. Let F(x, y) = 1/(ex + ey − 1). What can you deduce from Theo-
rem 9.5 about the power series coefficients of F?

Proof of Theorem 9.5

Making the change of variables z j = w jeiθ j for 1 ≤ j ≤ d − 1 turns χ into a
saddle point integral

χ =
sgn(rd)
(2π)d−1 w−r

∫
N ′

A(θ)e−|rd | ϕ(θ)dθ (9.16)

with amplitude A(θ) = Ψp

(
w◦eiθ

)
for Ψp defined in (9.15) and phase

ϕ(θ) =
rd

|rd |
log

g
(
w◦eiθ

)
wd

 + i
(r◦ · θ)
|rd |

= sgn(rd)

log

g
(
w◦eiθ

)
wd

 + i
(r◦ · θ)

rd


in the variables θ = (θ1, . . . , θd−1), where

(
w◦eiθ

)
=

(
w1eiθ1 , . . . ,wd−1eiθd−1

)
and

N ′ is a neighborhood of the origin in Rd. Lemma 8.21 implies that this integral
satisfies the conditions necessary to apply Theorem 5.2 in Chapter 5 (note that
the real part of ϕ has a strict minimum at the origin by our conditions on g).
Lemma 8.22 applied to sgn(rd)ϕ simplifies the Hessian and finishes the proof.

Modification for finitely minimal points

When w(r̂) is finitely minimal then the Cauchy integral decays exponentially
away from any element of W(r̂). We can thus restrict the domain of integration
to a disjoint union of neighborhoods Nk around the elements of W(r̂). The
residue computation in Theorem 9.17 results in a sum as k varies of integrals
over neighborhoodsNwk . The asymptotic contributions of each of the integrals
in the sum can be computed in the same way as the strictly minimal case.

Modification under strong torality hypothesis

Because our residue computations are so explicit, they also hold under the fol-
lowing strong torality hypothesis. This hypothesis is important when studying
generating functions whose singularities have many symmetries, for instance
in the case of quantum random walks (see Exercise 9.12).
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Definition 9.20 (strong torality). We say Q satisfies the strong torality hy-
pothesis on the torus T(w) if Q(z) = 0 and |z j| = |w j| for 1 ≤ j ≤ d− 1 implies
that |zd | = |wd |.

Exercise 9.6. Suppose that the function Q(x, y) = a+ bx+ cy+ dxy is bilinear.
What conditions on the constants a, b, c, d are equivalent to strong torality of
Q?

In the following proposition g is the multivalued function solving for zd as a
function of z◦; the number of values, counted with multiplicities, is the degree
m of zd in Q, except on a lower dimensional set where two values coincide.
The multivalued integrand should be interpreted as a sum over all m values.

Corollary 9.21 (reduction under strong torality). Suppose w satisfies all of the
hypotheses of Theorem 9.5 except that instead of w being finitely minimal, it
is minimal and Q satisfies the strong torality hypothesis on T(w). If all poles
of F on T(w) are simple (i.e., p = 1) then

ar =
(

1
2πi

)d−1 ∫
T(w◦)

(z◦)−r
◦

g(z◦)−rdΨ(z◦)
dz◦

z◦
,

where Ψ is given by (9.13).

Proof This time we may take C1 to be the circle of radius of ρ − δ and C2 to
be the circle of radius ρ + δ for any δ ∈ (0, ρ). The inner integral will be the
sum of simple residues at points g(z◦) for any z◦ and the proof is completed
the same way as Theorem 9.17. □

In this case dimension is reduced by one without localizing. The localization
occurs when we apply the multivariate saddle point results of Chapter 5, which
implies that this (d − 1)-dimensional integral is determined by the behavior of
g and Ψ near the critical points on T (w).

Corollary 9.22. Suppose w satisfies all of the hypotheses of Theorem 9.5 ex-
cept that instead of w being finitely minimal, Q satisfies the torality hypothesis
on T(w). Then the conclusions of Theorem 9.5 still hold.

9.2 The method of residue forms

In this section we use the homological framework of previous chapters, to-
gether with the appendices, to prove Theorem 9.12. For convenience, we begin
by naming the minimality property assumed in Theorem 9.12.
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Definition 9.23 (finite criticality). We say Q is finitely critical on the torus
T(w) (in the direction r̂) if the intersection ofVQ with T(w) contains finitely
many critical points of Q in the direction r̂.

Exercise 9.7. For which directions r̂ (if any) does the function Q(x, y) = (1 +
x)(1 + y) satisfy finite criticality on the unit torus T(1, 1)?

Suppose that p is a minimal point of V that is critical in direction r̂ and
lies in the exponential torus Te(x) = Relog−1(x) defined by some x ∈ ∂B,
where B is a component of the complement of amoeba(Q). Further assume
that Te(x) ∩V contains only finitely many critical points p1, . . . ,pm.

Proposition 9.24 (stratified flow). For x′ ∈ B arbitrarily close to x, the torus
Te(x′) may be deformed in M so that it remains fixed in a neighborhood of
each critical point p j but moves to a height less than −r̂ ·x outside of a larger
neighborhood of each.

Proof This is a consequence of Theorem 11.5, which uses cones of hyperbol-
icity to create a deformation based on Theorem 11.1. In the case that the points
p1, . . . ,pm are all smooth points, the cones and vectors can be constructed by
the simpler and more explicit Theorem 11.9 and Corollary 11.10. □

We remark that because Q̃ is hyperbolic at all minimal points (see Proposi-
tion 11.26), the vector flow used in the proof of Proposition 9.24 can also be
used to construct the general homotopy equivalence (C.3.1), giving the rela-
tive homology attachment groups up to points of height just below the minimal
points. An important practical consequence is the following principle, stating
that local integral formulae may be summed when finite criticality holds. It
follows immediately from the deformation in Proposition 9.24.

Theorem 9.25 (finite criticality implies sum of local contributions). Suppose
that w is a minimal point satisfying finite criticality, with all critical points on
T (w) enumerated p1, . . . ,pm. If each of the p j are nondegenerate contributing
points and the Cauchy integral over a quasi-local cycle maximized near p j has
asymptotic expansion Φp j (r) then

ar ≈

m∑
j=1

Φp j (r) + E(r) (9.17)

where E(r) grows exponentially slower than the common value of the |p−rj |. □

Theorem 9.25 holds for general rational functions, not just those with smooth
denominators, for more general definitions of contributing points that are dis-
cussed in later chapters.
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Figure 9.2 Spacetime generating function for a one-dimensional quantum walk.

Exercise 9.8. Let Q(x, y) = 1 − cy(1 + x) − xy2 where c ∈ (0, 1). The func-
tion 1/Q is the spacetime generating function for the simplest nontrivial one-
dimensional quantum walk [BP07].

(a) Show that all singularities on the unit torus are minimal points.
(b) Show that the singularities on the unit torus are not finitely minimal.
(c) Show that for |a − 1/2| < c/2 and r̂ =

[
a

a+1 ,
1

a+1

]
there are two critical

points in the direction r̂ on the unit torus.
(d) Explain why (9.17) produces the picture in Figure 9.2 for the generating

function F(x, y) = 1/Q(x, y).

9.2.1 Theorem 9.12 via residue integrals

We are now ready to prove the minimal point version of the Main Theorem of
Smooth ACSV.

Proof of Theorem 9.12 Assume the hypotheses of Theorem 9.12 and let B be
the component of amoeba(Q)c corresponding to the convergent Laurent series
under consideration. We use the homological constructions and terminology
introduced in Appendix C. If T = Te(x) for some x ∈ B and T ′ = Te(x′) for
some x′ ∈ B′ where B′ is one of the components of amoeba(Q)c on which hr̂
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is not bounded from below (whose existence is guaranteed by Theorem 6.29)
then the intersection class INT(T,T ′) is represented by the intersection of V
with any homotopy from T to T ′ intersecting V transversely. Choosing such
a homotopy whose time-t cross-sections are tori that expand with t and go
through w, perhaps slightly perturbed to intersect V transversely, the class
INT(T,T ′) can be represented by a smooth (d − 1)-chain γ on V on which
hr̂ reaches its (not necessarily unique) maximum at w. The Cauchy integral
formula and the residue theorems from Chapter C imply

ar =
1

(2πi)d

∫
T

F(z)z−r−1 dz

=
1

(2πi)d−1

∫
γ

Res(F(z)z−r−1 dz) +
1

(2πi)d−1

∫
T ′

F(z)z−r−1 dz

=
1

(2πi)d−1

∫
γ

Res(F(z)z−r−1 dz). (9.18)

Assume first that Q is square-free and rd > 0, so that (C.2.1) in Proposi-
tion C.8 implies

ar =
e−hr (w)

(2πi)d−1

∫
γ

e−λϕ(z) P(z)
Qzd (z)

∏d
j=1 z j

dz◦

with λ = rd. Applying Theorem 5.3 with a generic triangulation of C = γ gives
an asymptotic expansion of ar which, after the change of variables z j = w jeiθ j

and algebraic simplification, gives the expression for Φw in (9.2). Note that
the Hessian determinant of hr̂ onV with respect to the θ j variables equals the
Hessian determinant with respect to the z j variables multiplied by the Jacobian
for the change of variables because the gradient of hr̂ restricted toV vanishes
at w.

This completes the proof of Theorem 9.12 in the case that p = 1 and rd > 0.
The derivation for p > 1 is similar, with Lemma C.13 describing the residue
and leading to (9.4). Likewise, accounting for the sign change in λ = −rd when
rd < 0 produces the sign factors in (9.4). □

9.2.2 Homological decompositions

Our results above help us prove that there is at most one torus containing
smooth nondegenerate contributing points. A minimal torus with respect to
a component B and direction r̂ is a torus Te(x) for some x ∈ ∂B minimizing
r̂ · x on B, containing at least one point w = exp(x + iy) that is critical in
direction r̂.
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Proposition 9.26. Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials
P and Q. Fix a direction r̂, a component B of the complement of amoeba(Q)
on which hr̂ is bounded from below, and a component B′ on which hr̂ is not
bounded from below.

(i) There is at most one minimal torus with respect to B and r̂ satisfying
finite criticality and on which each critical point is smooth, contributing,
and nondegenerate.

(ii) Let T = Te(x) for some x ∈ B and let T ′ = Te(x′) for some x′ ∈

B′. Given the existence of the torus described in (i), the projection of
INT(T,T ′) to the relative homology group Hd−1(V∗,V≤c−ε), for suffi-
ciently small ε > 0 and c = −r̂ ·x, equals

∑
z∈W γz where the cycle γz is

a generator for the cyclic local homology group Hd−1(Vz,loc
∗ ).

(iii) The projection of [T ] to (M,M≤c−ε) is equal to
∑

z∈W oγz , where γz is a
generator of the cyclic group Hd−1

(
Vz,loc
∗

)
.

Proof To prove (i), suppose there are two such tori Te(x) and Te(x′). Ap-
plying Theorems 9.12 and 9.25 to the rational function F̃(z) = 1/Q̃(z) at the
points in each torus gives two, necessarily equal, asymptotic series estimating
the coefficients {ãr} uniformly as |r| → ∞with r/|r| remaining in some neigh-
borhood R of r̂ (we replace P by 1 and Q by its square-free part as this does not
change the minimal tori or our nondegeneracy assumptions, but simplifies the
asymptotic formulae). In particular, the leading term of each expansion Φw(r)
in (9.4) has the form C(w) exp(−r ·x) exp(−ir ·y)r(1−d)/2

d with C nonvanishing.
Summing the contributions of the finitely many points on Te(x) (respectively
Te(x′)) gives a function of r that is nonvanishing at least on some finite-index
sublattice of Zd. Furthermore, the terms given by the elements of Te(x) and
the elements of Te(x′) differ from each other in exponential growth, because
−x · r and −x′ · r disagree on R except possibly for a set of codimension 1.
This contradicts the fact that both expansions represent asymptotics for the
same sequences, so two such tori cannot exist.

To prove (ii), the deformation used to prove Theorem 5.3 shows that the
intersection cycle may be deformed to a sum of elements of local homology
groups. None of these can be zero because there is a term corresponding to
each in (9.8). Similarly, each is a relative homology generator: this can be seen
from the deformation, but an easier argument is that the corresponding term
Φw(r) is, up to sign, the integral obtained from a small (d − 1)-patch and we
know the local homology generator is a (d − 1)-ball modulo its boundary (see,
for example, Theorem C.38).

Conclusion (iii) can be argued similarly to (ii), using the stratified descrip-
tion of attachments from Theorem D.25 in place of Theorem C.38. Alterna-
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tively, the Thom isomorphism (Theorem C.2) says that o induces an injec-
tion from Hd−1(V∗) to Hd(Cd

∗ \ V). Being functorial, it commutes with π∗
where π : V∗ → (V∗,V≤c−ε) is projection. The Thom isomorphism carries
INT(T,T ′) to T − T ′, which is equal to T in Hd(V∗,V≤c−ε), proving (iii). □

We remark that it is possible to have a minimal smooth contributing point p
in the direction r̂, and another smooth critical (but not contributing) point p′

in the direction r̂ that is not minimal but has the same height as p.

9.3 Smooth bivariate functions

This section further explores bivariate rational functions, for which we can be
more explicit and give stronger results.

9.3.1 Smooth bivariate power series

We first present a complete algorithm for bivariate power series that finds all
smooth contributing critical points, without any assumption of minimality, fol-
lowing the techniques of [DeV11; DvdHP11].

Assumption 9.1. In this section we always assume thatV is smooth and Q is
square-free, so that for every (x, y) ∈ V, at least one of Qx(x, y) and Qy(x, y) is
nonzero, and that the set of critical points is finite. If Q is not square-free then
our arguments characterizing the singularities that determine asymptotics still
hold when Q is replaced by its square-free part.

In any number of variables, a potential program to determine asymptotics is
the following.

1. Explicitly compute a cycle representing the intersection class.
2. Try to push the cycle below each critical point, starting at the highest.
3. When it is not possible to push past a point, describe the local cycle that is

‘snagged’ on the critical point.
4. Check whether this is a quasi-local cycle of the form we have already de-

scribed and, if so, read off the estimate from saddle point asymptotics.

This program is not generally effective because the step of ‘pushing the cycle
down’ is not algorithmic, which is why we use the framework of stratified
Morse theory. However, an exception occurs when d = 2, since the cycle C has
codimension 1 inV and thus, up to a time change, there is only one way for it
to flow downward.
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Fix a direction r̂ = (r̂, ŝ) with r̂ and ŝ positive (otherwise all series coef-
ficients in this direction are zero, or given by a univariate rational function,
since we consider the power series expansion of F). Because Q does not van-
ish at the origin, there exists some ε > 0 such that V = VQ does not in-
tersect the set {(x, y) : |x| ≤ ε, |y| ≤ ε}. Now, for any c ∈ R if the height
h(x, y) = −r̂ log |x| − ŝ log |y| of a point (x, y) is at least c then either |x| ≤ e−c

or |y| ≤ e−c. Taking c ≥ log(1/ε) thus shows that no connected component of
V≥c contains both points with |x| ≤ ε and points with |y| ≤ ε.

On the other hand, for sufficiently large c every connected component of
V≥c contains points with arbitrarily large height, and hence points with either
|x| ≤ ε or |y| ≤ ε. Thus, we may decompose V≥c for sufficiently large c into
a disjoint union X≥c ∪ Y≥c, where X≥c is the union of connected components
containing points with arbitrarily small x-coordinates and Y≥c is the union of
connected components containing points with arbitrarily small y-coordinates.
Puiseux’s theorem states that in a sufficiently small neighborhood of the origin
in x, with a ray from the origin removed to account for branch cuts, every
branch y(x) of Q(x, y) = 0 has a representation

y(x) =
∑
j≥ j0

c jx j/k

for a fixed branch of the kth root, where j0 ∈ Z and k is a positive integer (and
analogous representations for the branches of x in terms of y also hold). By
Rouche’s Theorem, projection of such a connected component to its x-value
is diffeomorphic as a covering to the projection of the graph of yk = Cx j for
some constant C, such a covering space being diffeomorphic to a punctured
disk. Thus, for any sufficiently large c, the connected components of X≥c and
Y≥c are diffeomorphic to disjoint open disks with their origins removed. The
values of c such that this decomposition holds form an interval [cxy,∞) for
some cxy ∈ R.

Critical points at infinity
Puiseux’s theorem also helps characterize critical points at infinity. In particu-
lar, any branch y(x) of Q(x, y) = 0 near the origin x = 0 satisfies

y(x) = Cxα(1 + o(1))

for some C ∈ C and α ∈ Q, and any branch x(y) near the origin y = 0 satisfies

x(y) = C′yβ(1 + o(1))

for some C′ ∈ C and β ∈ Q. If F(x, y) has a CPAI in the direction r̂ then either
α = − r̂

ŝ for some branch y(x) or β = − ŝ
r̂ for some branch x(y). We thus make

the following assumption to rule out the existence of CPAI.
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Assumption 9.2 (No CPAI). For any branch y(x) = Cxα(1+o(1)) of Q(x, y) =
0 as x → 0 we have α , − r̂

ŝ and for any branch x(y) = C′yβ(1 + o(1)) of
Q(x, y) = 0 as y→ 0 we have β , − ŝ

r̂ .

When Assumption 9.2 holds we can be very explicit about the behavior of
the height function near the coordinate axes.

Lemma 9.27. Assume there are no CPAI. For any sufficiently small ε > 0,
fixed θ ∈ [−π, π], and branch y(x) of Q(x, y) = 0 near x = 0, the parametrized
height function

hθ(t) = h
(
teiθ, y

(
teiθ

))
is monotonic for t ∈ [0, ε]. Furthermore, if y(x) ∼ Cxα as x→ 0 then

lim
t→0+

hθ(t) =

∞ if α > −r̂/ŝ

−∞ if α < −r̂/ŝ
.

Proof Puiseux’s theorem implies we can always find α ∈ Q,C ∈ C, and a
function ϕ with ϕ(x) and xϕ′(x) in o(1) such that y(x) = Cxα(1 + ϕ(x)) as
x→ 0. The height function is the real part of H(x, y) = −r̂ log x − ŝ log y, so

d
dt

hθ(t) = cos(θ)Re
[
Hx(x, y(x))

]
− sin(θ)Im

[
Hx(x, y(x))

]
,

where

Hx(x, y(x)) =
−r̂ − ŝα

x
−

ϕ′(x)
1 + ϕ(x)

∼
−r̂ − ŝα

x
.

Thus

d
dt

hθ(t) ∼
−r̂ − ŝα
|x|

,

which is strictly positive or strictly negative under Assumption 9.2. Finally, we
note

hθ(t) ∼ log
(
Ct−r̂−ŝα

)
for t sufficiently small, giving the stated asymptotic behavior. □

Corollary 9.28. Under Assumption 9.2 the connected components of X≥c are
diffeomorphic to disjoint open disks with their origins removed, corresponding
to the branches y(x) ∼ Cxα of Q(x, y) = 0 as x→ 0 with −r̂/ŝ < α ≤ 0.



9.3 Smooth bivariate functions 281

Intersection cycles and flows
Fixing |x| small and expanding |y| gives a homotopy that (up to minor pertur-
bation) intersectsV transversely. In particular, the intersection cycle C created
from this operation contains a positively oriented circle around the removed
origin from each of the punctured disks in X≥c for c sufficiently large. As usual,
we get a residue integral expression

ar,s =
1

2πi

∫
C

Res
(

P(x, y)
Q(x, y)

x−r−1y−s−1dx ∧ dy
)

when P and Q are polynomials. More generally, when P is an analytic function
over appropriate regions of Cd we get

ar,s =
1

2πi

∫
C

Res
(

P(x, y)
Q(x, y)

x−r−1y−s−1dx ∧ dy
)
+ O(δr+s)

as r, s→ ∞, for any δ > 0.
As we have already seen multiple times, in the absence of CPAI the topology

ofV≥c cannot change with c except at critical values. Because we work in two
dimensions, we can be very explicit about the change in topology as c passes
through a critical value.

Definition 9.29. Suppose σ = (x0, y0) is a critical point where Qx(σ) , 0, so
that we can parametrize y = y(x) in a neighborhood of σ inV. The degree of
degeneracy of Q at σ is the integer k such that there is a series expansion

h(x, y(x)) = h(σ) + Re

∑
j≥k

c j(x − x0) j


in a neighborhood of x0 with ck , 0. Because σ is a critical point of the
height function h, the degree of degeneracy is always at least 2, and σ is a
nondegenerate critical point precisely when the degree of degeneracy is equal
to 2. Because r̂ has no zero coordinate and σ is a critical point, Qy(σ) , 0 and
the degree of degeneracy is the same parametrizing by y instead of x.

If σ = (x0, y0) is a critical point with degree of degeneracy k then we can
substitute y = y(x) and expand H(x, y) = −r̂ log x − ŝ log y near x0 to obtain

H(x, y(x)) = C + (x − x0)kg(x)

for some C ∈ C and analytic function g with g(x0) , 0. In particular, if w =
(x−x0)g(x)1/k then (dw/dx)(x0) , 0 and we can parametrize the height function
h in the local coordinate w near σ as

h(x(w), y(x(w))) = Re
[
H(x(w), y(x(w)))

]
= h(σ) + Re

[
wk

]
.
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Thus, near σ the set V contains k disjoint ascent regions, where h increases
while moving towards σ, which alternate with k disjoint descent regions, where
h decreases while moving towards σ; this is illustrated in Figure 9.5 below.

Definition 9.30. Let cxy ∈ [−∞,∞) be the infimum of all values c such that
X>c ∩ Y>c = ∅ (which is also the smallest value c such that X>c and Y>c are
well-defined). If cxy = −∞ then let W = ∅, otherwise let W be the non-empty
set of critical points σ such that h(σ) = cxy and, for any sufficiently small
neighborhood U of σ inV, the sets U ∩ X>cxy and U ∩ Y>cxy are non-empty.

Our choice of the notation W comes from the following result.

Theorem 9.31. Suppose Assumptions 9.1 and 9.2 hold. If W is empty then the
intersection cycle C is in the same homology class as a cycle with maximum
height −m for all sufficiently large m ∈ R (it can be pushed down forever). If
W is non-empty then C is in the same homology class as a cycle κ such that

(i) The points of κ with maximum height are precisely the points of W.
(ii) For σ ∈ W and a sufficiently small neighborhood U of σ in V, if

A0, . . . , Ak−1 and D0, . . . ,Dk−1 denote the ascent and descent regions of
κ ∩ U enumerated counterclockwise such that D j lies between A j and
A j+1 mod k then

κ ∩ U =
k−1∑
j=0

[
X( j + 1) − X( j)

]
γ j

where each γ j is a curve traveling downward in D j starting at σ and

X( j) =

1 if A j mod k ⊂ X>cxy

0 if A j mod k ⊂ Y>cxy
.

In particular, κ∩U projects to a nontrivial cycle in the relative homology group
H1(U,U ∩ V≤cxy−ε) for any ε > 0 sufficiently small (so the intersection cycle
gets stuck at height cxy).

Proof Let M ∈ R be larger than all critical values of h. Then C is homologous
to closed curves in each component of X≥M , and in fact it is homologous to the
boundary ∂X≥M . First, we show that we can push down the intersection cycle
until arriving at cxy. The topology of V≥c only changes at critical values c, so
let σ be a critical value in (cxy,M] and suppose that σ is the only critical point
with h(σ) = σ.

Figure 9.3 showsV≥c (shaded) for three values of c when the degree of de-
generacy of σ is k = 2 and a circle enclosing a region where the parametriza-
tion h = σ + Re[wk] holds (higher degrees of degeneracy are similar, just with
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Figure 9.3 V≥c and its boundary for three values of c.

more components). In the top diagram c > σ, in the middle diagram c = σ,
and in the bottom c < σ, with the arrows showing the orientation of ∂V≥c

inherited from the complex structure ofV.
Consider the first picture where c > σ. Because c > cxy each of the k shaded

regions is in X≥c or Y≥c, but not both. In fact, since σ > cxy this persists in
the limit as c ↓ σ, so either all k regions are in Y≥c or all k regions are in
X≥c. In the first case ∂X≥c does not contain any critical points of h on V with
height in an interval (σ−2ε, σ+2ε), so the first Morse Lemma implies ∂X≥σ+ε

is homotopic to ∂X≥σ−ε as desired. In the latter case, the difference between
∂V≥σ+ε and ∂V≥σ−ε is a boundary ∂B (see Figure 9.4, or Figure 9.5 below) so
these sets are still homologous. In fact, one can show they are still homotopic.

Thus, we can push the intersection cycle below any critical value above cxy

that has a single corresponding critical point, and the same argument holds
generally by working locally around each critical point of fixed height larger
than cxy. In particular, if W is empty then we can push the intersection cycle
down to arbitrarily low height.

It remains only to show that the intersection cycle can be represented by
the stated cycle κ. Just as in Figure 9.3, the connected components of ∂X≥cxy+ε

will contain curves moving through a descent region of V near σ, crossing
over an ascent region, then going back out through an adjacent descent region.
However, unlike for critical points at higher height where all ascent regions are
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Figure 9.4 ∂V≥σ+ε and ∂V≥σ−ε differ locally by a boundary.

covered or none were, in this case the curves will only cross the ascent regions
containing points of X>cxy ; see Figure 9.5.

Figure 9.5 Left: Plot of V near a critical point with degree of degeneracy k = 3,
whereV>cxy contains two ascent regions with points in X>cxy and one region with
points in Y>cxy . The setV>cxy+ε is colored gray and the part of ∂X≥cxy+ε in view is
drawn. Right: Straightening out the connected components of ∂X≥cxy+ε near this
critical point gives the stated curves γ j.

The connected components of ∂X≥cxy+ε can be straightened into rays γ j (in
terms of the local coordinate w) that stay in each descending region adjacent
to an ascending region containing points of X>cxy . If the descending region is
between ascending components containing points of Y>cxy and X>cxy , working
counterclockwise, then γ j will start at the critical point and move down the
descending region. Conversely, if the descending region is between ascend-
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ing components containing points of X>cxy and Y>cxy , working counterclock-
wise, then γ j will move up the descending region to peak at the critical point.
Descending regions between two ascending regions both containing points of
X>cxy have γ j twice with opposite orientations, which can be joined and pushed
to lower height. Descending regions between two ascending regions both con-
taining points of Y>cxy are not touched by the intersection cycle. Taking these
sign considerations into account gives the stated formula for κ. □

Theorem 9.31 immediately gives an algorithm for the bivariate case.

Algorithm 3: Determination of W in the smooth, bivariate case.
Input: Bivariate rational function F(x, y) and direction (r, s).
Output: Set of critical points W determining coefficient asymptotics of

F in the (r, s) direction.
1 Verify that Assumptions 9.1 and 9.2 hold using Gröbner bases and Puiseux

expansions
2 List the critical value in order of decreasing height
3 Set the provisional value of cxy to the highest critical value
4 For each critical point at height cxy do

(a) Compute the order k of the critical point
(b) Follow each of the k ascent paths until it is clear whether the

x-coordinate or the y-coordinate goes to zero
(c) Add the point to the set W if and only if at least one of the k paths has

x-coordinate going to zero and at least one of the k paths has
y-coordinate going to zero

5 If W is nonempty then terminate and output cxy and W
6 Else, if cxy is not the least critical value then replace cxy be the next lower

critical value and go to step 4
7 Else, if no critical values remain then cxy = −∞, W is empty, and the

asymptotics decay super-exponentially

The doctoral dissertation [DeV11] discusses how to turn this breakdown
into effective steps, and [MS22] give an implementation in Sage using interval
arithmetic. The trickiest part is Step 4b. Ascent paths could conceivably get
caught in trap, approaching a critical point rather than continuing to height
+∞. However, this is a higher critical point, hence already known to be in
an x- or y-component. Therefore, one only needs to know a radius ε for each
higher critical point p such |w −p| < ε implies w is in the same component as
p, which can be done with interval arithmetic. We conclude this section with
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an example of the evaluation of the intersection class for a particular smooth
bivariate generating function whose analysis first appeared in [DeV10].

Example 9.32 (bi-colored supertrees). A bi-colored supertree is a planar bi-
nary tree with each node replaced by a bi-colored rooted planar binary tree [FS09,
Example VI.10]. The class of bi-colored supertrees is counted by the main di-
agonal of the bivariate function

F(x, y) =
P(x, y)
Q(x, y)

=
2x2y(2x5y2 − 3x3y + x + 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x − 2
,

and we give asymptotics following the algorithm above.
First, we note that there is one branch y(x) ∼ (−4)x−5 of y as x → 0 and

four branches x(y) of x as y→ 0, two of which satisfy x(y) ∼ y−1/2 and two of
which have x(y) ∼ −y−1/2. In particular, there are no critical points at infinity in
the main diagonal direction (r, s) = (1, 1). A quick Gröbner basis computation
further verifies that the system

Q(x, y) = Qx(x, y) = Qy(x, y) = 0

has no solution, and the smooth critical point system

Q(x, y) = xQx(x, y) − yQy(x, y) = 0

has three solutions1 − √5,
3 +
√

5
16

 , (
2,

1
8

)
,

1 + √5,
3 −
√

5
16

 ,
listed here in order of decreasing height under h1/2,1/2.

The highest critical point is nondegenerate, meaning V locally has two as-
cent paths. Following both ascent paths using, for instance, the Sage package
of [MS22] shows that both contains points arbitrarily close to the x-axis, so
the intersection cycle can be pushed lower. In this case we could also simply
observe that the highest critical point cannot contribute to the asymptotics be-
cause the coordinates are real and of opposite sign. The factor x−ny−n in the
asymptotic formula for an,n would then force the signs to alternate on the diag-
onal, whereas we know the diagonal terms to be positive.

Continuing to the next-highest point we consider the point (2, 1/8). This
point has degree of degeneracy four, of which three climb to the x-axis and
one climbs to the y-axis. In particular, the point (2, 1/8) determines dominant
diagonal asymptotics and, using the notation of Theorem 9.31, the intersection
cycle is homologous to γ = γ j − γ j−1 where j is the index of the region whose
ascent region goes to the y-axis. Among the four descent regions, this path
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inhabits two consecutive ones, making a right-angle turn as it passes through
the saddle.

Finally, we evaluate the univariate integral over this cycle. To compute the
residue form in this example it is easiest to parametrize a neighborhood of
(2, 1/8) in V by the x-coordinate and use Proposition C.8 from Appendix C
with j = 2 to see that

ω = Res
(
F(x, y)x−n−1y−n−1dx ∧ dy

)
=

−P(x, y)
xy(x)Qy(x, y(x))

x−ny(x)−n dx.

Moving the origin to x = 2, equals

1
2πi

∫
γ

ω = 4n
∫
γ

A(x)e−nϕ(x) dx

where the series expansions for A and ϕ are given by

A(x) = −
x3

8
−

x4

16
+ O(x5)

ϕ(x) = −
x4

16
+ O(x6) .

Applying Theorem 4.1 to evaluate the integral on the segment −γ j+1 using the
parametrization x = (i − 1)t for 0 ≤ t ≤ ε gives a series for 1

2πi

∫
ω that begins

4n

−i
4π

n−1 +
(1 + i)

√
2Γ(5/4)

8π
n−5/4 + O(n−3/2)

 .
Similarly, on γ j we parametrize by x = (−i − 1)t and obtain the complex con-
jugate of the previous expansion,

4n

 i
4π

n−1 +
(1 − i)

√
2Γ(5/4)

8π
n−5/4 + O(n−3/2)

 .
When the two contributions are summed the first terms cancel and we are left
with

an,n ∼
4n
√

2Γ(5/4)
4π

n−5/4 .

◁

9.3.2 Laurent series

In this section we discuss what can be done when the hypotheses of Algo-
rithm 3 are satisfied, except that the series in question is a Laurent series rather
than an ordinary power series. We first revisit Algorithm 3 from a different
point of view, involving intersection numbers of middle-dimensional cycles.
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Definition 9.33. Let X be a smooth, oriented real 2k-manifold, and let γ1 and
γ2 be two smooth, oriented k-cycles on X, intersecting transversely at finitely
many points x1, . . . ,xm. The signed intersection number of γ1 and γ2 is the
integer

#(γ1, γ2) =
m∑

j=1

sgn(x j),

where sgn(x j) = 1 if the oriented bases B1 and B2 for the tangent spaces Tp(γ1)
and Tp(γ2) form (in this order) a positively oriented basis for the tangent space
Tp(X), and sgn(x j) = −1 otherwise.

The following construction can be found in [GP74] or [BJ82, pages 151–
152].

Proposition 9.34. Let X be an oriented real manifold of dimension 2k and let α
and β be smooth oriented compact cycles of dimension k. Then generic pertur-
bations of α and βwill intersect transversely in a finite number of points [GP74,
Section 2.3], and the resulting signed intersection number does not depend on
the generic perturbation. In fact, the signed intersection number is an invari-
ant [GP74, Section 3.3] of the homology classes [α] and [β] in Hk(X). □

Let h be a (not necessarily proper) smooth Morse function on a complex
k-manifold X with finitely many critical points x1, . . . ,xm, listed in order of
decreasing height h(x1) ≥ · · · ≥ h(xm), such that all critical points have middle
index k. For each j ≤ m, let γ j be a smooth cycle agreeing with the stable
manifold of the (upward) gradient flow of h in a neighborhood of x j having
x j as its highest point. Similarly, let γ j be a smooth cycle agreeing with the
unstable manifold of the gradient flow of h in a neighborhood of x j with x j

as its lowest point. The γ j are absolute cycles representing attachments in the
Morse filtration at x j (described in Appendix C). Similarly, the γ j are absolute
cycles representing attachments in the reverse Morse filtration at x j, obtained
by replacing h by −h.

Proposition 9.35. Let L be the subspace of Hk(X) generated over the complex
numbers by {[γ j] : j ≤ m} and let L∗ denote the dual space to L. Then {[γ j] :
j ≤ m} is a basis for L∗ and the signed intersection number #(γi, γ

j) is a
nonsingular pairing whose representing matrix M is upper triangular.

Proof When i = j the cycles γi and γ j represent the stable and unstable
manifolds of the gradient flow for a Morse function at the critical point x j.
Morse functions are quadratically nondegenerate, therefore locally these inter-
sect transversely at a single point, and they cannot intersect anywhere else due
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to the height restrictions. Hence the intersection number is ±1. When i > j the
height restrictions prevent γi and γ j from intersecting at all, whence Mi j = 0,
so M is an upper triangular matrix with ±1 diagonal entries, and thus nonsin-
gular. □

Remark 9.36. If h(x j) = h(x j+r) for r ≥ 1 then again the height restrictions
prevent γi from intersecting γℓ when i and ℓ are distinct elements of { j, . . . , j+
r}, hence the only nonzero entries in the submatrix M[ j, j+r],[ j, j+r] are those on
the diagonal.

Algorithm 3 may be understood in terms of this pairing, as we now sketch.

Sketched alternative proof of correctness for Algorithm 3 Suppose that some
component B′ of the complement of the amoeba of Q(x, y) contains a ray with
small x coordinate that points up in the y direction, let T be the torus of in-
tegration for the bivariate Cauchy integral, with both x- and y-radii arbitrarily
small, and let γ be the intersection cycle INT(T,T ′) where the basepoint of
T ′ still has small x-coordinate but has sufficiently large y-coordinate to be in
B′. Then γ consists of small cycles around the points (0, s), as s ranges over
the roots of Q(0, y). Assuming these to be simple roots, the circles wind once
about the origin.

The key is to interpret Steps 4(b-c) in Algorithm 3 using intersection num-
bers. Suppose p j is a nondegenerate critical point reached by the algorithm,
with corresponding ascent path γ j. Steps 4(b-c) compute the intersection num-
ber of γ with γ j. If, among the two branches of γ, one goes to the x-axis and
one goes to the y-axis, then γ will intersect precisely one of the circles around
a point (0, s) and the intersection number will be ±1. If both branches go to
the x-axis then the intersection number is zero because they cannot intersect
any of the small circles around the points (0, s). Furthermore, the intersection
number depends only on the homology class of the intersection cycle γ and, as
shown in Corollary C.5 of Appendix C, the homology class of the intersection
cycle obtained by keeping |x| small and taking |y| to infinity is the same as the
intersection cycle obtained by keeping |y| small and expanding |x| to infinity.
Interpreting the intersection cycle using this second construction shows that if
both branches go to the y-axis then the intersection number is also zero.

The upshot is that in Step 4(c), the point p j is added to W if and only if
#(γ, γ j) = ±1 is nonzero. If any point at a given height is added, then all points
at that height are added for which the intersection number of the ascent path
with γ is ±1 and no lower points are added. Inverting the dual basis shows that
γ −

∑
i:pi∈W ±γi is zero in H1(V∗,V<cxy ). □

We now return to the case of more general Laurent series. The difference
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between these and ordinary power series is that we can no longer count on
the intersection cycle γ to be the union of small circles around points of inter-
section of V with one of the coordinate axes. The solution is to consider the
components B where the series is defined and B′ where height goes to −∞ and
trace an explicit intersection path γ between two points in these components.
One can then try to infer the intersection numbers #(γ, γ j) between γ and every
ascent path γ j from every critical point p j. If successful, this identifies W as
the set of p j such that h(p j) is maximized among p j such that #(γ, γ j) = ±1.

Example 9.37. The generating function 1/Q(x, y) where

Q(x, y) = 3 + x + x−1 + y + y−1 +
1
2

(x + x−1)(y + y−1) +
1
5

(x − x−1 + y − y−1)

appears in the analysis of certain matrix inversions arising from Green’s func-
tion computations [Wan22]. Figure 9.6 shows a plot of the amoeba of Q. Its
Newton polygon is the convex hull of the 3×3 grid of lattice points with |x| ≤ 1
and |y| ≤ 1.

Figure 9.6 The amoeba of Q (reproduced with permission of Hong-Yi Wang).

The complement of the amoeba of Q has seven components, illustrated in
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Figure 9.6. Six of the components are unbounded and correspond to vertices on
the perimeter of the Newton polygon, and the seventh component is a bounded
component corresponding to the origin, which is an interior lattice point of the
Newton polygon.

Exercise 9.9. Laurent polynomials whose Newton polygons are as in Example
9.37 can have as many as 9 components in the amoeba complement. However
the specific Laurent polynomial Q(x, y) under consideration only admits 7.

(a) Let Qx+(x, y) denote the sum of the three monomials in Q that have x-
degree 1. How many distinct values do the magnitudes of the roots of
Qx+(y) take?

(b) Let Qx−(x, y) denote the sum of the three monomials of Q that have x-
degree −1. How many distinct values do the magnitudes of the roots of
Qx−(y) take?

(c) Explain why there is only one amoeba ‘tentacle’ in the negative x direction
whereas there are two in the positive x direction.

Continuing our current example, the component unbounded in the (−1,−1)
direction corresponds to a power series expansion. However, the series of com-
binatorial interest in this case is the one corresponding to the bounded com-
ponent, which we call B. Specifically, asymptotics of this series in the (1, 1)
direction are desired. For the component B′ we may choose any where h(1,1)

is unbounded from below, and for specificity we choose the component in the
upper right.

A quick computation shows the varietyVQ to be smooth and identifies eight
critical points in the direction r̂ parallel to (1, 1). Their projections under the
Relog map are shown on the amoeba in Figure 9.6 and denoted by p1, . . . ,p8.
All but two of the points, p3 and p4, are on the boundary of the amoeba, and
the four points p2 = p1 and p8 = p7 come in conjugate pairs.

As described immediately prior to the example, we choose an explicit in-
tersection cycle γ by moving the product of circles represented by the point
x ∈ B to one represented by a point in B′. The size of a fiber amoeba−1(x)
for x ∈ B only changes when crossing a point of the amoeba contour drawn in
Figure 9.6, so by sampling points and performing algebraic computations it is
possible to determine that the interior of the amoeba has four regions on which
the log-modulus map from V to amoeba(Q) is two-to-one, while the map is
four-to-one on the remainder of the amoeba (the four-to-one regions are more
heavily shaded in Figure 9.6).

To construct the intersection cycle γ, we first choose x to be the origin and
move it in the (1, 0) direction halfway to p5, then up and around the boundary
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of the component containing p5 moving rightward to the edge of the picture
and then upward into B′. Until the very end, this traces a single path in each of
the two preimages of the log-modulus map. Therefore γ will be a single arc,
centered on the preimage of the point x′ where the amoeba was first entered
(this boundary point having a single preimage) and extending downward until
another piece of arc appears when passing through where the preimage size is
four. This second arc can be made to occur below every critical point, therefore
as a cycle relative to −∞ the cycle γ is a simple arc in the preimage size 2 region
with p5 on its boundary.

We conclude immediately that p1,p2,p3,p4,p5 and p6 do not contribute.
The first four are in fact higher than the origin, so the upward trajectories can-
not possibly intersect the intersection cycle. For p5, it suffices to check that
the two upward trajectories can be drawn to be disjoint from our choice of
γ. Indeed, the two ascent arcs, projected to the amoeba, move initially in the
(−1,−1) direction, and can do so until they are higher than the highest point
on the intersection cycle. Where they go after that is unclear, because upon
entering the preimage size 4 region it is no longer clear which is the increasing
time direction, so the image of the arcs may no longer be able to move in the
(−1,−1) direction. However, they are already high enough that they cannot in-
tersect γ. By symmetry, an identical argument (choosing a different γ) shows
that p6 cannot contribute.

By symmetry, p7 contributes if and only if p8 contributes. By process of
elimination, because we know the asymptotics are non-zero, these both con-
tribute. To argue this geometrically, one needs to understand where the two
ascent arcs from p7 go. The description in terms of the four preimages is a lit-
tle complicated, but one finds in the end that the projections of the two ascent
arcs to the amoeba pass around the hole (the region B) in opposite ways, one
to the north and one to the south. This forces the intersection number with γ to
be ±1; see [Wan22] for details.

We conclude that the intersection cycle γ is homologous to the sum of a
homology generator going downward from p7 and a homology generator going
downward from p8, with properly chosen signs. The coordinates of the critical
points are algebraic numbers satisfying

55 x8+664 x7+2840 x6+5780 x5+5610 x4+2520 x3+440 x2−44 x−45 = 0 .

The points p7 and p8 are on the diagonal, conjugate to each other, with co-
ordinates −2.19 . . . ± i1.10 . . .. The two contributions have opposite phases,
ultimately giving that

an,n ∼ Cn−1/2α−n cos(nθ)
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where α = 6.03 . . . is the absolute value of the product of the coordinates in p7

(or equivalently the coordinates of p8) and C and θ are non-zero constants. ◁

Exercise 9.10. Find the constants C and θ for this example.

9.3.3 Smooth Bivariate Generating Functions with Degeneracies

Using the results of Chapter 4 we can give asymptotics for bivariate smooth
point asymptotics in directions where the phase function ϕ vanishes to arbitrary
order. For simplicity, we consider a power series expansion and assume that
the dominant singularities are finitely minimal points where the numerator P
is nonvanishing. It is also possible to derive (more complicated) results when
these conditions fail: for instance, they fail in Example 9.32 above.

Let (x∗, y∗) be a smooth minimal critical point in the direction r̂ and assume
that Qy(x∗, y∗) , 0 so that we can parameterize y = g(x) on V near (x∗, y∗).
Theorem 9.17 and (9.16) define functions A and ϕ such that

xr
∗y

s
∗(ars − χ) = O

(
e−εs) ,

where

χ(r, s) = x−r
∗ y−s
∗

1
2π

∫ ε

−ε

e−sϕ(θ)A(θ) dθ . (9.19)

Let c = cκ denote the leading non-zero series coefficient in the expansion
ϕ(x) ∼ cκxκ as x→ 0 and define the quantity

Φx∗,y∗ (r) = −
Γ(1/κ)

2κπ
(1 − ζ)

P(x∗, y∗)
y∗Qy(x∗, y∗)

c−1/κs−1/k x−r
∗ y−s
∗ (9.20)

where, as in Theorem 4.1(iii), ζ = −1 if κ is even and ζ = exp(σiπ/κ) if κ is
odd.

Theorem 9.38. If (x∗, y∗) is a strictly minimal critical point in the direction r̂

and satisfies the conditions above then as (r, s) → ∞ with the distance from
(r, s) to the ray {tr̂ : t ≥ 0} remaining bounded, there is an asymptotic series
of the form

ars ≈ x−r
∗ y−s
∗

∞∑
j=0

ν js(−1− j)/k

with leading term Φx∗,y∗ (r). If (x∗, y∗) is a finitely minimal point and all critical
points with the same coordinate-wise modulus satisfy the same conditions as
(x∗, y∗) then an asymptotic series for ars is obtained by adding the contributions
of each of the critical points.
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Proof The asymptotic development follows from (9.19) and Theorem 4.1. It
remains to check that the leading term is given by (9.20). Starting from (9.19)
use Theorem 4.1 with ℓ = 0 to get, in the notation of Theorem 4.1, the leading
term

χ ∼
x−r
∗ y−s
∗

2π

∫ ε

−ε

A(x)e−sϕ(x) dx

=
x−r
∗ y−s
∗

2π
I(s)

=
x−r
∗ y−s
∗

2π
(1 − ζ)C(κ, 0)A(0)(cs)−1/κ.

Parametrizing by y means choosing coordinate k = 2 giving sign (−1)k−1 = −1

in A(0) = −
P(x∗, y∗)

y∗Qy(x∗, y∗)
, and the fact that C(κ, 0) =

Γ(1/κ)
κ

gives (9.20). □

Example 9.39 (Cube root asymptotics). Let F(x, y) = 1/(3 − 3x − y + x2) so
that the setV is parametrized by y = g(x) = x2 − 3x + 3. If r̂ = (a, 1 − a) then
asymptotic behavior depends on whether a is less than, equal to, or greater
than 1/2. When a < 1/2 there are two real critical points on the curve y = g(x)
— as a increases from 0 to 1/2 one approaches (1, 1) from the left, and the
other approaches (1, 1) from the right (see Figure 9.7). Only the critical point
on the right of (1, 1) is minimal, and it determines asymptotics. When a = 1/2,
the two critical points meet and h becomes quadratically degenerate. Once
a > 1/2, the critical points have complex conjugate coordinates and are both
minimal.

Because (1, 1) is a minimal point, the main diagonal has exponential rate
zero, while all other directions have exponential decay at a rate that is uni-
form over compact subsets of directions not containing the diagonal. Implicit
differentiation implies

g′′(x) = −3
x(x2 − 4x + 3)
(x2 − 3x + 3)2 ,

which vanishes when x = 1 as the critical point (1, 1) in the main diagonal
direction is degenerate. Computing further, we find that g(x) − g(1) vanishes
to order κ = 3 here, with c = c3 = g′′′(1)/3! = i. Checking the signs gives
ζ = −eiπ/3 and therefore

i−1/3(1 − ζ) = eiπ/6 + e−iπ/6 = 2 cos(π/6) =
√

3.
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Figure 9.7 The two critical points for Q(x, y) = 3 − 3x + x2 − y in directions
(a, 1 − a) with a < 1/2, which approach the same degenerate ‘double point’ (1, 1)
when a→ 1/2. Only the critical points with x > 1 are minimal for such directions.

Evaluating A(0) = −P(1, 1)/yQy(1, 1) = −1/(−1) = 1, Theorem 9.38 gives

ar,r ∼
1

2π
C(3, 0)i−1/3(1 − ζ)r−1/3 =

√
3Γ(1/3)

6π
r−1/3 .

◁

Remark. We have given a formula holding only very near a fixed direction r̂.
Because the results for nondegenerate smooth points hold in neighborhoods of
directions, it remains to be seen whether asymptotics can be worked out that
“bridge the gap” and hold when the distance δ = ||r − |r| · r̂|| to the ray {λ · r̂}
satisfies |r| ≫ δ ≫ 1. See Section 13.2 for further discussion.

9.4 Additional formulas for asymptotics

It is sometimes useful to have alternative or more detailed formulae for the
coefficients of the asymptotic expansions derived above. We collect some such
formulae in this section.
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9.4.1 Higher order terms

We first examine explicit expressions for the higher order asymptotic coeffi-
cients.

Theorem 9.40. Under the hypotheses of Theorem 9.5, the asymptotic series
Φw(r) can be expressed as

Φw(r) =
w−r√

det(2πrdH)

∑
k≥0

p−1∑
j=0

(rd + 1)(p−1− j)

(p − 1 − j)! j!
r−k

d Lk(A j, ϕ),

where

Lk(A, ϕ) = (−1)k
∑

0≤ℓ≤2k

Dℓ+k
(
A(x) · ϕ(x)ℓ

)
2ℓ+kℓ!(ℓ + k)!

∣∣∣∣∣∣∣∣
x=0

for the functions

ϕ(x) = ϕ(x) − (1/2)x · H ·xT

A j(θ) = R j(w◦eiθ)

R j(z) = (−g(z◦))−p+ j lim
zd→g(z◦)

∂
j
d ((zd − g(z◦))pF(z)) ,

andD is the differential operator

D = −
∑

1≤i, j≤d

(
H
−1

)
i j
∂i∂ j.

Proof Theorem 9.17 and Lemma 9.18 above imply that Φw(r) is obtained
from an asymptotic expansion of the saddle point integral (9.16), where the
residue Ψ is a weighted sum of terms Rk occurring in the explicit formula
(9.15). Distributing the integral over the sum of residue terms, Lemma 5.16
from Chapter 5 gives an asymptotic expansion of each. The stated result fol-
lows from simplifying the sum of these expansions, taking into account a subtle
interplay between the lower order terms in (9.15) and the higher order terms in
Lemma 5.16. □

Remark 9.41. It is possible to expand the falling factorials in terms of the
Stirling numbers of the second kind and collect powers of rd, to give an explicit
formula for the coefficients Ck in (9.4) at the cost of an even more unwieldy
formula.

Exercise 9.11. In the cases p = 1 and p = 2, explicitly compute the second
term in the asymptotic expansion of Φw(r) in descending powers of rd.
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9.4.2 A geometric formula for the leading term

Complementing the explicit expressions for asymptotics given above, it is pos-
sible to write down a coordinate-free representation for the leading term using
the curvature ofV near the contributing singularities determining asymptotics.
In addition to an alternative, sometimes more compact, expression, coordinate-
free representations can also help with conceptual understanding, such as in
Example 9.47 below. We begin by reviewing the definition of the Gaussian
curvature of a smooth hypersurface, before extending it to certain points of
complex algebraic hypersurfaces.

Gaussian curvature of real hypersurfaces
For a smooth orientable hypersurfaceV ⊂ Rd+1, the Gauss map G sends each
point p ∈ V to a normal vector G(p) which we identify with an element of
the d-dimensional unit sphere S d. For a given patch P ⊂ V containing p,
let G[P] = ∪q∈P G(q). The Gaussian curvature (also called Gauss-Kronecker
curvature) ofV at p is defined as the limit

K = lim
P→p

A(G[P])
A[P]

(9.21)

as P shrinks to the single point p, where A(G[P]) is the area of G[P] in S d

and A[P] is the area of P in V. When d is odd, the antipodal map on S d has
determinant −1, whence the particular choice of unit normal will influence the
sign K , which is therefore only well defined up to sign. When d is even, we
take the numerator to be negative if the map G is orientation reversing and we
have a well defined signed quantity. The curvature K is equal to the Jacobian
determinant of the Gauss map at the point p.

For computational purposes, it is convenient to use standard formulae for
the curvature of the graph of a function from Rd to R. If η is a homogeneous
quadratic form, we let ||η|| denote the determinant of the Hessian matrix of η
computed with respect to any orthonormal basis.

Proposition 9.42 ([Bar+10, Corollary 2.4]). Let P be the tangent plane to V
at p and let v be a unit normal vector. Suppose thatV is the graph of a smooth
function h over P, meaning

V = {p + u + h(u)v : u ∈ U ⊆ P} .

If η is the quadratic part of h, so that h(u) = η(u)+O(|u|3), then the curvature
ofV at p is K = ||η||. □

Corollary 9.43 (curvature of the zero set of a polynomial). Suppose thatV =
{x ∈ Rd : Q(x) = 0} and that ∇Q(p) , 0. If η is the quadratic part of Q at p
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and η⊥ is the restriction of η to the hyperplane orthogonal to ∇Q(p) then the
curvature ofV at p is given by

K =
||η⊥||

||(∇Q)(p)||d−1
2

, (9.22)

where ||(∇Q)(p)||2 denotes the Euclidean norm of the gradient of Q at p.

Proof Replacing Q by ||(∇Q)(p)||−1
2 Q leavesV unchanged and reduces to the

case ||(∇Q)(p)||2 = 1, so we assume without loss of generality that ||(∇Q)(p)||2 =
1. Given an arbitrary vector u we write u = u⊥ + λ(u)(∇Q)(p) to denote the
decomposition of u into its components orthogonal to, and contained in, the
span of (∇Q)(p). The Taylor expansion of Q near p is

Q(p + u) = (∇Q)(p) · u + η⊥(u) + R ,

where R = O(|u⊥|3 + |λ(u)||u⊥|). Near the origin, we can solve for λ to obtain

λ(u) = η⊥(u) + O(|u|3) ,

and the result follows from Proposition 9.42. □

Gaussian curvature at minimal points of complex hypersurfaces
Suppose now that Q is a real polynomial in d variables and that p is a minimal
smooth point of the corresponding complex algebraic hypersurface. We are
interested in the curvature at logp of the logarithmic image logV = {z ∈ Cd :
(Q ◦ exp)(z) = 0} of V (this image is similar to the amoeba of Q except we
do not take moduli). When p is a point with positive real coordinates then the
curvature at logp can be defined (up to a factor of ±1) directly using (9.22)
from Corollary 9.43. In fact, we use this formula to define curvature in the
general complex case as it is invariant under scalar multiplications of Q and
Theorem 6.44 from Chapter 6 implies that the normal (∇log Q)(p) to Q ◦ exp at
a minimal point p is a scalar multiple of a real vector.

It is useful to observe that the curvature K is a reparametrization of the
Hessian determinant in our asymptotic theorems, in the sense that they vanish
together.

Proposition 9.44. The quantity K defined by (9.22) vanishes if and only if the
determinant of the Hessian matrixH in Theorem 9.5 vanishes.

Proof Going back to its original definition in Lemma 8.22, the matrix H in
Theorem 9.5 is the Hessian matrix for the function g expressing logV as a
graph over the first (d − 1) coordinates. At such a point, the tangent plane to
logV is not perpendicular to the dth coordinate plane, and reparametrizing the
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graph to be over the tangent plane does not change whether the Hessian is sin-
gular. The Hessian matrix obtained from such a reparametrization represents
the quadratic form η in Proposition 9.42, so singularity of the Hessian matrix
from Theorem 9.5 is equivalent to singularity of η in Proposition 9.42. □

Theorem 9.45 (Main Theorem of Smooth ACSV (Curvature Version)). Let
F(z) = P(z)/Q(z) be the ratio of coprime polynomials with convergent Lau-
rent series expansion F(z) =

∑
r∈Zd arzr. Suppose there exists a compact set

R ⊂ Rd of directions such that F has a smooth strictly minimal nondegenerate
contributing point w = w(r̂) ∈ Cd

∗ where Qzd (w) , 0 whenever r̂ ∈ R. Let
K(r̂) denote the Gaussian curvature of logV at logw(r̂). Then

ar =

(
1

2π∥r∥2

)(d−1)/2

w−r K(r̂)−1/2
 P(w)
∥ ∇log Q(w)∥22

+ O
(
∥r∥−1

2

) (9.23)

uniformly as ∥r∥2 → ∞ with r̂ ∈ R. The square-root of the matrix determinant
is the product of the principal branch square-roots of the Jacobian of the Gauss
map when the Gauss map is oriented towards −r̂.

Proof As in the proofs above, we let ω = z−r−1F(z)dz so that

ar =

(
1

2πi

)d−1 ∫
σ

Res(ω)

where σ is an intersection class onV. To work in log space we let z = exp(ζ),
so dz = zdζ and

ar =
(

1
2πi

)d−1 ∫
σ̃

Res
(

exp(−r · ζ)F̃(ζ) dζ
)

where F̃ = F ◦ exp and σ̃ = logσ. In fact, our assumptions imply that we have
a simple pole, so we can pull out the factor of z−r = exp(−r · ζ) to obtain

ar =
(

1
2πi

)d−1 ∫
σ̃

exp(−r · ζ) Res(F̃(ζ) dζ). (9.24)

Let P be the tangent space to logV at the point ζ∗ = logw. This tangent
space consists of the vectors orthogonal to r̂, so we may locally parameterize
logV near ζ∗ by P using a representation

logV = {ζ∗ + ζ∥ + h(ζ∥)r̂ : ζ∥ ∈ P} .

Pick an orthonormal basis v(2), . . . ,v(d) for P so that a general point ζ ∈ Cd in
a neighborhood of ζ∗ has a representation

ζ = ζ∗ + u1r̂ +
d∑

j=2

u jv
( j) .
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Proposition C.8 in Appendix C implies

Res(F̃(ζ) dζ) =
P ◦ exp

∂(Q ◦ exp)/∂u1
du2 ∧ · · · ∧ dud+1 ,

and the partial derivative in the direction of the gradient is the square of the
magnitude of the gradient. Thus,

Res(F̃(ζ) dζ)(ζ∗) =
P(w)

∥ ∇log Q(w)∥22
dA (9.25)

where dA = du∥ = du2∧· · ·∧dud is equal to the oriented holomorphic (d−1)-
area form for logV as it is immersed in Cd.

Let λ = |r| and ϕ(ζ) = r̂ · ζ so that (9.24) becomes

ar =
(

1
2πi

)d ∫
σ̃

exp(−λϕ(ζ)) Res(F̃(ζ) dζ) , (9.26)

and let η denote the quadratic part of h. By Proposition 9.42 (or Corollary 9.43)
and the subsequent discussion, we see that the curvatureK of logV at the point
ζ∗ with respect to the unit normal r̂ is given by ||η||.

To proceed, we describe a logspace intersection cycle σ̃. One way to con-
struct σ̃ is to pick a point x′ in the component of amoeba(Q)c giving the series
expansion under consideration, and a point x′′ in a component of amoeba(Q)c

on which the height function h is unbounded, and take the intersection cycle
of logV with a homotopy H obtained by taking a straight line from x′ to x′′

and mapping by Relog−1. A convenient choice is to make the segment x′x′′

parallel to r̂. The real tangent space to H is then the sum of the imaginary
d-space and the real 1-space in direction r̂. The tangent space to logV is the
sum of the real (d − 1)-space orthogonal to r̂ and the imaginary (d − 1)-space
orthogonal to r̂. The tangent space to σ̃ is the intersection of these, which is
the imaginary (d − 1)-space orthogonal to r̂ – in other words, just ImP.

Because σ̃ is contained in the linear space ImP + C · r̂, we see that locally
there is a unique analytic function α : ImP → C · r̂ such that ζ + α(ζ) ∈ σ̃.
Comparing to our parametrization above, we see that α = h, so the quadratic
part of α is therefore equal to η. Because our multivariate integral formulae
are in terms of real parametrizations, we reparametrize ImP by ζ = iy and
dζ = id dy. In these coordinates, locally

σ̃ = {iy + h(iy) : y ∈ ReP} . (9.27)
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Using r̂ · y∥ = 0 and r̂ · r̂ = 1, we obtain

ϕ(iy + h(iy)) = ϕ(ζ∗) + h(iy)

= ϕ(ζ∗) + η(iy) + O(|y|3)

= ϕ(ζ∗) − η(y) + O(|y|3) .

We know, by our assumptions, that ϕ is a smooth phase function whose real
part has a minimum on σ̃ at ζ∗, which is y = 0 in the parametrization (9.27).
Applying Theorem 5.3 to (9.26) using the evaluation (9.25) then gives (9.23),
where the square-root of the curvature is taken to be the reciprocal of the prod-
uct of the principal square-roots of the eigenvalues of −η in the positive r̂-
direction, all of which have nonnegative real parts. The eigenvalues of −η in
direction r̂ are the same as the eigenvalues of η in direction −r̂, which finishes
the proof of the theorem. □

Again, minor modifications to proof extend to include the case where there
are finitely many critical points on a minimizing torus.

Corollary 9.46. Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials
with convergent Laurent series expansion F(z) =

∑
r∈Zd arzr corresponding

to the amoeba complement component B ⊂ amoeba(Q)c. Suppose there exists
a compact set R ⊂ Rd of directions such that for each r̂ ∈ R the function
r̂ · x is uniquely maximized at xmin ∈ B, and that the set W of critical points
in Te(xmin) is finite, non-empty, and consists of smooth non-degenerate points
where some partial derivative of Q does not vanish. For each z ∈ W(r̂) write
z = exp(xmin + iy). Then

ar =

(
1

2π|r|

)(d−1)/2

e−r·x
 ∑
z∈W(r̂)

e−ir·y P(z)
∥ ∇log Q(z)∥22

K (z)−1/2 + O(|r|−1)


uniformly as |r| → ∞ with r̂ ∈ R. □

Example 9.47 (Quantum walk). A quantum walk or quantum random walk
(QRW) is a model for a particle moving in Zd under a quantum evolution in
which the randomness is provided by a unitary evolution operator on a hidden
variable taking k states. States and position are simultaneously measurable, but
one must not measure either until the final time n or the quantum interference
is destroyed. A one-dimensional quantum walk was briefly presented in Ex-
ercise 9.8 as an example of torality. Here we illuminate the general form of
asymptotics for a QRW, using Theorem 9.45 and Corollary 9.46 to qualita-
tively describe the probability profile of the particle at large time n. Further
examples of QRWs are given in Chapter 12.

A QRW is defined by a k×k unitary matrix U along with k vectors v(1), . . . ,v(k)
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in Zd representing possible steps of the walk. At each time step, the particle
chooses a new state j ∈ [k] and then moves by a jump of v( j). The amplitude
of a transition from state i to j is the entry Ui, j, while the amplitude of a path
of n steps, starting in state i0 and ending in states in is

∏n−1
t=0 Uit ,it+1 . Suppose the

particle starts, at time zero, at the origin in state i. The amplitude of moving
from 0 to a point p in n time steps and ending in state j is obtained by summing
the amplitudes of all paths of n steps having total displacement p and ending in
state j. This description gives us everything we need in compute asymptotics
of QRWs — for more on the interpretation of quantum walks see [Amb+01;
Bar+10].

The multiplicative nature of the amplitudes makes QRW a perfect candidate
for the transfer matrix method, the univariate version of which was discussed
in Section 2.2 and whose multivariate version will be discussed at length in
Section 12.4. Let M denote the k × k diagonal matrix whose ( j, j)-entry is the
monomial zv( j)

and let P(p, n) be the matrix whose (i, j)-entry is the amplitude
to go from the origin in state i at time zero to p in state j at time n. Define the
spacetime generating function

F(z) =
∑
p∈Zd

n≥0

P(p, n)(z◦)pzn
d+1 (9.28)

where z◦ = (z1, . . . , zd) are d variables tracking walk position and zd+1 is a
variable tracking walk length. The transfer matrix method easily gives

F(z) = (I − zd+1MU)−1,

and the entries Fi j are rational functions with common denominator

Q = det(I − zd+1MU) . (9.29)

Exercise 9.12. Prove that Q in (9.29) satisfies the strong torality hypothesis
from Definition 9.20.

The component B of the amoeba complement that yields a series in zd+1

whose coefficients are Laurent polynomials in z1, . . . , zd is contained in the
negative zd+1 halfspace and has the origin on its boundary. Its boundary is
smooth everywhere except the origin, where its dual cone K has nonempty in-
terior; see Figure 9.8. Recalling the dual rate function β* on directions from (6.5),
whenever 0 ∈ ∂B we may deduce that β*(r̂) ≤ 0 with equality only possible if
r̂ ∈ normal0(B). The feasible velocity region of the QRW is the set R ⊆ Rd

consisting of all (r1, . . . , rd) such that exponential growth rate β(r1, . . . , rd, 1)
from Definition 6.20 vanishes (in other words, it is the set of directions in
which the chance of finding the particle roughly at that rescaled point after a
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long time decays slower than exponentially). Then R ⊆ Ξ, where Ξ is the rd = 1
slice of normal0(B) and is computed as an algebraic dual (see Example 6.50).

Figure 9.8 The component B and its dual cone K at the origin.

Smooth boundary points correspond to directions r̂ < K satisfying |r1| +

· · ·+ |rd | < |rd+1|. For each such r̂ there is one or more minimal smooth critical
points ofV. To compute R, we start by computingV0 = V ∩ T(0). For many
QRW’s one finds this to be a smooth manifold diffeomorphic to one or more
d-tori. At any smooth point z ∈ V0, the space L(z) is the line in the direction
of ∇log Q(z). Thus, r ∈ R if and only if r is in the closure of the image when
the logarithmic Gauss map ∇log is applied toV0, so that

R = ∇log[V0] .

This allows us to plot the feasible region by parametrizingV0 by an embedded
grid and applying∇log to each point of the embedded grid, an example of which
is shown on the left of Figure 9.9.

The right of Figure 9.9 shows an intensity plot of the magnitude of the prob-
ability amplitude for the particle at time 200 for a QRW known as S (1/8). The
agreement of the shape of the empirically plotted feasible region (right) with
the theoretical prediction based on the Gauss map (left) is apparent. What is
also apparent is that not only do the regions agree but their fine structure of
darker bands and light areas agree as well.

In particular, the image of V0 under ∇log will be more intense in places
where the Jacobian determinant of ∇log is small because the density of the
image of an embedded grid is proportional to the inverse of the Jacobian de-
terminant. The Jacobian determinant of the logarithmic Gauss map is pre-
cisely the curvature, as discussed following (9.21). In Theorem 9.45, while
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Figure 9.9 Left: The log-Gauss map on an embedded grid. Right: Probability am-
plitudes of a QRW.

the P/∥ ∇log Q∥22 term varies a little, the dominant factor is the curvature term
K
−1/2. This explains why the density of the Gauss-mapped grid is a good sur-

rogate for the probability amplitudes. ◁

Changing the matrix U or the vectors v( j) changes the walk, hence there are
many quantum walks, most of which don’t have the symmetries of the S (1/8)
walk. Figure 9.10 shows the feasibility region for a more-or-less generic quan-
tum walk. Again, one sees an image of the logarithmic Gauss map. It is notable
that, as for many quantum random walks, the feasible region is nonconvex, in-
dicating that parts of the cone normal0(B) do not correspond to any minimal
points, but are instead in the region of exponential decay (the infeasible re-
gion).

Notes

Precursors to the derivations of the saddle point residue integrals in this chap-
ter were the multivariate asymptotic results [BR83]. Breaking the symmetry
among the coordinates, they wrote

F(z) =
∞∑

n=0

fn(z◦)zn
d

for (d−1)-dimensional series fn(z◦) and then used the fact that fn is sometimes
asymptotic to an nth power fn ∼ C · g · hn to obtain Gaussian asymptotics when
certain minimality conditions are satisfied near a smooth critical point. Their
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Figure 9.10 Intensity plot for a quantum walk without symmetries.

language is inherently one-dimensional, so geometric concepts such as smooth
point did not arise explicitly.

The results presented in this chapter were first obtained via a direct surgery
approach in [PW02], which are valid only for finitely minimal critical points.
In addition, the minimality hypothesis in [PW02, Theorem 3.5] (and in many
other results there) assumes an ordinary power series. The residue version of
these computations appeared in print first in [Bar+10]. Extending the valid-
ity of the coordinate version beyond the case of finite intersection of V with
T (xmin) was accomplished in [BP11].

Between the first and second editions of this book, a rigorous Morse theo-
retic foundation developed in [BMP22] streamlined some of the presentation of
this chapter. The finite criticality hypothesis in this second edition replaces the
strong torality hypothesis from the first edition; there, the latter is simply called
torality. The explicit formula for higher order terms in Theorem 9.40 was first
given by Raichev and Wilson [RW08]. Attempts to extend Algorithm 3 are
an ongoing topic of research by an AMS Mathematics Research Community
started in 2021.

The pictures in Figure 9.9 were first produced by a Penn graduate student,
Wil Brady, in an attempt to produce rigorous computations verifying the limit
shapes of feasible regions that were suspected from simulations. At that time,
Theorem 9.45 was not known. The fact that the fine structure of the two plots
agreed was a big surprise, and led to reformulated estimates such as (9.23) in
terms of curvature.

Another rewriting of the leading term of the basic nondegenerate smooth
point asymptotic formula is given in [Ben+12, Appendix B].
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Additional exercises

Exercise 9.13. Let Res be the residue map on meromorphic forms with simple
poles on a smooth variety V , as defined in Proposition C.6. Prove that Res is
functorial, meaning it commutes with bi-holomorphic changes of coordinate.

Exercise 9.14. Let f (x, y) = x2 − 3x + 3 − y. In Example 9.39, asymptotics in
the diagonal direction reveal a quadratic degeneracy. To see what a quadratic
degeneracy means topologically, begin by computing the critical points in the
direction r = (r, 1− r) as a function of r on the unit interval. There should usu-
ally be two critical points. At what value r∗ of r is there a single critical point
of multiplicity 2? Check whether this is the same r for which the quadratic
term of hr̂ near the critical point z(r̂) vanishes.

Exercise 9.15. Let F(x, y) = 1/(1 − x − y)ℓ. Compute the asymptotics for the
power series coefficients a(ℓ)

rs and find the relation between these and the asymp-
totics of the binomial coefficients a(1)

rs =
(

r+s
r,s

)
. Verify this combinatorially by

finding the exact value of a(ℓ)
rs . Hint: When ℓ = 2, the bivariate convolution

of the binomial array with itself can be represented as divisions of r + s or-
dered balls into r balls of one color and s of another, with a marker inserted
somewhere dividing the balls into the two parts.

Exercise 9.16. (higher-order cube root asymptotics) In Example 9.39, dividing
the error when approximating the sequence by its leading asymptotic term by
the leading asymptotic term gives 0.00111 . . . when r = 100, hinting at the
fact that the next nonvanishing asymptotic term is r−m/3 for some m greater
than 2. Compute enough derivatives of A and ϕ at zero to determine the next
nonvanishing asymptotic term for arr.
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Multiple point asymptotics

The asymptotic behavior of the coefficients ar of a convergent Laurent expan-
sion F(z) =

∑
r∈Zd arz

r in a domain D ⊂ Cd is determined by certain con-
tributing points of the singular setV of F. In Chapter 9 we derived asymptotics
in the presence of smooth contributing points, where V is locally a manifold.
In this chapter we derive asymptotics for the simplest non-smooth geometry,
whereV locally decomposes as a union of smooth sets (see Figure 10.1).

Definition 10.1 (multiple points). A point p ∈ V is said to be a multiple point
ofV (or F) if there exist complex manifoldsV1, . . . ,Vn such that

U ∩V = (U ∩V1) ∪ · · · ∪ (U ∩Vn)

for every sufficiently small neighborhood U of p in Cd.

A taxonomy of multiple points, with examples, is described in Section 10.1
below. Combinatorial applications of generating functions whose asymptotics
are controlled by multiple points include multi-server queues (Example 10.28),
lattice points in polytopes (Example 12.28), binomial sums (Examples 10.11

Figure 10.1 A singular variety containing multiple points.

307
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and 10.69), discrete probability (Example 12.25), and lattice paths (Exam-
ple 12.26).

Exercise 10.1. Prove directly from the definition that the origin is not a multi-
ple point ofV(z2 − x2 − y2).

Recall from Chapter 7 that every complex algebraic variety (respectively,
its complement) has a Whitney stratification and is locally the product of a
stratum with its normal space (respectively, its normal link). Throughout this
chapter we use n for the number of manifolds, also called divisors, intersecting
at a multiple point p, and k for the codimension of the stratum containing p.
Every smooth point is a multiple point with n = 1. Mirroring Definition C.14 in
Appendix C, when n ≤ d we call p a transverse multiple point if the normals
to the divisors vanishing at p are linearly independent, and say the divisors
are transverse or intersect transversely if they are transverse at every point
where they intersect. Thus, n divisors intersecting transversely necessarily have
codimension k = n. No point with n > d is considered a transverse multiple
point. A complete intersection in dimension d is a stratum of codimension d,
which necessarily consists of isolated points.

One important simplification throughout most of the chapter is the assump-
tion that the direction r̂ does not lie on a boundary between two regions of
coefficient behavior.

Definition 10.2 (generic directions). Let {S α : α ∈ A} be a Whitney stratifica-
tion of the varietyV. We call r̂ a generic direction if each critical point for hr̂
in the closure S α of a stratum S α lies in S α rather than in a proper substratum
S β ⊂ S α.

Non-generic directions occur when a critical point in a stratum “disappears”
because it enters a substratum, leading to non-uniform behavior around non-
generic directions. If a direction is generic, then Condition (2) of Definition D.12
of a stratified Morse function will be satisfied because the negation of Condi-
tion (2) implies that p is a critical point in direction hr̂ for the stratum Sβ but it
lies in the proper substratum Sα. As our naming suggests, most directions are
generic.

Exercise 10.2. Let V be the variety defined by the vanishing of Q(x, y) =(
1 − 2

3 x − 1
3 y

) (
1 − 1

3 x − 2
3 y

)
. Give a stratification ofV and find all non-generic

directions r̂ for this stratification.

The results of Section 7.3 imply that (under mild conditions, such as having
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no critical values at infinity) we can write

ar =
∑

w∈critical(r̂)

κw

(2πi)d

∫
Cw

F(z)z−r−1dz (10.1)

where critical(r̂) is the set of critical points of the generating function F in
the direction r̂, each κw is an integer, and each Cw is a chain of integration
defined by tangential and normal Morse data at critical points of F. Roughly
speaking, the normal Morse data describes an integral that can be simplified
using residues, while the tangential data results in a saddle point integral that
can be asymptotically approximated.

Throughout this chapter we make various assumptions that simplify both
the determination of contributing critical points and the computation of in-
tegrals over tangential and normal Morse data. This was not necessary for
smooth points because all smooth points look the same topologically, but mul-
tiple points can vary substantially in their local topology and geometry. We
thus begin in Section 10.1 by introducing the types of multiple points we con-
sider, before Section 10.2 derives asymptotics for the integrals that arise and
Section 10.3 gives our main results on coefficient asymptotics. Section 10.4
discusses the algebraic techniques used to identify multiple points in more de-
tail, and we conclude in Section 10.5 by examining asymptotics in non-generic
directions and the difficult issue of tangential intersections.

10.1 A taxonomy of multiple points

Figure 10.2 displays the taxonomy we describe in this section. Effective clas-
sification within this taxonomy is discussed in Section 10.4.

The simplest multiple point case occurs when V is a hyperplane arrange-
ment, meaning a finite union of hyperplanes (a simple example is shown in
Figure 10.3). If V is the union of transversely intersecting hyperplanes then
the normal data of a critical point on a stratum of codimension k is a k-torus,
both the normal and tangential Morse data can be described explicitly, and the
critical points describing asymptotics can be determined algorithmically (see
Theorem 10.23 below).

Example 10.3. Figure 10.4 shows the pole set of the generating function

F(x, y, z) =
16

(4 − 2x − y − z)(4 − x − 2y − z)

whose divisors are two planes meeting at the complex line S = {(1, 1, 1) +
λ(−1,−1, 3) : λ ∈ C}.
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Figure 10.2 A taxonomy of multiple points.

(1,1)

L

L2

1

Figure 10.3 A transverse multiple point on a hyperplane arrangement, shown in
two depictions.

For each direction r̂ in the positive orthant, there are critical points z1(r̂)
and z2(r̂) on the respective planes, and a critical point p(r̂) on the line S . The
normal data at p is a 2-torus and the asymptotic behavior of the Cauchy integral
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Figure 10.4 A singular variety defined by two hyperplanes in three dimensions.

in (10.1) with domain Cp is determined by analysing a one-dimensional saddle
point integral over a curve maximized at p, while the normal data at z1 (or z2)
is a 1-torus and the asymptotic behavior of the Cauchy integral with domain
Cz1 (respectively Cz2 ) is a two-dimensional saddle point integral over an open
disk maximized at z1 (respectively z2). ◁

As we will see below, partial fraction decomposition can always be used to
reduce analysis of an arbitrary set of linear divisors to an analysis of trans-
versely intersecting linear divisors. Figure 10.5 illustrates an example of three
linear divisors in two dimensions that are pairwise transverse but not jointly
transverse, resulting in a stratum of codimension k = 2.

Figure 10.5 Three linear divisors intersecting in two dimensions.

Moving on from linear divisors, if V consists of transverse multiple points
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then it is locally diffeomorphic to the transverse linear case, and once again the
topological normal data at a critical point is a k-torus.

Example 10.4 (lemniscate). Let F = 1/Q(x, y), where Q(x, y) = 19 − 20x −
20y+5x2+14xy+5y2−2x2y−2xy2+x2y2 is the polynomial whose real zeros are
shown in Figure 10.6. The curveV intersects itself at the point (x, y) = (1, 1),
near which it is a union of two distinct segments of smooth curves intersecting
only at (1, 1). ◁

Figure 10.6 A local self-intersection.

Exercise 10.3. Make the change of coordinates Q(x, y) = Q(1 + u, 1 + v)
in Example 10.4 and write formulae v = f (u) for the two curves of V that
intersect at the origin in uv-coordinates.

Remark 10.5. If the transverse multiple point p lies in a complete intersec-
tion then there is no tangential integral and, provided F(z) = P(z)/Q(z) with
P(p) , 0, we will be able to compute the integral over the normal data explic-
itly as a polynomial times an exponential term (see Theorem 10.12 below).

Moving beyond transverse multiple points with non-linear divisors, the most
general class of multiple points for which we have a general method of deter-
mining asymptotics is that of arrangement points, where the lattice of intersec-
tions of the divisors defining a stratum is the same as the lattice of intersections
of the tangent planes to the divisors (this being a hyperplane arrangement). A
central hyperplane arrangement is a hyperplane arrangement in which each
hyperplane passes through the origin. Each central hyperplane arrangement
A = W1 ∪ · · · ∪ Wn possesses a natural structure as a matroid M(A), an
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axiomatic system discussed further below, whose elements index sets of hy-
perplanesWk1 , . . . ,Wks with linearly independent normal vectors. The set of
all intersections LT =

⋂
j∈T W j for T ⊂ [n] is called the lattice of flats of A

as it possesses a natural lattice structure [OT92, Lemma 2.3], and we let

T = { j ∈ [n] : LT ⊂ W j} (10.2)

encode the maximal set of hyperplanes having intersection LT . If T = T when-
ever LT is non-empty then we call the arrangement transverse.

Definition 10.6 (arrangement points). The point p ∈ V is an arrangement
point of order n if there exist complex manifoldsV1, . . . ,Vn such that

U ∩V = (U ∩V1) ∪ · · · ∪ (U ∩Vn)

and the intersection lattice of the surfaces {V j} within U coincides with the
intersection lattice of their tangent planes, for every sufficiently small neigh-
borhood U of p in Cd.

Example 10.7. If Q is a product of linear factors then every point p ∈ V is
an arrangement point because the collection of surfaces {V j} is a translation of
the collection of tangent planes. ◁

Example 10.8. Let F(x, y) = 1/(1− x)(1−y)(1− xy) be the generating function
with coefficients ars = 1+min{r, s}. The three divisors are pairwise transverse,
intersecting at the single point p = (1, 1) which is not transverse (as we are in
two dimensions). The point p is an arrangement point because the intersection
lattice (each pair of divisors intersects at p, hence all three do) is the same as
one would get by replacing the curveV(1− xy) by its tangent lineV(2− x− y)
at p. This is illustrated in Figure 10.7. ◁

Figure 10.7 An arrangement point in dimension two where three curves intersect.
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Example 10.9. The zero set of Q(x, y, z) = (1−z)(1−z+(1−y)2−(1+x)3) is the
union of the planeV1 defined by 1− z and a smooth surfaceV2 defined by the
vanishing of the other factor p(x, y, z). These two surfaces intersect in the curve
S defined by translating the cusp ofV(z, x3−y2) to the point (−1, 1, 1). Because
the expansion of p at (−1, 1, 1) begins p(x, y, z) = 1−z+(y−1)2+· · · the tangent
planes ofV1 andV2 coincide at (−1, 1, 1), which is not an arrangement point.
Note that the intersection S is not smooth, so the sets V1 \ V2, V2 \ V1, and
S do not form a Whitney stratification. To refine these sets into a Whitney
stratification requires decomposing S further into the singleton {(−1, 1, 1)} and
the remainder S \ {(−1, 1, 1)}. ◁

Every transverse multiple point is an arrangement point. Although there are
arrangement points that are not transverse points, arrangement points have a
transversality in successive intersections.

Proposition 10.10. Suppose p is an arrangement point of order n, with divi-
sors V1, . . . ,Vn as above, and let i < T ⊂ [n]. Then either VT ⊂ Vi in a
neighborhood of p or VT intersects Vi transversely at p. Consequently, if Pi

denotes the tangent space ofVi at p then any intersectionVT is a manifold in
a neighborhood of p with tangent space LT = ∩ j∈TP j at p.

Proof We induct on the codimension of VT . If VT has codimension 1 then
VT = Vi for all i ∈ T , with tangent space LT at p. If i < T then Pi is distinct
from the tangent plane to VT at p, hence the intersection of Vi and VT is
transverse.

Now suppose VT has codimension k ≥ 1 and i < T . By induction, VT is
smooth with tangent space LT at p. If i ∈ T then there is nothing to prove, so
assume i < T and let T ′ = T ∪{i}. The normal vector toVi at p is not in (LT )⊥,
and hence the surface Vi intersects VT transversely. The transverse intersec-
tion of smooth varieties is smooth with tangent space given by the intersection
of the tangent spaces, henceVT ′ is smooth with tangent space LT ′ , completing
the induction. □

We end this section with an example illustrating the most complicated be-
havior that can occur for multiple points: tangential intersections.

Example 10.11 (two curves intersecting tangentially). Consider the generat-
ing function

F(x, y) =
1

(2 − x − y)(1 − xy)
=

∑
i, j≥0

ai jxiy j,

with the divisors V(2 − x − y) and V(1 − xy) intersecting tangentially at the
point p = (1, 1) as shown in Figure 10.8.
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The multiple point at p is not an arrangement point because the lattice of
intersections of the two curves has rank 2 while the tangent lines to the curves
at p coincide, and thus form a rank 1 lattice. Although p is not an arrange-
ment point, this rational function is simple enough to allow us to compute
asymptotics of its coefficients, which we do in Example 10.69 at the end of
this chapter. ◁

1 1 2 3 4
x

1

1

2

3

4

y

Figure 10.8 Two curves intersecting tangentially.

10.2 Main results on integrals

Having surveyed the different types of multiple points we will analyse, we now
present our main asymptotic results. Effective methods to compute critical(r̂)
were described in Chapter 8, generically giving a finite set defined by explicit
algorithmically computable polynomial equalities and inequalities. Thus, it is
enough to compute asymptotic approximations of the integrals that appear
in (10.1), which is done in this section, and to determine (at least some of)
the coefficients κw in (10.1), which is done in Section 10.3. In the important
case of linear divisors there is a simple test to determine the coefficients κw
(which are all 0 or ±1), while in general we give results only in the presence
of minimal critical points.

Our first goal is to compute integrals over relative homology generators near
multiple points. Suppose that p is a transverse multiple point on a stratum S
of codimension k, so we can write

F(z) =
P(z)

Q1(z)m1 · · ·Qk(z)mk
(10.3)

for a vector m = (m1, . . . ,mk) of positive integer exponents and analytic func-
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tions P,Q1, . . . ,Qk at z = p with the gradients of the Q j linearly independent
at z = p. As in the remark following Theorem C.24, we assume the factors of
the denominator have been normalized so that each ∇log Qi is real and P/Q has
been normalized so that Q(0) = 1. Following Section C.2.3 of Appendix C, we
parametrize S near p using d−k coordinates π = {π1, . . . , πd−k} so that, writing
zπ = (zπ1 , . . . , zπd−k ), there exist analytic functions ζi(zπ) for i < π with z ∈ S

near p if and only if zi = ζi(zπ) for all i < π. The map

Ψ(z) =
(
Q1(z), . . . ,Qk(z), zπ1 − pπ1 , . . . , zπd−k − pπd−k

)
(10.4)

is a bi-analytic change of coordinates taking a neighborhood of p in S to a
neighborhood of the origin in {0}×Cd−k. If Tε ⊂ Ck×{0} denotes the product of
circles of radius ε in each of the first k coordinates then, when ε is sufficiently
small, the cycle T = Ψ−1(Tε) is a generator for the normal Morse data. Our
asymptotic formulas involve the augmented lognormal matrix ΓΨ(p) whose
first k rows are the log-gradients of Q1, . . . ,Qk at p and whose last d − k rows
consist of the vectors zπ1eπ1 , . . . , zπd−keπd−k (see Definition C.16 in Appendix C).

Exercise 10.4. Let Q(x, y) = 19−20x−20y+5x2+14xy+5y2−2x2y−2xy2+x2y2

be the lemniscate function from Example 10.4. What are Ψ, ΓΨ, and detΓΨ at
a point (a, b) ∈ V? How do these change as (a, b) moves inV?

The simplest case occurs for a complete intersection, because there is only
a normal integral and no tangential integral.

Theorem 10.12 (complete intersection asymptotics). Let F have the form (10.3),
with k = d and Q j(p) = 0 for all j ≤ k; in this case π is empty and the map
Ψ defined by (10.4) coordinatizes Cd near p by (Q1, . . . ,Qd). Define the cy-
cle T = Ψ−1(Tε) and the augmented lognormal matrix ΓΨ(p) as above. If
P(p) , 0, then

1
(2πi)d

∫
T

F(z)z−r−1 dz = p−rP(r,p) , (10.5)

where P(r,p) is a polynomial in r of degree |m| − d with leading term

P(r,p) ∼
(−1)|m−1|

(m − 1)!
P(p)

detΓΨ(p)
(rΓ−1

Ψ )m−1 .

for (rΓ−1
Ψ

)m−1 =
∏d

i=1(rΓ−1
Ψ

)mi−1
i and (m − 1)! =

∏d
i=1(mi − 1)!. When all

poles are simple (m = 1), the matrix ΓΨ is the d × d matrix of log gradients
and

P(r,p) =
P(p)

detΓΨ(p)
.
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Remark 10.13. The sign of the determinant of ΓΨ and of the orientation of T
depend on the order in which the factors Q j are listed. This is addressed further
in the proof of Theorem 10.25 below.

Proof The claimed result follows from the definition of iterated residues,
Theorem C.17 in Appendix C for the simple pole case, the reduction of the
residue in the non-simple pole case to the simple pole case, and the formulas
computed in Theorem C.24. □

Exercise 10.5. Apply Theorem 10.12 to F(z) = 1/Q(z) at the point (1, 1),
where Q is the polynomial in Exercise 10.4. How does the result differ from
ar?

In the simple pole case where m = 1 the polynomial P(r,p) is just a con-
stant. In two dimensions there is an explicit formula in terms of the numerator
and denominator of F evaluated at z = p.

Corollary 10.14. If the hypotheses of Theorem 10.12 hold in dimension d = 2
with m = 1, so that F(x, y) = P(x, y)/Q(x, y for Q(x, y) = Q1(x, y)Q2(x, y),
then

1
(2πi)d

∫
T

F(z)z−r−1 dz = p−r
P(p)

p1 p2

√
Q2

xy(p) − Qxx(p)Qyy(p)
(10.6)

for a suitable branch of the square-root.

Exercise 10.6. Prove Corollary 10.14 by computingP(r,p) in terms of Qxx,Qyy,

and Qxy at p.

When k < d the stratum has positive dimension and, after computing the
integral over the normal Morse data, there is an integral over a (d − k)-chain in
the stratum S containing p. The leading term of this integral on the stratum is
straightforward to write down except for a multiplicative constant that depends
on the quadratic part of −r · log z when restricted to the stratum S . Computing
this quadratic contribution requires logarithmic coordinates, and we define

g(θ) =
∑
j<π

r̂ j log
[
ζ j

(
pπ1 eiθ1 , . . . , pπd−k e

iθd−k
)]

where, as above, z j = ζ j(zπ) for j ∈ π locally parametrizes z near p on S. Let
H = H(p) denote the Hessian matrix of g at the origin.

Theorem 10.15 (partial intersection asymptotics). Assume the same notation
and hypotheses as Theorem 10.12, except that k < d so π is nonempty and Ψ
parametrizes Cd near p as the product of a normal slice containing the k-torus
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Tε and a coordinatization of S as a complex (d − k)-space. Let T = Ψ−1(Tε),
and let γ be a (d − k)-chain in S on which h(z) = −r̂ · Relog(z) is maximized
at p. If detH(p) , 0 then the integral of the Cauchy integrand over T has the
asymptotic expansion

1
(2πi)d

∫
T×γ

z−r−1F(z) dz ≈ p−r |r|−(d−k)/2+|m−1| (2π)(k−d)/2√
detH(p)

∞∑
ℓ=0

Cℓ(r̂)|r|−ℓ

(10.7)
with

C0 = (−1)|m−1| (r̂Γ−1
Ψ

)m−1

(m − 1)!
P(p)

∏
j∈π p j

detΓΨ
.

When all poles are simple (m = 1), the matrix ΓΨ is the d × d matrix of log
gradients and the leading term of the asymptotic expansion (10.7) becomes

1
(2πi)d

∫
T×γ

z−r−1F(z) dz ∼
P(p)

∏
j∈π p j

(2π)(d−k)/2 detΓΨ
√
H(p)

|r|−(d−k)/2p−r .

Remark 10.16. In the case of linear divisors, S is the intersection of hy-
perplanes and some linear algebra proves that H(p) is always nonsingular;
see [BMP23, Proposition 4.13].

Proof As in the proof of Theorem 10.12, combining Theorems C.17 and C.24
from Appendix C computes the integral over T , reducing now to an integral of
an iterated residue over γ. Using the formula for the residue in Theorem C.24
and changing coordinates via z j = p j exp(iθ j) for j ∈ π implies

1
(2πi)d

∫
C

z−r−1F(z) dz =
1

(2πi)d−k

∫
γ

z−r
P(r, z)∏

j∈π z j

∣∣∣∣∣∣
zi=ζi(zπ) : i<π

dzπ

=
1

(2π)d−k

∫
N

exp(−|r|ϕ(θ))P(r, z(θ)) dθ ,

where P(r, z) is the polynomial in r from Theorem C.24, N is a neighbor-
hood of the origin in Rd−k, and ϕ(θ) = r̂ · log z(θ). Lemma 8.21 shows that
this is a standard multivariate saddle point integral that can be evaluated using
Theorem 5.2. The coefficient C0 comes from the leading term of P(r, z(θ)),
which is described in Equation (C.2.15) of Appendix C. □

10.3 Main results on coefficient asymptotics

Having approximated the asymptotics of integrals near critical multiple points,
to determine asymptotics of ar it remains only to determine the coefficients
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κw in (10.1). We first give results when V is a hyperplane arrangement: Sec-
tion 10.3.1 assumes transverse intersections and gives a method to compute
all coefficients, while Section 10.3.2 reduces a general hyperplane arrange-
ment to transverse arrangements using algebraic reductions. Next, we show
how to compute dominant asymptotics for nonlinear divisors. As in the smooth
case, we need to characterize which minimal critical points contribute to dom-
inant asymptotic behavior. Section 10.3.3 deals with transverse intersections
and Section 10.3.4 deals with non-transverse intersections that are arrange-
ment points.

Notation and terminology
For each point σ on the boundary of the amoeba of a smooth algebraic hyper-
surfaceVQ, some complex scalar multiple of (∇log Q)(σ) will be real and point
into amoeba(Q). We use this to define contributing points on the boundary of
the amoeba.

Definition 10.17 (lognormal cones and contributing multiple points). Suppose
that σ is a transverse multiple point in a stratum of codimension k, such that
F(z) = P(z)/Q1(z)m1 · · ·Qk(z)mk near σ with the gradients of the Q j linearly
independent at z = σ. If Relog(σ) ∈ ∂ amoeba(Q) then the lognormal cone
N(σ) to V at σ is the positive real span of the lognormals to the Q j at σ,
scaled so that the lognormal of Q j is a real vector pointing into amoeba(Q j)
at Relog(σ). The set W(r̂) of contributing multiple points in the direction
r̂ consists of the critical points τ for which Relog(τ ) ∈ ∂ amoeba(Q) and
r̂ ∈ N(τ ).

Remark 10.18. The height function hr̂(z) = −r̂ · Relog(z) is minimized on
the closure B of a component of amoeba(Q)c at σ ∈ ∂B if and only if σ

is a contributing multiple point. Definition 10.17 fails when amoeba(Q) has
codimension one near σ, for instance in the case of the line amoeba(1 − xy).
However, when the component B of amoeba(Q)c is fixed then contributing
multiple points can still be defined in this pathological case for any σ ∈ ∂B by
scaling the lognormals defining N(σ) so that they point away from B.

Exercise 10.7. Let P = 1 and Q = (1−2x/3−y/3)(1− x/3−2y/3). First, deter-
mine the directions r̂ for which the point (1, 1) a contributing multiple point.
Second, find all contributing multiple points in the main diagonal direction.

10.3.1 Linear divisors: transverse arrangements

Suppose that F(z) = P(z)/Q(z) such that for polynomials P and Q such
that Q(z) = ℓ1(z)m1 · · · ℓn(z)mn for positive integers mk and real linear fac-
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tors ℓ1, . . . , ℓn vanishing on distinct hyperplanes V1, . . . ,Vn in Cd, with the
factors scaled so that ℓ j(z) = 1 − z · b( j) for a real vector of coefficients b( j).
LetM = Cd

∗ \V denote the set where F is analytic, and defineMR =M∩Rd.
A stratum S inV can be represented by its closure, which is an intersection

S = Vk1 ∩ · · · ∩ Vks of some of the hyperplanes defining V with the hyper-
planes not in S removed. By the convexity of the height function, each stratum
contains at most one critical point in each orthant of Rd, and if ξ ∈ {±1}d then
we let σS = σS,ξ(r̂) denote the unique critical point of S in the same orthant as
ξ. We further defineMR(S) to be Rd

∗ with the hyperplanes defining S removed,
and let BS = BS,ξ denote the unique component ofMR(S) in the same orthant
as ξ whose closure contains the origin.

The homology and cohomology of (complements of) hyperplane arrange-
ments has been well studied. Recall the relative homology group Hd(M,−∞)
that describes the homology ofM relative to any sublevel setM<c = {z ∈ M :
hr̂(z) < c} where c is smaller than the heights of all critical points.

Definition 10.19 (imaginary fibers). For each component B ofMR, the imag-
inary fiber with respect to B is any chain CB = x + iRd with x ∈ B, oriented
so that each copy of R goes from −∞ to +∞.

The imaginary fiber CB is well-defined in Hd(M), as if x,y ∈ B then f (t) =
(1−t)x+ty+iRd defines a homotopy between f (0) = x+iRd and f (1) = y+iRd

which stays inM.

Proposition 10.20. If r̂ is a generic direction then the set of fibers CB as B
varies over components ofMR on which hr̂ is bounded from below is a basis
for Hd(M,−∞).

Proof See Varchenko and Gelfand [VG87, page 268]. □

Proposition 10.20 implies that for linear divisors the domains of integration
Cw in (10.1) can be expressed in terms of imaginary fibers. We now specialize
to the case of a transverse arrangement, where all non-empty intersections of k
hyperplanes have codimension k. In this case we can explicitly compute cycle
representatives for another homology basis using the following construction.

Definition 10.21 (linking tori). For any w ∈ VR let Adj(w) be the set of
components B in MR with w ∈ B. If w is contained in the stratum S with
closure S = Vk1 ∩ · · · ∩ Vks then the linking torus τw is the relative cycle

τw =
∑

B∈Adj(w)

sgnw(B) CB (10.8)
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Figure 10.9 Left: The fiber basis for H2(M,−∞) for three lines not intersecting
at a common point. Right: Linking tori are shown for the three critical points on
these lines, and one of the codimension-2 critical points.

in Hd(M,−∞), where sgnw(B) denotes the sign of x1 · · · xdℓk1 (x) · · · ℓks (x) for
any x ∈ B.

Example 10.22. Figure 10.9 shows the zero setVR defined by the three linear
functions ℓ1(x, y) = 3−2x−y, ℓ2(x, y) = 33/16− x−y, and ℓ3(x, y) = 3− x−3y.
The real plane is split into six bounded components byVR and the coordinate
axes, together with ten unbounded components. In any direction r̂ with positive
coordinates the height function hr̂ is unbounded from below on the unbounded
regions, so a basis for H2(M,−∞) is given by imaginary fibers through points
in each of the six bounded regions (illustrated on the left side of the figure).

The right side of Figure 10.9 shows the six critical points of V in the di-
rection r̂ = (1/5, 4/5), three of which are smooth points (on codimension one
strata) and three of which form their own strata of codimension two. Two link-
ing tori are shown, one on a stratum of codimension two that consists of four
fibers and another at a smooth point that consists of two fibers. ◁

Asymptotics of interest will be given by a sum of integrals over linking tori,
but we still need to determine which linking tori appear in the sum, correspond-
ing to the coefficients κw in (10.1) that are non-zero. In general this is a very
difficult question, but in the linear divisor case we can answer it exactly. Note
that in this linear case the lognormal cone N(σ) at a point σ in the stratum S
defined by the intersection S = Vk1 ∩ · · · ∩ Vks is the positive span of the
vectors b̃(k1), . . . , b̃(ks) with coordinates b̃(k j)

i = b(k j)
i σi.

Theorem 10.23 (change of basis to linking tori). Fix a generic direction r̂ and
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Figure 10.10 Because the integrand of the Cauchy integral decays sufficiently
quickly away from the origin, the ends of the imaginary fibers defining a linking
torus can be joined and the resulting curve deformed to give an actual torus. Sim-
ilarly, a torus can be broken apart into a linking torus.

suppose that the ℓ j define a transverse arrangement. Then

T (ε, . . . , ε) =
∑

w∈W(r̂)

τw (10.9)

in Hd(M,−∞) for all sufficiently small ε > 0. In particular, the power series
coefficients ar of F satisfy

ar =
1

(2πi)d

∑
σ∈W(r̂)

∫
τσ

F(z)z−r−1dz .

The decomposition (10.9) varies with r̂ but is unique for each generic r̂

because the linking tori form a basis. For simplicity we restrict Theorem 10.23
to power series expansions, however decompositions analogous to (10.9) can
be computed for any torus T (w) with Relog(w) < amoeba(Q).

Proof Sketch Because any torus in M can be expressed as a sum of imagi-
nary fibers, it is sufficient prove that any imaginary fiber can be expressed as
a sum of linking tori. For each bounded component B of MR there exists a
critical point σB that minimizes the height function hr̂ on B, and this critical
point is a contributing point. If x lies in B then we can replace the fiber Cx
by the τσB plus a sum of fibers Cx′ where hr̂(x′) < hr̂(σB). Repeatedly ap-
plying this rewriting process results in a sum of linking tori plus imaginary
fibers over points in components of MR on which hr̂ is unbounded from be-
low. These final imaginary fibers are null homologous in (M,−∞), and thus
may be discarded. The result then follows by writing T (ε, . . . , ε) as a ‘linking
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Figure 10.11 When a saddle crosses p the linking torus changes by τp.

torus’ around the origin (see Figure 10.10), then proving inductively that the
coefficient of every contributing point is 1. See [BMP23] for a full proof. □

Example 10.24. Figure 10.11 shows three critical points a,b, and p on two
crossing lines. As the direction r̂ varies from a slope of 3 on the left of the
figure to a slope of 2/5 on the right of the figure, the critical point b crosses
ρ. As illustrated in the figure, on the left-hand side T (ε, ε) = τa + τb while on
the right side T (ε, ε) = τa + τb + τp. Varying r̂ farther to a slope of 1/5, the
critical point a crosses p, whereupon the coefficient of τp becomes zero again
and T (ε, ε) = τa + τb, this time with a and b both to the right of p. ◁

Combining Theorems 10.15 and 10.23 gives coefficient asymptotics for func-
tions whose denominators consist of transversely intersecting linear divisors.

Theorem 10.25 (transverse hyperplane arrangement asymptotics). Let Q(z) =∏n
j=1 ℓ j(z)m j for positive integers m j and real linear functions ℓ j defining a

transverse hyperplane arrangement, normalized so that Q(0) = 1 (as is the
case when each ℓ j(z) = 1−b( j) ·z). Let

∑
r arzr be a convergent power series

expansion for F(z) = P(z)/Q(z) and r̂ be a generic direction. Then

ar ≈
∑

σ∈W(r̂)

Φσ(r) , (10.10)

where Φσ is an infinite asymptotic expansion when σ lies in a stratum of di-
mension at least one, and a finite expansion (an exponential times a polynomial
in r) when σ lies in a complete intersection. These expansions are computed
(up to sign) in Theorems 10.12 and 10.15, and have the following leading
terms.
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(i) For complete intersection points σ,

Φσ(r) ∼ p−r
(−1)|m−1|

(m − 1)!
P(p)

|detΓΨ(p)|
(rΓ−1

Ψ )m−1 . (10.11)

(ii) For critical points σ in strata of positive dimension,

Φσ(r) ∼ p−r
(−1)|m−1|

(m − 1)!
P(p)

∏
j∈π |p j|

|detΓΨ(p)|
(r̂Γ−1

Ψ
)m−1

(2π)(d−k)/2
√

detH(p)
|r|−(d−k)/2+|m−1| .

(10.12)
In both (i) and (ii), asymptotics are uniform as r̂ varies over compact sets

of generic directions where the leading terms of the summands do not cancel.

Proof At this point, most of our work consists of getting the correct signs
in (10.11) and (10.12). The linking torus τσ and the torus T (σ) are generators
for the rank-d local homology of M at a complete intersection point σ. For
such a point, define sgn(τσ ,T (σ)) = ±1 according to whether these generators
are equally or oppositely oriented. More generally, if γ is a generator of the
relative homology group at σ within the stratum, then both τσ and T (σ) × γ
generate the rank-d local homology ofM and we again let sgn(τσ ,T (σ), γ) =
±1 according to whether these generators are equally or oppositely oriented.

Casting the conclusion of Theorem 10.23 in terms of the tori T gives

ar ≈
1

(2πi)d

∑
σ∈W(r̂)

sgn(τσ ,T (σ), γ)
∫
T (σ)×γ

F(z)z−r−1dz ,

and plugging in the results of Theorems 10.12 and 10.15, respectively, pro-
duces (10.11) and (10.12), up to sign. We proceed to check the signs. Recall
that the definition of T required us to normalize the factors Qi so that the en-
tries of ΓΨ are real.

Case 1 (complete intersection): For (10.11) we need to check that

sgn(τσ ,T )
detΓΨ

=
1

| detΓΨ|
. (10.13)

Let D be the cell in the complement of Rd
∗ \ A(σ) whose closure contains

both the origin and σ, where A(σ) denotes the sub-arrangement of all hy-
perplanes passing through σ. The tangent planes to both τσ and T can be
made to pass through any point p′ = e−εp for ε sufficiently close to zero.
At such a point, the two tangent planes, call them K and L respectively, are
both subspaces of the purely imaginary space p′ + iRd, with K oriented by
the standard orientation of Rd and L oriented by y 7→ Q−1(p′ + iy), with
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Q : (z1, . . . , zd) 7→ (Q1(z), . . . ,Qd(z)). The Jacobian of this change of coor-
dinates is dQ/dz, hence sgn(τσ ,T ) = sgn(detΓΨ) and establishing (10.13)
and (10.11).

Case 2 (positive dimension): To establish (10.12), we need to check that

sgn(τσ ,T , γ)
∏

j∈π p j

detΓΨ
=

∏
j∈π |p j|

| detΓΨ|
. (10.14)

The linking torus τσ is homologically a product of a k-dimensional torus τ′ in
the normal slice with the (d − k)-dimensional imaginary contour γ′ through σ

within the stratum. The tangent plane to τ′ coincides up to orientation with the
tangent plane to T . As we have seen above, the orientation sgn(τ′,T ) is the
sign of detΓΨ. Therefore it remains to show that the orientations to γ′ and γ
of the imaginary space in the stratum are related by

∏
j∈π sgn(p j). The plane

γ′ is oriented by the imaginary coordinates yπ(1), . . . , yπ(d−k) listed in that order
and all increasing. The plane γ is parametrized by these same coordinates in
the same order, inheriting the orientation from dzπ(1) ∧ · · · ∧ dzπ(d−k). Thus, the
imaginary part is increasing when the real part is positive, and decreasing when
the real part is negative. This establishes (10.14), hence (10.12), finishing the
proof of the theorem. □

Remark 10.26. Theorem 10.25 holds when the numerator P(z) is any analytic
function, provided that an error term that decreases faster than any exponential
function is added to the right-hand side of (10.10).

Example 10.27. Suppose that a and b are positive integers and let F(x, y) =
1/Q(x, y) where Q(x, y) =

(
1 − 2

3 x − 1
3 y

)a (
1 − 1

3 x − 2
3 y

)b
. For a general direc-

tion (r̂, ŝ) = (r, s)/(r + s) there are contributing points

p1 =

(
3r

r + s
,

3s
2(r + s)

)
and p2 =

(
3r

2(r + s)
,

3s
r + s

)
on each of the individual smooth divisors. Letting λ = r/s, the exponential
rates contributed by these smooth critical points are

R1 =
2λ(1 + λ)1+λ

3(3λ)λ)
=

1
3

(
2(1 + 1/λ)

3

)λ
(1 + λ)

R2 =
2(1 + λ)1+λ)

3(3λ)λ)
=

2
3

(
1 + 1/λ

3

)λ
(1 + λ).

The detailed asymptotic contributions of p1 and p2 can be worked out either
from the results of Chapter 9 or from (10.7). The point p = (1, 1) is a minimal
critical multiple point for every direction r̂, but is only contributing when λ ∈
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[1/2, 2], since the lognormal cone at p is spanned by the vectors (2, 1) and
(1, 2) with slopes 1/2 and 2.

When (r, s) lies in the open cone defined by λ ∈ (1/2, 2), the exponen-
tial contributions R1 and R2 can be bounded below 1 as they are increasing
functions of λ. Thus, Theorem 10.25 with detΓΨ = 1/3 implies that when
1/2 < λ < 2,

ars ∼
3 (r − 2s)b−1 (s − 2r)a−1

(a − 1)!(b − 1)!
.

Note that the boundary directions λ ∈ {1/2, 2} are not generic and so The-
orem 10.25 does not apply. In these cases p1 and p2 are distinct, but one of
them coincides with p and the other corresponds to an exponentially decay-
ing contribution. We deal with this boundary case in Example 10.66 via the
surgery method. It is also possible for λ to approach the boundary of the inter-
val rather than being constant, and in this case the analysis of asymptotics is
more delicate — see Section 13.2 for a brief discussion. ◁

Example 10.28 (queueing partition function). Let a, b, c, and d be positive real
constants, and consider the partition generating function

F(x, y) =
exp(x + y)

(1 − ax − by)(1 − cx − dy)

for a closed multi-class queueing network with one infinite server [BM93;
Kog02]. The most interesting case in applications occurs, without loss of gen-
erality, when a > c and b < d, whence D = ad−bc > 0. The two linear divisors
intersect in the positive real quadrant at the point p = (x0, y0) =

(
d−b
D , a−c

D

)
,

which is a critical transverse multiple point. In the main diagonal direction,
there are also critical points at (1/2a, 1/2b) and (1/2c, 1/2d), contributing ex-
ponential growth rates of 4ab and 4cd; the first of these coincides with the
double point p if and only if ad + bc − 2ab = 0, and the second if and only if
ad + bc − 2cd = 0. Thus, if we consider the case where the two points listed
above are distinct and each different from the double point, the calculation

(ad − bc)2 − 4ab(a − c)(d − b) = [a(d − b) + b(a − c)]2 − 4ab(a − c)(d − b)

= [a(d − b) − b(a − c)]2

= [ad + bc − 2ab]2 > 0 ,

and an analogous one with 4cd in place of 4ab, shows that the double point
has larger exponential growth rate than either of the smooth points. Leading
asymptotics are determined by (10.5) throughout the cone of directions (r, s)
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for which
b(a − c)
a(d − b)

<
s
r
<

d(a − c)
c(d − b)

.

In particular,

ann ∼
D2n−1 exp

(
a+d−(b+c)

D

)
(a − c)n+1(d − b)n+1 .

◁

Example 10.29. Consider again the rational function 1/(Q1Q2) from Exam-
ple 10.3. The intersection of the zero sets of Q1 and Q2 contains the single
critical point

(x0, y0, z0) =
(

4(r + s)
3(r + s + t)

,
4(r + s)

3(r + s + t)
,

4t
r + s + t

)
in the direction (r, s, t). The lognormal cone at this point is 2-dimensional,
so the same point will be critical for many directions: for instance, the point
(x0, y0, z0) = (1, 1, 1) is critical in directions where r + s = 3t. When (r, s, t)
lies in the lognormal cone at (x0, y0, z0) then this point determines dominant
asymptotics, and we recover expansions such as a3t,3t,2t ∼ (48πt)−1/2 as t →
∞. ◁

Exercise 10.8. Let Q = (3−x−2y)(3−2x−y)(5−3x−3y). Sketch the real part of
V, show the positions of all the critical points in the main diagonal direction,
state which one(s) contribute to the leading term of an,n, and determine whether
the leading term is computed by Theorem 10.12 or by Theorem 10.15.

Exercise 10.9. Theorem 10.15 handles smooth point asymptotics in the special
case where k = 1. Reconcile the formulae given here with the different-looking
formulae from Chapter 9. Start with a concrete example such as Delannoy
numbers F(x, y) = (1 − x − y − xy)−1.

10.3.2 Linear divisors: non-transverse arrangements

A rational function whose singular variety forms a non-transverse hyperplane
arrangement can be analysed using a form of partial fraction decomposition.

Given a hyperplane arrangementA defined by n real linear functions ℓ1, . . . , ℓn,
the matroid they define is the set of all subsets T ⊂ [n] of indices correspond-
ing to linearly independent collections {ℓ j : j ∈ T }. Subsets of [n] not in the ma-
troid are dependent sets, and minimal dependent sets are called circuits. Cir-
cuits need not all have the same cardinality. Following Brylawski [Bry77], we
define a broken circuit to be a circuit with its greatest element deleted, and call
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a set containing no broken circuit χ-independent (note that χ-independence
implies independence, but not vice versa). The support of a rational function
is the set of divisors— without multiplicities—appearing in its denominator
when in lowest terms.

Example 10.30. Let ℓ1, ℓ2 and ℓ3 vanish on concurrent lines, as in Figure 10.12.
Each pair of lines is linearly independent, but the set of all three is linearly de-
pendent, so there is a unique circuit [3] = {1, 2, 3} and a unique broken circuit
{1, 2}. A subset of [3] is independent if its cardinality is at most 2, and is χ-
independent if it does not contain both 1 and 2. ◁

1 1 2 3 4
x

1

1

2

3

4

y

Figure 10.12 Three concurrent lines.

Let SA denote the set of meromorphic functions whose pole variety is con-
tained in the union of hyperplanes ofA. Broken circuits allow us to character-
ize SA as a module over holomorphic functions.

Proposition 10.31. LetA = {ℓ1, . . . , ℓn} be a hyperplane arrangement in Cd.

(i) The set of rational functions
1

ℓi1 (z) · · · ℓis (z)
∈ SA with χ-independent

support is linearly independent over C.

(ii) The span over C of the rational functions
1

ℓi1 (z)m1 · · · ℓis (z)ms
∈ SA with

χ-independent support and total degree −
∑s

j=1 m j contains the inverses
of all products of the ℓ j over multisets of cardinality

∑s
j=1 m j.

Proof The claimed results follow from properties of hyperplane arrange-
ments derived in [OT92] (see [BMP23, Proposition 5.2]). □
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If w is a circuit and
∑

j∈w a jℓ j(z) = 0 then dividing by
∏

j∈w ℓ j(z)m j yields a
linear relation among elements of SA of total degree 1 −

∑s
j=1 m j,

a j∏
i∈w ℓi(z)mi−δi j

= −
∑
j′∈w
j′, j

a j′∏
i∈w ℓi(z)mi−δi j′

. (10.15)

Such relations allow for a reduction to the transverse case above.

Algorithm 4: Decomposition into transverse hyperplane arrangements.
Input: Rational or meromorphic function F(z) = P(z)/Q(z) whose

singular variety is the hyperplane arrangement defined by the
vanishing of Q(z) =

∏n
j=1 ℓ j(z)m j .

Output: Rational or meromorphic functions F1, . . . , Fs such that
F(z) = F1(z) + · · · + Fs(z) and the singular variety of each F j

is a transverse hyperplane arrangement contained in the
singular variety of F.

Set S = F(z).
While there is a summand s(z) of S with a broken circuit {ℓ j1 , . . . , ℓ jk−1 }:

Apply (10.15) to s(z) with jk > jk−1 such that {ℓ j1 , . . . , ℓ jk } is
dependent, and replace

s(z) in S by the result
Return S

Example 10.32. Let Q = ℓ1(x, y)ℓ2(x, y)ℓ3(x, y) = (3−2x−y)(3−x−2y)(2−x−
y). The varietyV consists of three concurrent lines, as shown in Example 10.30
and Figure 10.12. By examination we find that 2ℓ1(x, y)+2ℓ2(x, y)−6ℓ3(x, y) =
0. Dividing through by 6Q gives

1
ℓ1(x, y)ℓ2(x, y)

=
1/3

ℓ1(x, y)ℓ3(x, y)
+

1/3
ℓ2(x, y)ℓ3(x, y)

.

Starting with any fraction F(x, y) = g(x, y)/ℓ1(x, y)aℓ2(x, y)bℓ3(x, y)c, this rela-
tion may be used in Algorithm 4 to reduce factors ℓ1ℓ2ℓ3 in the denominator
until there are none remaining, resulting in a sum

F(x, y) =
∑

a+b≥ j≥0

e j(x, y)
ℓ1(x, y) jℓ3(x, y)a+b+c− j +

∑
a+b≥ j≥0

f j(x, y)
ℓ2(x, y) jℓ3(x, y)a+b+c− j .

Whereas F(x, y) had a non-transverse multiple point at (1, 1), each summand
now has a transverse multiple point at (1, 1). ◁

Theorem 10.33. Let Q(z) =
∏n

j=1 ℓ j(z)m
j be a product of real linear functions
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defining a hyperplane arrangement. Given a meromorphic function F(z) =
P(z)/Q(z) with poles on the zero set of Q, Algorithm 4 terminates and pro-
duces the claimed representation of F.

Proof Let w be a circuit and consider the weight function

w

 n∏
j=1

ℓ j(z)a j

 = n∑
j=1

ja j.

The reduction described in (10.15) replaces one term by a sum of terms whose
denominators have greater weight but the same total degree (the sum of the ex-
ponents that appear on the linear factors). Repeatedly applying the decompo-
sition gives terms with the same total degree but successively higher weights.
Because the weight function is bounded among terms whose total degree is
fixed, the loop in the algorithm must terminate, and when it terminates every
summand has a denominator whose linear factors form a χ-independent set.
Thus, the pole set of each summand returned forms a transverse hyperplane
arrangement contained inV(Q). □

Corollary 10.34. If F(z) =
∑

r arzr is a convergent power series expansion
of a meromorphic function having poles on a hyperplane arrangement then
asymptotics of ar can be computed by decomposing F into a sum of functions
having poles on transverse hyperplane arrangements using Theorem 10.33 and
applying Theorem 10.25 to each summand.

We note that the sum may have a large number of terms, the computations
can be difficult to carry out by hand, and a computer algebra system is often
useful.

Example 10.35. Let F = P(x, y)/Q(x, y) where P(x, y) = 1 and Q(x, y) =
(3 − 2x − y)(3 − x − 2y)(2 − x − y)2, a simple variation of Example 10.32. The
decomposition algorithm yields

F =
1/3

(3 − x − 2y)(2 − x − y)3 +
1/3

(3 − 2x − y)(2 − x − y)3

so that ar ∼ (r − 2s)2/2 for directions r̂ = (r, s) with s/r ∈ (1/2, 1), while
ar ∼ (s − 2r)2/2 when s/r ∈ (1, 2), and ar is exponentially small when s/r is
bounded strictly away from these two intervals. ◁

Up to this point, our roadmap for general hyperplane arrangements has been
to use matroid theory and algebra to reduce to the transverse case. We finish
our treatment of linear divisors by describing the general topological story. We
will not be using these results, but include some discussion because it can help
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understand the nonlinear case. The topology local to a critical point is the same
for an arrangement point as it is for the hyperplane arrangement defined by the
tangent planes of the surfaces intersecting near the point. However, when Q
factors locally but not globally near several different multiple points, it is not
clear how multiple local partial fraction decompositions of the type produced
in Theorem 10.33 can be used together to give the correct integral represen-
tations for coefficients. Therefore, though we don’t have an application that
makes essential use of the homological decomposition in the non-transverse
case, we will go ahead and describe it.

Without a transversality assumption, there is no longer a single generator
per critical point in the Morse theoretic decomposition of Hd(M). Instead of a
single linking torus τσ whose coefficient will be zero or nonzero depending on
whether r is in the normal cone, there will be more than one homology gen-
erator. Different regions of r̂ may yield different nonzero homology elements
local to σ which combine with linking tori elsewhere to produce the Cauchy
domain of integration. We sum this up as follows.

Let A denote the hyperplane arrangement defined by the linear divisors
ℓ j and suppose that σ is a critical point in the direction r̂ on some flat E
of codimension k in a generic direction r̂. Let N(σ) denote a sufficiently
small ball around σ in M and consider the rank-d homology group G(σ) =
Hd(N(σ),N(σ)≤h(σ)−ε) where ε > 0 is small enough that this pair is the at-
tachment pair at σ.

Proposition 10.36. Let A(E) ⊆ A be the subarrangement of A consisting
of all hyperplanes containing E and let A′ ⊆ A(E) be any collection of k
hyperplanes ofA(E) whose (necessarily transverse) common intersection is E.
Let ι denote the inclusion Cd

∗ \A(E) ↪→ Cd
∗ \A

′ and let τσ,A′ denote the linking
torus at σ in Cd

∗ \ A
′. There is a unique homology element β(σ, r̂) ∈ G(σ)

such that for, every such collection A′, we have ι∗β = τσ,A′ if r̂ ∈ NA′ (σ) and
ι∗β = 0 otherwise. These homology elements satisfy

[T (ε, . . . , ε)] =
∑

σ∈critical(r̂)

β(σ, r̂). (10.16)

for any ε > 0 sufficiently small. □

Example 10.37 (Example 10.32, continued). If r̂ has slope 3/2, as shown in
Figure 10.13, then β(σ, r̂) is the sum of imaginary fibers with signs shown
in the figure. To see this, observe that if the flattest line, called ℓ2 in Exam-
ple 10.32, is removed then the + and − fibers cancel in pairs, corresponding
to ι∗β vanishing because r̂ is not in the normal cone spanned by the other
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r

+
+

-

-

Figure 10.13 The linking torus at σ for a non-transverse intersection, with r̂ hav-
ing slope 3/2. The codimension 2 critical point σ is at the base of the arrow, while
the codimension 1 critical points are depicted by smaller dots.

two normals (1, 1) and (2, 1). Conversely, if either of the other two lines is re-
moved then ι∗β equals τσ , corresponding to the fact that r̂ is in the normal
cone spanned by (1, 2) and either (1, 1) or (2, 1). If we change r̂ to have slope a
little less than 1, then the critical point on the middle line moves to the right of
σ and the negative fibers move from the regions between the two lines of least
slope to the regions between the two lines of greatest slope. When r̂ does not
have slope between 1/2 and 2 then r̂ < N(σ) and β(σ, r̂) = 0, again consistent
with the fact that r̂ < NA(E′)(σ) for any E′. ◁

10.3.3 Nonlinear divisors: transverse multiple points

In the case of nonlinear divisors, we determine the critical point(s) contributing
to the asymptotics only when there are minimal critical points. As above, let p
be a transverse multiple point on a stratum S of codimension k, so that we can
write

F(z) =
P(z)

Q1(z)m1 · · ·Qk(z)mk

for positive integers m j and analytic functions P,Q1, . . . ,Qk at z = p with the
gradients of the Q j linearly independent at z = p.
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Near p the singular variety V is locally homeomorphic to the hyperplane
arrangement P defined by the first-order expansions of the Q j at p. In fact,
these sets are locally isotopic in the sense that for some neighborhood N of
p there is a homotopy of the pair (N ,N ∩ V) fixing ∂N such that inside a
smaller neighborhood N ′ the homotopy takes V ∩ N ′ to P ∩ N ′. It follows
from this isotopy that the local homology at p has rank 1, and is generated by
the linking torus [τp]. A representative of this homology class is T × γ where
T is an actual torus in the normal link and γ is homeomorphic to a (d− k)-disk,
lies in the stratum containing p, and has a boundary lying below height hr̂(p).
In the case of nonlinear divisors, we use the term “linking torus” to refer to
T × γ; when k = d this is an absolute cycle, namely a d-torus, while for k < d
it is a relative cycle. Combining this observation with the expansion computed
in Theorem 10.15 gives the following.

Theorem 10.38 (strictly minimal transverse multiple point asymptotics). Let
p be a transverse multiple point of F with local decomposition

F(z) =
P(z)

Q1(z)m1 · · ·Qk(z)mk

as described above. Suppose that p = p(r̂) is a minimal point for the Laurent
expansion F(z) =

∑
r arzr with domain of convergenceD = Relog−1(B), is a

critical point in the generic direction r̂, and is the unique critical point with its
height. Let N(p) be the lognormal cone described in Definition 10.17 above.

(i) If r̂ ∈ N(p) and detH(p) , 0 then

ar ≈ Φp(r) (10.17)

where Φp(r) is the asymptotic expansion defined in Theorem 10.25 by
(10.11) (for a complete intersection) or (10.12) (otherwise). This asymp-
totic expansion holds uniformly as |r| → ∞ with r̂ varying such that it
and p(r̂) satisfy the assumptions above.

(ii) If r̂ < N(p) then ar grows exponentially smaller than p−r.

Proof We have already seen that the local homology group ofM at p has a

single generator C, and that
1

(2πi)d

∫
C

z−r−1F(z) dz ∼ Φz(r). To prove con-

clusion (i) it remains to show that the domain of integration T in the Cauchy
integral for ar satisfies [T ] = ±τp in Hd(M,M≤c−ε),where c = hr̂(p), and that
the modulus / absolute value signs in the middle term on the right of (10.12)
capture the orientation.

In Section 10.5 we will see that this is indeed true by following the original
derivation in [PW04]. That derivation involves the residue sum identity (10.29),
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but the topological fact may also be seen directly by applying the Thom iso-
morphism one divisor at a time. For the orientation, note that∏

j∈π |p j|

| detΓΨ|
=

∣∣∣∣∣∣
∏

j∈π p j

detΓΨ

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1
detΓ′

Ψ

∣∣∣∣∣∣
where the rows of Γ′

Ψ
are augmented by elementary basis vectors eπ( j) in-

stead of z jeπ( j). This matrix is real, so again the absolute value multiplies by
sgn(detΓ′). This is equal to sgn(τp,T , γ) because the picture is the same, ex-
cept rotated in the j-coordinate by the argument of p j.

Conclusion (ii) is a consequence of the Paley-Wiener theorem for ACSV,
described in Theorem 11.42. Briefly, the lognormal cone N(p) is the dual of
the geometric tangent cone to B at p and, for any minimal point, the class [T ]
is represented as a fiber exp(x + iy) over some point x ∈ B. Because r̂ is not
in the dual to the geometric tangent cone to B at p, there is some point p′ ∈ B
with −r̂ · p′ < −r̂ · p, implying (ii). □

Example 10.39 (lemniscate, continued). Let F(x, y) = 1/Q(x, y) be the gen-
erating function from Example 10.4. To apply Theorem 10.38 we first prove
that the critical point (1, 1) is strictly minimal. The parametrization (10.18) be-
low shows that V does not enter the unit polydisk near the point (1, 1). If this
curve enters the unit polydisk anywhere else, then there is a point (x0, y0) with
one coordinate having modulus 1 and the other having modulus less than 1.
By symmetry, it suffices to check the points on V with |x| = 1 to see if
|y| ≤ 1 can hold. Using a rational parametrization of the unit circle, such as
x(t) = (1 − t2)/(1 + t2) + i(2t)/(1 + t2), we can solve for the square norm of
y(t) as an algebraic function of t. Studying the zeroes of the derivative |y(t)|2

allows one to prove that |y(t)|2 ≥ 1 with equality only at t = 0, meaning (1, 1)
is strictly minimal.

Applying Theorem 10.38 is now straightforward. The cone N(1, 1) consists
of the directions (r, s) lying between the logarithmic normals to the two branches
ofV; the lognormal directions were computed in Example 10.43 to be the rays
with slopes 2 and 1/2. The point (1, 1) is a squarefree complete intersection so
we may apply Corollary 10.14, with the values of x0, y0 and P(x0, y0) all equal
to 1. We obtain

ars =
1
6
+ Rrs

where Rrs is a remainder converging to zero exponentially as (r, s) → ∞ with
r/s remaining in a compact subset of (1/2, 2). The exponential decay of the er-
ror term is detectable numerically: for instance, the asymptotic approximation
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of a30,30 ≈ 0.1652 has a relative error rate around 0.8%, while the relative error
approximating a60,60 is around 0.04%. ◁

Example 10.40. The number of nearest-neighbor walks of length n on the
integer lattice that start at the origin, take steps in {NE,NW, S }, and remain
confined to the nonnegative quadrant is shown in [MW19] to be the main di-
agonal of

(1 + x)(1 − 2xy2z)
(1 − y)(1 − z(1 + x2 + xy2))(1 − zxy2)

.

A short analysis shows that dominant asymptotics are determined by the con-
tributing point (1, 1, 1/3) where the first two of the divisors above vanish (but
the third does not) and Theorem 10.38 implies

annn ∼
3n
√

3
2
√
πn
.

◁

Because the homology group Hd(M,M≤c−ε) is the direct sum of local ho-
mology groups near critical points, similar results hold when the minimal
critical multiple point determining asymptotics has a finite number of critical
points with the same coordinate-wise modulus (this mirrors the finite criticality
hypothesis discussed in Chapter 9).

Corollary 10.41 (minimal transverse multiple point asymptotics). Suppose
that w is a minimal point such that the torus T (w) contains a finite number of
critical points p1, . . . ,pm, and suppose that each p j satisfies the conditions of
Theorem 10.38 (aside from strict minimality).

(i) If r̂ ∈ N(p j) for some j then

ar ≈
∑

p∈W(r̂)

Φp(r) ,

where Φp(r) is the expansion described in (10.17).
(ii) If r̂ < N(p j) for all 1 ≤ j ≤ m then ar grows exponentially smaller than

w−r. □

Exercise 10.10. Let m(1), . . . ,m(d) be positive integer vectors forming a lat-
tice basis of Zd and let F(z) = 1/Q(z) for Q(z) =

∏d
j=1(1 − zm( j)

). Com-
pare the behavior of ar as r → ∞ when r is in the open positive hull of
{m( j) : 1 ≤ j ≤ d} and when it is not, using Corollary 10.41. Why does this
make sense combinatorially?
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10.3.4 Nonlinear divisors: arrangement points

Similar to the linear case, near a general arrangement point p we can decom-
pose F(z) into a finite sum of functions whose singular varieties have trans-
verse multiple points at p. Unlike the linear case, however, we need to carefully
consider the ring in which we perform this decomposition.

Definition 10.42. The local ring of analytic germs Op at p consists of all
equivalence classes of analytic functions on neighborhoods of p under the re-
lation of agreement on some neighborhood of p. Because analytic functions
are determined by their values in a neighborhood, all functions in such an
equivalence class are analytic continuations of each other, making the situa-
tion somewhat simpler than for germs of smooth functions: Op is isomorphic
to the ring Cp{z} of power series centered at p that converge in some neighbor-
hood of p. The ring Op is a local ring whose unique maximal ideal is the germs
of functions vanishing at p, and we consider the local ring as lying between
the polynomial ring and the formal power series ring: C[z] ⊂ Op ⊂ Cp[[z]].

Example 10.43 (lemniscate, continued). Let Q be the polynomial from Exam-
ple 10.4, whose zero set in R2 has the shape of a figure eight. The polynomial
Q is irreducible in C[x, y] but according to its geometry it must factor in O(1,1).
A computer algebra system computes parametrizations (x, y1(x)) and (x, y2(x))
forV near (1, 1) with

y1(x) − 1 =
x2 − (x − 1)

√
−4 x2 + 8 x + 5 − 7 x + 10
x2 − 2 x + 5

(10.18)

= −2(x − 1) +
2
3

(x − 1)3 + · · · ; (10.19)

y2(x) − 1 =
x2 + (x − 1)

√
−4 x2 + 8 x + 5 − 7 x + 10
x2 − 2 x + 5

(10.20)

= −
1
2

(x − 1) −
1

24
(x − 1)3 + · · · . (10.21)

The two branches have slopes −2 and −1/2 at the point (1, 1). ◁

The decomposition of a function near an arrangement point is facilitated by
the following result.

Lemma 10.44. Let p be an arrangement point of F(z) whereV is locally the
union of smooth setsV1, . . . ,Vn defined by the vanishing of analytic functions
Q1, . . . ,Qn. If w is a circuit in the matroid defined by the tangent hyperplanes
of the varieties V1, . . . ,Vn at z = p then there is a collection {gi(z) : i ∈ w}
of invertible elements of Op such that

∑
i∈w gi(z)Qi(z) = 0 in Op.
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Our proof of Lemma 10.44 relies on the following result, whose proof is
outlined in Exercise 10.16. Recall from (10.2) that for a set T indexing some
divisors Qi the symbol T denotes the set of all j such thatV j contains

⋂
i∈T Vi.

Lemma 10.45. Suppose p is a multiple point with local irreducible factors
Q1, . . . ,Qn and for an index set T ⊂ [n] let JT denote the ideal in Op generated
by {Qi : i ∈ T }. If p is an arrangement point then for all T ⊂ [n] the ideal JT

is radical. It follows that JT = JT for all T , and that the codimension of this
ideal is equal to the codimension of LT .

Proof of Lemma 10.44 Fix any i ∈ w and let S = V1 ∩ · · · ∩ Vn. Because
p is an arrangement point, near p we have the containment

⋂
j∈w\{i}V j ⊂ Vi,

which is equivalent to Qi being in the radical of the ideal of Op generated by
{Q j : j , i}. By Lemma 10.45, this ideal is already radical, hence

Qi(z) =
∑

j∈w\{i}

g j(z)Q j(z) (10.22)

for some functions g j ∈ Op. Taking gradients at p we have

(∇Qi)(p) =
∑

j∈w\{i}

g j(p)(∇Q j)(p) .

Because w \ {i} is a circuit, the gradients on the right-hand side are linearly
independent, hence this equation uniquely determines the values {g j(p) : j ∈
w \ {i}}. Also, the fact that w is a circuit implies that none of these values g j(p)
is zero, for that would imply a linear dependence among w \ { j}. By continuity,
there is a neighborhood of p where none of the functions g j vanishes, hence
these functions are all units, and the representation (10.22) along with gi ≡ −1
proves the lemma. □

Corollary 10.46. Let F(z) =
∑

r arzr be a convergent Laurent expansion. If
p is a strictly minimal arrangement point then modifying Algorithm 4 to work
over the local ring using Lemma 10.44 decomposes F(z) near p as a finite sum
of meromorphic functions with transverse multiple points at p. Asymptotics
of ar can be computed using Theorem 10.38 when the summands satisfy the
hypotheses of that theorem at p. If p is not strictly minimal but the torus T (p)
through p has only a finite number of critical points then asymptotics of ar can
be determined by performing this decomposition and analysis at all critical
points in T (p), provided the hypotheses of Theorem 10.38 are always satisfied.

We conclude this section with an example involving a binomial variety; for
a similar application concerning lattice point enumeration, see Example 12.28.
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Example 10.47. Continuing the analysis of the GF in Example 10.8, we con-
sider the power series expansion of F(x, y) = 1/Q(x, y) where

Q(x, y) = Q1(x, y)Q2(x, y)Q3(x, y) = (1 − x)(1 − y)(1 − xy).

Localizing at the common intersection point (1, 1), we know that each factor
should be in the ideal generated by the others in O(1,1), and in fact

Q3(x, y) = Q1(x, y) + Q2(x, y) − Q1(x, y)Q2(x, y) . (10.23)

We have a broken circuit {1, 2}, so we eliminate the factor of Q3 in the denom-
inator of F(x, y) by dividing (10.23) by Q to obtain

1
Q1(x, y)Q2(x, y)

=
1

Q2(x, y)Q3(x, y)
+

1
Q1(x, y)Q3(x, y)

−
1

Q3(x, y)
.

We may write the last term as − Q2(x,y)
Q2(x,y)Q3(x,y) so that

1
(1 − x)(1 − y)

=
y

(1 − y)(1 − xy)
+

1
(1 − x)(1 − xy)

and thus

F(x, y) = F1(x, y) + F2(x, y) =
y

(1 − y)(1 − xy)2 +
1

(1 − x)(1 − xy)2 .

The generating functions F1 and F2 have a transverse multiple point at (1, 1),
which is the only critical point when r̂ < {(0, 1), (1, 0), (1, 1)}. Asymptotics can
be obtained by applying Theorem 10.38 to these two rational functions at the
point p = (1, 1). The lognormal directions for the divisors 1− x, 1−y and 1− xy
are, respectively, horizontal, vertical and on the main diagonal; r̂ thus lies in
the dual normal cone to F1 at p but not the dual normal cone to F2 when r̂

has positive slope greater than 1, and vice versa when r̂ has positive slope less
than 1. We deduce that

ars =


r + O(1) if ε−1 >

s
r
> 1 + ε

s + O(1) if 1 − ε >
s
r
> ε

,

uniformly for any ε > 0. A glance at the generating function shows that in fact
ars = 1 +min{r, s}. ◁

10.4 Classifying multiple points

Having discussed the coefficient asymptotics of generating functions with mul-
tiple points, we turn to the problem of recognizing when they arise.
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Proposition 10.48. The point p ∈ V is a multiple point if and only if there is
a factorization

Q(z) =
n∏

j=1

Q j(z)m j (10.24)

in Op with ∇Q j(p) , 0 and Q j(p) = 0. The point p is a transverse multiple
point with n divisors if and only if in addition the gradient vectors ∇Q j for
1 ≤ j ≤ n are linearly independent.

When m j = 1 for all j in the decomposition (10.24), we say that Q is square-
free at p.

Proof The ring Op is a unique factorization domain [Hör90], so Q has some
factorization into powers of distinct irreducibles. The variety V is locally the
union of the vanishing sets of the irreducibles Q j, each of which defines a
smooth hypersurface if and only if its gradient at p is non-zero. The transver-
sality assertion follows immediately from the definition. □

To give an algebraic criterion for the multiple point p to be an arrangement
point, let Q j(z) be as in (10.24), and let ℓ j(z) denote the linear polynomial

ℓ j(z) = ∇Q j(p) · (z − p)

forming the leading homogeneous part of Q j at p. The leading homogeneous
part of Q at p is the homogeneous polynomial of degree n

hom(Q,p) =
n∏

j=1

ℓ j(z)m j

and therefore the zero set of hom(Q,p), which is the algebraic tangent cone
algtanp(Q) discussed previously in Chapter 6, equals the hyperplane arrange-
ment A defined by the tangent planes to the Q j at p. We remark that the in-
tersection lattice of this arrangement remains the same as p varies over the
stratum S of V containing p. By definition, for p to be an arrangement point
such a product decomposition must hold and the lattice of flats of A must be
isomorphic to the intersection lattice of the local surfacesV j = VQ j . Repeated
factors are allowed, so we may assume without loss of generality that each m j

is equal to 1, arriving at the following algebraic criterion.

Proposition 10.49. The point p ∈ V is an arrangement point if and only if
both hom(Q,p) and Q factor into smooth factors (the former will be linear
polynomials in C[z] and the latter will be in Op) and the two intersection
lattices agree. □
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Example 10.50 (Example 10.4, continued). Let Q(x, y) be the polynomial
from Example 10.4 and let p = (1, 1). Taking the monomials of least degree of
Q(1 + x, 1 + y) gives

hom(Q,p) = 4x2 + 10xy + 4y2 .

Every homogeneous quadratic in two variables is the product of linear factors,
which are distinct unless the discriminant of the quadratic vanishes. In this
example the discriminant is 36, hence p is an arrangement point. In fact it is a
transverse multiple point, and the local intersection lattice for both the divisors
and their tangent planes is a Boolean lattice of rank 2. ◁

It is important to work over the correct field when analysing multiple points.

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0

y

Figure 10.14 A homogeneous polynomial whose zero set is five lines.

Example 10.51. Let f (x, y) = 2y5 + y4x − 10y3x2 − 5y2x3 + 8yx4 + 3x5. This
homogeneous polynomial has a zero set consisting of five distinct lines through
the origin whose slopes are the five roots (all real) of the quintic 2t5 + t4 −

10t3 − 5t2 + 8t + 3. This quintic does not factor over the rationals, so one must
work over the splitting field of f to obtain the necessary factorization. This
can be handled in many computer algebra systems, but is more complicated
than factoring directly over the rationals. See also Proposition 10.53 below for
useful criteria to determine multiple and arrangement points. ◁

Effective computation of multiple points

The foregoing discussion being of a theoretical nature, we pause to consider
how the classification of multiple points might be computed. When given a
polynomial Q, one imagines being able to “look at its zero set” to see by in-
spection whether it is locally the union of smooth sheets, but this is difficult
when the dimension is high, the polynomial has many terms, or the procedure
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is automated. What, then, is an effective way to determine whether any of the
singular points of Q is in fact a multiple point?

In many combinatorial applications, Q factors into polynomials with non-
zero gradients at the origin, and Proposition 10.48 can be directly applied. The
difficulty comes when an irreducible polynomial factor Q j of Q has vanishing
gradient: it is possible that the gradient of Q j vanishes at p because p is not
a multiple point, but it could also happen because Q j is irreducible in C[z]
but reducible in Op. Computing in Op is more difficult than working with
polynomials, but we can often determine what we need.

Proposition 10.52. For any positive integers n and d, determining whether a
homogeneous polynomial f ∈ Q[z] of degree n in d variables has a factoriza-
tion into n (possibly repeated) linear terms is decidable via computer algebra.
If f is a product of linear factors, then whether these factors are distinct is also
decidable by computer algebra.

Proof The set of coefficients of products of n homogeneous linear polynomi-
als in d dimensions forms an algebraic variety. Various sets of defining poly-
nomials are known [Bri10], and containment of a point in an algebraic variety
is decidable. Such linear factors are distinct if and only if f and all its partial
derivatives have no common linear factors. □

Exercise 10.11. In the special case d = 2, what is a quick method of deciding
whether f factors into linear factors with no repeated factor?

Replacing the polynomial Q by its square-free part if necessary, we may
assume without loss of generality that Q is square-free.

Proposition 10.53. Let Q be a square-free polynomial and let Q̃(z) = hom(Q)
be the lowest degree homogeneous part of Q.

(i) If 0 is a multiple point for Q then Q̃ is the product of linear factors.
(ii) If 0 is an arrangement point for Q then Q̃ is the product of distinct linear

factors.

Proof (i) Suppose 0 is a multiple point for Q. By Proposition 10.48, there is
a factorization Q(z) =

∏n
j=1 Q j(z) in O0 with each ∇Q j(0) nonvanishing. If

ℓ j(z) = ∇Q j(0) ·z denotes the linear homogeneous term of Q j then, because Q̃
is homogeneous of degree n, we see that Q̃ =

∏n
j=1 ℓ j factors into linear terms.

(ii) If 0 is an arrangement point then examining the sublattice {V,Vi,V j,Vi∩

V j} for distinct i and j shows the gradients at 0, which define the linear factors,
are distinct. □
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Exercise 10.12. If p is a non-smooth multiple point for Q in dimension 2 then
must it be an isolated singularity ofVQ? What about in dimension d > 2?

Example 10.54. Let

Q(x, y, z) = 1 + xyz −
1
3

(x + y + z + xy + xz + yz)

be the denominator of the cube grove generating function (7.23). The ideal〈
Q ,

∂Q
∂x

,
∂Q
∂y

,
∂Q
∂z

〉
has a Gröbner basis consisting of the polynomials [x−1, y−1, z−1], so the point
(1, 1, 1) is a non-smooth point ofV. Translating this point to the origin replaces
Q by h(u, v,w) = Q(1 + u, 1 + v, 1 +w) = 2uv + 2uw + 2vw + 3uvw, and we let
h̃ = 2(uv+uw+vw) be the leading homogeneous part of h. By writing down an
attempted factorization we see that h̃ does not factor into linear factors, hence
h does not and (1, 1, 1) is not a multiple point. Asymptotics for the coefficients
of the cube grove generating function are discussed in Example 11.43. ◁

Unfortunately the converse to part (i) of Proposition 10.53 does not hold.
Linear factorization of the homogeneous part of Q does not imply multiple
point geometry, even if the factors are distinct and linearly independent (see
Example 10.55 below), so Proposition 10.53 helps certify that p is not a mul-
tiple or arrangement point, but doesn’t help to certify that it is one.

Another approach to certifying multiple points is a characterization using
local monodromy. Certification in the positive direction relies on conjectured
properties of the relevant algorithms, but for those interested in the problem,
this will at least give a start.

Up to taking an invertible linear change of coordinates, we may assume that
there exists a coordinate j such that π−1(p) is always finite, where π : V →
Cd−1 is the projection map onto the coordinate plane z j = 0. Let B denote the
branch locus of π, consisting of the points w ∈ Cd−1 for which the cardinality
of the fiber π−1(w) does not take its maximum value k. A path γ : [0, 1]→ Cd−1

that avoids B defines a map from the fiber π−1(γ(0)) to the fiber π−1(γ(1)) by
so-called homotopy continuation, making continuous choices of π−1(γ(t)) for
0 ≤ t ≤ 1. Homotopic paths in U = Cd−1 \ B define the same map, and fixing
a base point z0 < B and letting γ vary over loops based at z0 defines a map
from the fundamental group of U to the permutations of the fiber at z0, which
we identify with the symmetric group Sk. The image in Sk is what is known as
the monodromy group of π, and is intrinsic to V in the sense that it does not
depend on the projection π. The local monodromy group at p is the image in
Sk of the subgroup of the fundamental group consisting of loops that can be
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drawn so as never to leave an arbitrarily small neighborhood of p. A point p is
a multiple point if and only if the local monodromy group at p is trivial (that
is, contains only the identity permutation)1.

Algorithms to compute global monodromy – typically using numerical al-
gebraic geometry to approximate continuations along paths with rigorous er-
ror bounds – are known [HRS18, Section 3]. Unfortunately, modified methods
working to compute local monodromy are currently only conjectured, the dif-
ficulty being a way to certify that one has sampled enough curves to have a set
of generators for the local monodromy group (so that if all generators are the
identity then p is a multiple point).

Example 10.55. Let Q1(x, y) = xy − z3 and Q2(x, y) = xy. Both varieties
contain the origin, where they have leading homogeneous term xy. However,
the origin is a multiple point of VQ2 but not a multiple point of VQ1 . This
can be established, for instance, by varying a line parallel to the z-axis through
x = y = α as α traces out a small circle around the origin. The three roots are
the three values of α2/3, and permute cyclically when αmakes one loop around
the origin. Hence the local monodromy group is not the trivial group. This
example illustrates the value of the monodromy characterization, as showing
local monodromy to be nontrivial may be easier than showing irreducibility in
the local ring. ◁

10.5 Surgery, non-generic directions, and non-arrangement
points

Instead of the iterated residue approach described above, multiple points were
originally studied using a surgery method involving only univariate residues.
While iterated residues provide a more direct path to coefficient asymptotics
for multiple points, and work under weaker assumptions, the surgery method
does have some advantages. For instance, in addition to more elementary com-
putations, the explicitness of intermediate steps allows one to analyse certain
non-generic and degenerate cases.

In this final section we follow the surgery approach, computing an explicit
univariate residue and employing an analytic trick to asymptotically evaluate
the resulting integrals. To simplify our discussion, we consider only power
series expansions and assume that each smooth divisor meeting at a multiple

1 IfV is locally the union of smooth surfaces then the local monodromy group is trivial
because, in a small path avoiding collisions of roots, each solution remains in the same smooth
local piece. We don’t prove the converse as it is not used in this book.
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point is locally parametrized by the same coordinates z1, . . . , zd−1. Recall from
previous chapters that for any d-vector v we write v◦ = (v1, . . . , vd−1).

Consider a multivariate generating function F(z) =
∑

r∈Nd arz
r with do-

main of convergence D. For the remainder of this section, we make the fol-
lowing assumptions.

(1) F is meromorphic on some open setD′ containingD.
(2) p ∈ Cd

∗ is a strictly minimal contributing point of F in a direction r̂∗.
(3) In a neighborhood of p, we can write

F(z) =
P(z)

Q1(z) · · ·Qn(z)

with each Q j having non-vanishing gradient at p.

The implicit function theorem implies the Weierstrass factorization

F(z) =
ψ(z)∏n

j=1(1 − zdv j(z◦))
(10.25)

at p, where ψ(p) , 0 and the v j are analytic at p◦ with v j(p◦) = 1/pd. We call
the v j the inverse roots of the Q j at p, and their reciprocals u j(z◦) = 1/v j(z◦)
the roots of the Q j at p.

Remark 10.56. More generally, we could have

F(z) =
P(z)

Q1(z)m1 · · ·Qn(z)mn

for any positive integers m j. We stick to the simple pole case where m = 1
for two reasons. First, the general case is already covered above. Second, it
is always possible to reduce to the simple pole case using cohomological re-
ductions (see [AY83, Theorem 17.6] or the definition of iterated residues for
non-smooth higher order poles in Appendix C). Laurent series can also be
treated in an analogous manner.

Exercise 10.13. Show that Q(x, y) = 2 − x − 2y + y2 has a multiple point at
(1, 1), and find a Weierstrass factorization of 1/Q there.

A residue sum

Let w ∈ D be sufficiently close to w and let C = T (wd), so that breaking apart
the Cauchy integral for ar gives

ar =
1

(2πi)d

∫
T(w◦)

∫
C

F(z)
dzd

zrd+1
d

 dz◦

(z◦)r◦−1 .
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Analogously to the smooth case described in Chapter 9, for a sufficiently small
neighborhood N of p◦ in T(p◦) we can find a point w′ sufficiently close to
p such that hr̂(p) > hr̂(w′) and N × C′ is disjoint from V for C′ = T (w′d).
Defining

χ =
1

(2πi)d

∫
N

∫
C−C′

F(z)
dzd

zrd+1
d

 dz◦

(z◦)r◦−1 (10.26)

then gives the following result, mirroring the smooth case.

Figure 10.15 Two tori around a multiple point.

Lemma 10.57. Under the assumptions above, |pr (ar − χ)| → 0 exponentially
fast in |r| as r → ∞ with r̂ → r̂∗.

Proof If

R1 =
1

(2πi)d

∫
T(p◦)\N

∫
C

F(z)
dzd

zrd+1
d

 dz◦

(z◦)r◦−1

and

R2 =
1

(2πi)d

∫
N

∫
C′

F(z)
dzd

zrd+1
d

 dz◦

(z◦)r◦−1

then

ar =
1

(2πi)d

∫
T (p◦)

∫
C

F(z)
dzd

zrd+1
d

 dz◦

(z◦)r◦−1

= R1 +
1

(2πi)d

∫
N

∫
C

F(z)
dzd

zrd+1
d

 dz◦

(z◦)r◦−1

= R1 + R2 + χ.

The quantity |prR1| is exponentially small because F(z◦, t) is analytic for t in
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an annulus extending beyond |pd | by an amount bounded away from zero when
z◦ < N . The quantity |prR2| is exponentially small because the integrand of
R2 is exponentially smaller than p−r on its domain of integration. □

Let Λ denote the set of values z◦ ∈ N for which the roots u1(z), . . . , un(z)
are not all distinct, and for z◦ < Λ define

R(z◦) = −
n∑

j=1

Res
t=u j(z◦)

(
F(z◦, t)

trd+1

)
. (10.27)

Because (10.26) is absolutely integrable, it follows from the univariate residue
theorem that

χ =
1

(2πi)d−1

∫
N

R(z◦)
dz◦

(z◦)r◦+1 (10.28)

when Λ has measure zero.
If R had the form A(z◦)e−λϕ(z◦), which it does in the smooth case, then we

could asymptotically approximate (10.28) as a Fourier-Laplace integral using
the results of Chapter 5. Unfortunately, the n summands defining R have this
form, but each on its own is not integrable when there is more than one sheet
meeting at p. To work around this difficulty, we introduce a new integral ex-
pression representing R as a symmetric rational sum.

Let ∆n−1 denote the standard (n − 1)-simplex

∆n−1 =

t ∈ Rn
≥0 :

n∑
j=1

t j = 1

 ,
which is parametrized by its projection

π∆n−1 =

t ∈ Rn−1
≥0 :

n−1∑
j=1

t j ≤ 1

 .
onto its first n − 1 coordinates. We write ι for the map ι(t) = (t1, . . . , tn−1, 1 −∑n−1

j=1 t j) that inverts the projection, so that ι(t) · v is a convex combination:

ι(t) · v = t1v1 + · · · + tn−1vn−1 +

1 − n−1∑
j=1

t j

 vn .

Lemma 10.58. Let f be an analytic function of one complex variable and let
v1, . . . , vn ∈ C be distinct. Then

n∑
j=1

f (v j)∏
r, j(v j − vr)

=

∫
π∆n−1

f (n−1) (ι(t) · v) dt . (10.29)
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Applying this with f (v) = vrd+n−1ψ(z◦, 1/v) to the inverse roots v j(z◦) yields

R(z◦) = −
∫
π∆n−1

f (n−1) (ι(t) · v(z◦)) dt . (10.30)

Proof The identity (10.29) is proved in [DL93, p. 121]. The second conclu-
sion follows from (10.27), since each zd = u j(z◦) is a simple pole and

Res
t=u j(z◦)

(
F(z◦, t)

trd+1

)
=

v j(z◦)rd+n−1ψ(z◦, 1/v j(z◦))∏
r, j[vr(z◦) − v j(z◦)]

=
f (v j(z◦))∏

r, j[vr(z◦) − v j(z◦)]
.

□

Exercise 10.14. Use the Fundamental Theorem of Calculus to verify (10.29)
in the case n = 2.

Theorem 10.59. Under the assumptions above

ar ∼
(

1
2πi

)d−1 ∫
N

(∫
π∆n−1

h
[
ι(t) · v(z◦)

]
dt

)
dz◦

(z◦)r◦+1 , (10.31)

where

h(y) =
dn−1

dyn−1

(
yrd+n−1ψ

(
z◦,

1
y

))
.

This estimate holds uniformly as r → ∞ with r = λr̂∗ + O(1).

Proof If r = λr̂∗ then the result follows from Lemmas 10.57 and 10.58. If
r = λr̂+α then there is an extra factor of z−α in the integrand. If α is bounded
then this extra factor and all its derivatives are uniformly bounded, meaning the
remainder in an asymptotic expansion changes in a uniform manner. □

Asymptotic formulae

Having derived (10.31), we are now ready to compute asymptotics. First, we
make a change of variables z◦ = p◦eiθ = (p1eiθ1 , . . . , pd−1eiθd−1 ) to convert the
neighborhood N of p◦ in T(p◦) to a neighborhood N ′ of the origin in Rd−1.
Let ∆ = π∆n−1, let dt denote the push-forward of Lebesgue measure by π, and
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let E = N ′×∆, which we equip with the measure dθ×dt. Define the functions

ϕ(θ, t) =
ir◦ · θ

rd
− log

(
pdι(t) · v(p◦eiθ)

)
β j(s) =

(n − 1)!Γ(s + n)
j!(n − 1 − j)!Γ(s + j + 1)

A j(θ) =
(

d
dy

) j

ψ(p◦eiθ, 1/y)

∣∣∣∣∣∣∣
y=v j(p◦eiθ )

for 0 ≤ j ≤ n − 1, and observe that β j(s) is a constant multiple of a falling
factorial with n − j − 1 terms, and therefore has degree n − j − 1 in s.

Lemma 10.60. The right side of (10.31) in Theorem 10.59 can be rewritten
as

χ =

(
1

2π

)d−1

p−r
n−1∑
j=0

β j(rd)
∫
E

e−rdϕ(θ,t)A j(θ) d(θ) × dt, (10.32)

and the phase ϕ satisfies Re ϕ ≥ 0 on E.

Proof Applying the Leibniz rule for differentiating a product to f in (10.30)
yields

f (n−1)(y) =
n−1∑
j=0

(
n − 1

j

) (
d
dy

)n−1− j

yrd+n−1
(

d
dy

) j

ψ(p◦eiθ, 1/y)

=

n−1∑
j=0

(n − 1)!(rd + n − 1)!
j!(n − 1 − j)!(rd + j)!

yrd+ j
(

d
dy

) j

ψ(p◦eiθ, 1/y)

= yrd

n−1∑
j=0

β j(rd)y j
(

d
dy

) j

ψ(p◦eiθ, 1/y) .

Plugging this into (10.30) and using the definitions of A j, ϕ and p j yields the
stated formula. By strict minimality of p, for each j the modulus of v j(z◦)
achieves its maximum only when z = p◦. Thus each convex combination of
v j(z◦) with z , p has modulus less than |v j(p◦)|, meaning that Re ϕ ≥ 0 on E
with equality only on {0} × ∆. □

Analysis of the integral in (10.32) requires the advanced Theorem 5.3 from
Chapter 5, as the simpler Theorem 5.2 assumes that the real part of the negative
phase function has a strict minimum in the interior of the domain of integration.
Our present assumptions imply that Re ϕ will be strictly positive away from
the origin in the θ-coordinates, but allow the real part of ϕ to vanish up to the
boundary in the t-coordinates.
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To apply Theorem 5.3 we need to determine the set G′ of stratified critical
points for which Re ϕ is maximized, i.e., the critical points in {0} × ∆. Let C
be the n × d matrix with entries

Ci j =

p j pd
∂vi
∂z j

(p) if j < d

1 if j = d.

Exercise 10.15. What is the exact relation between C used in this section and
ΓΨ used in the residue approach?

Proposition 10.61. Fix a vector r ∈ N(p). The set G′ of critical points of ϕ in
the direction r̂ on E is the set of points (0, t) with t ∈ S(r), where

S(r) =
{

t ∈ π∆n−1 | ι(t)C(p) =
r

rd

}
.

Proof Since Re ϕ(θ) > 0 when θ , 0, all critical points in G′ are of the
form (0, t) for t ∈ ∆n−1. In fact, ϕ is somewhat degenerate: ϕ(0, t) = 0 for
all t ∈ ∆n−1, so not only does the real part of ϕ vanish when θ = 0, but also
the t-gradient of ϕ vanishes there. This is something of a blessing: checking
for nonzero derivatives in directions for which the point (0, t) is interior to E
reduces to checking whether or not the θ-gradient vanishes at (0, t). For j , d,

∂ϕ

∂θ j
= i

(
r j

rd
−

z j

ι(t) · v(p◦)
ι(t) ·

(
∂

∂z j

)
v(z◦)

)∣∣∣∣∣∣
z=p

and the result follows because v j(p◦) = 1/pd for all j. □

Specialization to known cases
Proposition 10.61 may look ugly, but it simplifies in several situations. For
instance, if p is a transverse multiple point then the rows of C are linearly
independent and there is at most one point in S. The normal cone N(p) is the
set of convex combinations of the lognormal vectors, so there is at least one
point in S and S is a singleton {t}. If r is interior to N(p) then t is in the interior
of ∆.

Conversely, if two sheets of singularitiesV1 = V(Q1) andV2 = V(Q2) are
tangent then the first two rows of C are equal, so any solution t leads to a line
of solutions (t1 − s, t2 + s, t3, . . . , tn). For example, if d = n = 2, then N(p) is a
singleton and S is the whole unit interval.

Proposition 10.62 (Hessian of ϕ in the singleton case). Suppose that S con-
sists of the single point (0, t∗). Then the Hessian matrix of rdϕ(θ, t) at (0, t∗)
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has the block form

H(0, t∗) =
 H(0, t∗) −iC

T

−iC 0

 , (10.33)

where

• the (d − 1) × (d − 1) block H(0, t∗) is the Hessian of the restriction of rdϕ to
the θ-variables,

• the zero block has dimensions (n − 1) × (n − 1), and
• the (n − 1) × (d − 1) matrix C is formed by subtracting the last row of C

from each other column, and stripping the last row and column.

Remark 10.63. The last column of H in (10.33), corresponding to the dth
coordinate, is stripped off because this is a function of the others in the θ

parametrization; the last row is stripped off because we parametrize the simplex
by its first n − 1 coordinates.

Proof Let v denote the vector function (v1, . . . , vn). Constancy of ϕ in the t-
directions at θ = 0 shows that the second partial derivatives in those directions
vanish, giving the block of zeros. Computing (∂/∂θ j)ϕ gives, up to a constant,

−
i

ι(t)v(z◦)
ι(t)z j

∂

∂z j
v(z◦)

∣∣∣∣∣∣
z=p

.

Because ι(t)v(θ, t) is constant in t when θ = 0, differentiating in the t direc-
tions recovers the blocks −iC and −i(C)T . The second partial derivatives in
the θ directions are unchanged. □

Specializing further yields a proof of Theorem 10.38 via surgery.

Surgery proof of Theorem 10.38 Under our assumptions S is a singleton, so
we may apply Theorem 5.3 to the integral over E in each summand of (10.32)
giving an asymptotic series in decreasing powers of rd. The polynomials β j

decrease in degree from n − 1 to zero and integration may be carried out term
by term because the remainders are uniformly one power of rd lower as long
as r̂ is restricted to a compact subset of N(p). The leading term comes from a
careful examination of the terms appearing in the saddle-point integral. □

Remark 10.64. Theorem 5.3 allows us to localize as long as we don’t put a
boundary somewhere that the height is maximized while simultaneously cre-
ating a critical point somewhere in a stratum of this boundary. This allows us
to go beyond the standing hypothesis of strict minimality in Theorem 10.59
and Lemma 10.60, however the analysis of maximal height critical points in
Proposition 10.61 is more complicated.
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The surgery method handles complicated geometries of the stationary set
better, in principle, than the method of iterated residues. One example of this
advantage appears when r̂ is on a facet of N(p) (a face of the cone whose
dimension is one less than the dimension of the whole cone).

Theorem 10.65. Fix a direction r̂ = r̂∗ and assume that the hypotheses of
Theorem 10.38 hold with m = 1, except that r̂∗ lies on a facet of N(p) instead of
being in the interior. If r → ∞ such that r−|r|r̂∗ stays bounded, an asymptotic
expansion of the form (10.17) still holds. The leading term in this expansion is
half the value Theorem 10.38 would predict if r̂∗ were in the interior of N(p).

Proof The condition that r̂∗ is on a facet of N(p) is equivalent to the condition
that ι(t(r∗)) is on a facet of ∆n−1. The main contribution to the inner integral
in (10.32) comes from an ε-ball about t(r) for any sufficiently small ε > 0, and
when t is on a facet this integral is over a halfspace neighborhood rather than a
ball neighborhood. The leading term in such an integral is precisely half of the
leading term for a ball neighborhood. After introducing a factor of 1/2 in the
inner integral of (10.32), the new hypotheses leave everything else unchanged.
This proves the result when r is a precise multiple of r̂∗. When r − |r|r̂∗ is
bounded, the uniformity statement in Theorem 10.59 shows that (10.31) and
hence (10.32) remain valid, introducing the factor of 1/2 and completing the
proof. □

Example 10.66 (two lines, case of boundary directions). Suppose F = 1/Q(x, y)
where

Q(x, y) =
(
1 −

1
3

x −
2
3

y
) (

1 −
2
3

x −
1
3

y
)
.

As we have seen in Example 10.27, ars ∼ 3 when r, s → ∞ with r/s in a
compact subset of (1/2, 2). By Theorem 10.65, the coefficients along the (1, 1)-
diagonal are asymptotically half of the coefficients on the interior of the cone
1/2 < r/s < 2, thus

a2s,s ∼ 3/2

as s→ ∞. In fact, this approximation holds for any ars with r−2s = O(1). Note
that as we approach the boundary of the cone from the interior, the convergence
to the limiting value becomes slower and slower; on the boundary the relative
error term is no longer exponentially small, but of order 1/s. ◁

Remark 10.67. The requirement that r − |r|r̂∗ remain bounded is not best
possible. In [BMP23, Section 6.2] it is shown that, for linear divisors, uniform
estimates hold when |r − |r| r̂∗| = o(|r|1/2), yielding a Gaussian transition
regime whose width scales as |r|1/2.
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Non-arrangement points

As a final application of the surgery method, we consider the case where
n = d = 2 and the two divisors V1 and V2 meet tangentially. In this case,
the meeting point p is not an arrangement point because the intersection lat-
tice of the divisors has order 2, whereas the intersection lattice of the tangent
planes has order 1 (both tangent lines coincide). Furthermore, the normal cone
at p degenerates to a single ray, so that this direction is a boundary direction
and hence is not generic. For these reasons we turn to surgery. The Fourier-
Laplace integral in Theorem 10.59 is more degenerate than can be handled by
Theorem 5.3 of Chapter 5. However, we can still complete the analysis for this
specific situation.

Proposition 10.68 (two curves intersecting tangentially in two dimensions).
Suppose that F(x, y) = P(x, y)/ (Q1(x, y)Q2(x, y)) where Q1 and Q2 define
smooth divisorsV j intersecting at a strictly minimal multiple point (1, 1). Sup-
pose further thatV1 andV2 intersect tangentially at (1, 1), where ∇log Q1 and
∇log Q2 are both multiples of some direction (λ, 1). Let u1 and u2 denote ana-
lytic functions such that V j = {(x, u j(x)) : x ∈ C} in a neighborhood of (1, 1),
let v j(x) = 1/u j(x) denote the inverse roots, and let g j(θ) = log v j(eiθ) be the
parametrization of the logarithmic inverse roots in polar coordinates. If

g j(θ) = ir∗θ −
κ j

2
θ2 + O(θ)3

for each j with κ1 + κ2 > 0, the κ j nonnegative, and P(1, 1) , 0 then

ars ∼
P(1, 1)
√

2π

2
√
κ1 +

√
κ2

s1/2

as (r, s)→ ∞ with r = λs + O(1).

Proof Lemma 10.60 implies that

ars ∼
s

(2πi)2

∫
E

e−sϕ(θ,t)A0(θ) dθ dt

for (r, s) = λ(r̂, ŝ) + O(1), where E = N × π∆1 with N a neighborhood (−δ, δ)
of zero in R, the amplitude A0(x, y) = P(x, y)/(xy), and π∆1 = [0, 1]. The phase
function ϕ is the convex combination

−ϕ(θ, t) = tg1(θ) + (1 − t)g2(θ)

which has nonnegative real part on (−δ, δ) × [0, 1] which vanishes on the line
segment S = {0} × [0, 1]. As opposed to previous cases we have considered,
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the entire line segment is now critical for ϕ. Integrating e−sϕ(θ,t) dθ over (−δ, δ)
for fixed t gives

(2πsκt)−1/2 + O
(
s−3/2

)
,

where κt = tκ1 + (1 − t)κ2 is the quadratic term of ϕ(θ, t). The O(s−3/2) error
term is uniformly o(s−1/2), therefore the expression for the leading term may
be integrated over [0, 1]. Using the change of variables y = κt leads to

ars ∼
P(1, 1)

√
s

√
2π

∫ 1

0
κ−1/2

t dt

=
P(1, 1)

√
s

√
2π

∫ κ1

κ2

y−1/2 dy
κ1 − κ2

=
P(1, 1)

√
s

√
2π

2
√
κ1 +

√
κ2
.

The substitution y = κt, dy = (κ1 − κ2) dt is valid only when κ1 , κ2 but the
resulting expression for

∫ 1
0 κ−1/2

t is valid for all κ1, κ2 ≥ 0 with κ1 + κ2 > 0. □

Example 10.69 (partial sums of normalized binomials, continued). Recall

the generating function F =
2

(2 − x − y)(1 − xy)
from Example 10.11, whose

(s, s)-coefficient is the normalized binomial sum
∑s

i=0 4−i
(

2i
i

)
computing the

expected number of returns of a simple random walk to zero by time 2s. Ex-
panding functions g1(θ) = − log(2 − eiθ) and g2(θ) = iθ around θ = 0 gives
quadratic coefficients κ1 = 2 and κ2 = 0, so the identity P(1, 1) = 2 implies

as,s ∼ 2
√

s
π
.

This result can be verified by univariate methods, as the main diagonal has the
algebraic generating function f (z) = (1 − z)−3/2. Note that even though (1, 1)
is a complete intersection, there is no longer an exponentially decreasing error
term. Instead the relative error is O(1/s). ◁

Notes

Computations for multiple points based on the theory of iterated residues first
appeared in the work of [BM93] on queueing models. More information on
iterated residues can be found in [AY83; Pha11]. As noted above, the coeffi-
cient asymptotics in this chapter were first computed via the surgery method
in [PW02; PW04]. The surgery method is only valid in its original form for



354 Multiple point asymptotics

finitely minimal points, which is why more advanced methods using hyper-
bolic polynomials and Morse theoretic arguments were introduced. The spe-
cial case where all divisors are linear, and the pole variety is a hyperplane
arrangement, is worked out at length in [BMP23].

The computation of the residue from an explicit factorization via Algo-
rithm 4 is effective, assuming the factors Q j are in a nice class of functions
such as polynomials or algebraic functions. The efficiency of such algorithms
is a topic of ongoing study. Some specific problems that can be studied with
the results of this chapter likely be improved with a more focused study. For
instance, De Loera and Sturmfels [DS03] discuss alternate approaches to the
enumeration of lattice points in a polytope, one involving computation of the
Todd class of an associated toric variety and another pioneered by Barvinok et
al. [Bar94].

The decomposition of the positive orthant into regions (chambers) in which
the counts vary polynomially are objects of classical study, as are the counts
themselves; one example is the enumeration of lattice points in the dilated
Birkhoff polytope, where even the leading term asymptotic was found only in
2009 [CM09].

The fact that the iterated residue of a rational function is a polynomial for
complete intersections, and its consequences for generating function asymp-
totics, are discussed in [Pem00].

The proof of Lemma 10.45 suggested by Exercise 10.16 was supplied to us
by Frank Sottile.

Additional exercises

Exercise 10.16. Assume the hypotheses of Lemma 10.45. Prove the following
statements, then prove Lemma 10.45.

(a) The gradients ∇Qi(p) are nonzero for all i ≤ n.
(b) For any U ⊆ T , letVU =

⋂
i∈UVi. If the set of gradients {∇Qi(p) : i ∈ U}

are linearly independent thenVU is smooth near p and equal toVT .
(c) For such sets U, the ideal ⟨ fi : i ∈ U⟩ is reduced in Op.
(d) For such sets U, the ideal ⟨ fi : i ∈ U⟩ is prime in Op.

Exercise 10.17. Suppose that d = 2 and let p be a homogeneous point of V
of degree k. Prove that p is a multiple point or is a cusp whose tangents are all
equal.

Exercise 10.18. Let F(x, y, z) = z/2
(1−yz)(1−(x+x−1+y+y−1)z/2+z2) be the Aztec dia-

mond placement generating function, to be studied in Example 11.45 and The-
orem 11.49. For what directions r̂ are there critical points on the stratum which
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is the intersection of the two divisors in the denominator of F? Determine, up
to a constant factor, the asymptotic contribution at such a point. (These points
never contribute to the leading asymptotics of arst, their contribution being too
small to contribute in the cases when there is no exponential decay as in The-
orem 11.49 and too large to contribute when there is, as in Example 11.45.)
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Cone point asymptotics

Once again, let F(z) = P(z)/Q(z) =
∑

r arzr be a convergent Laurent ex-
pansion with domain of convergence D = Relog−1(B) for a component B of
amoeba(Q)c. In Chapter 6 we defined the logarithmic growth rate

β(r̂) = lim sup
s→∞
s/|s|=r̂

1
|s|

log |as|,

the neighborhood growth rate

β(r̂) = lim sup
s→∞

s/|s|→r̂

1
|s|

log |as|,

and the dual rate

β∗(r̂) = inf
x∈B
−r̂ · x ,

and showed that

β(r̂) ≤ β(r̂) ≤ β∗(r̂)

for every direction r̂. In this chapter we study conditions under which the
equality β(r̂) = β*(r̂) holds – a useful criterion because β* is much easier to
compute than β or β (which usually require determining dominant asymptotic
behavior). Our framework also allows us to give asymptotics in the presence
of cone points, going beyond the smooth and multiple point cases of the last
two chapters.

Deformations and vector fields: a third approach
Deformation of cycles underlies every result in ACSV. The surgery method,
sketched in Chapter 9 for smooth points and Chapter 10 for multiple points,
is very explicit but applies only to minimal points. In contrast, the power-
ful Morse-theoretic decompositions in Chapter 7 use Thom’s Isotopy Lemma

356
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(Lemma D.16), which requires the advanced apparatus of controlled vector
fields. In this chapter we chart a course between these extremes, using the the-
ory of hyperbolic polynomials to build a smooth vector field to deform a torus
of integration below a given height except at minimal critical points. This is
reasonably general, deforming any torus defined by an element of B up to and
just beyond the amoeba boundary except arbitrarily close to critical points.

Proving all necessary results from scratch would necessitate adding (at least)
another appendix to this book, so this chapter is not entirely self-contained. In-
stead, some of the technical background is cited from [BP11], which itself
condenses a fair amount of background from [ABG70]. We give a complete,
albeit telegraphic, rendition of the geometric results, extending the foundation
built in Chapter 6 to the context of hyperbolic polynomials, but largely quote
without proof the generalized function theory from [BP11, Section 6] neces-
sary for rigorous justification of certain Fourier transforms.

Organization of the chapter
The remainder of this chapter proceeds as follows. First, we state Theorem 11.1,
which asserts the existence of certain semi-continuously varying cones. In this
context, a function from points x ∈ Cd to open cones K(x) ⊆ Rd is lower
semi-continuous if for all sequences xn → x we have K(x) ⊆ lim inf K(xn),
where the limit inferior of a sequence (S n) of sets contains the point y if and
only if y is in all but finitely many of the sets S n.

Exercise 11.1. Let Hn be the open halfspace {(x, y) ∈ R2 : x + ny > 0}. What
is lim inf Hn?

Several deformation results are derived from Theorem 11.1. In order to il-
lustrate the concepts involved, a proof of Theorem 11.1 is first provided in
the simplest case when the intersection of the minimal torus and the variety
consists entirely of smooth points. The second section of this chapter con-
tains a full proof of Theorem 11.1, divided into a number of subsections: using
cones to construct deformations, cones of hyperbolicity in the homogeneous
case, cones of hyperbolicity in the general case, strong and weak hyperbolic-
ity, semi-continuity of cones, the final steps of the proof, and a coda in which
a projective (log-linear) version of the deformation is constructed.

Having localized all integrals using these deformations, in the third sec-
tion we compute asymptotics for the local integrals using results from [BP11]
and [ABG70]. These computations are simplified using log-linear deforma-
tions. The final section of the chapter applies this computational apparatus to a
number of examples including cube groves, Szegö functions, Aztec diamonds,
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the fortress generating function, and the GKZ symmetric rational function,
whose coefficients exhibit a lacuna phenomenon.

11.1 Results on cones and deformations

Let Q be a Laurent polynomial in d variables defining a variety V and set
M = Cd

∗ \ V. In order to work with polynomial amoebas, it is convenient to
define and manipulate cones in logarithmic space. To that end, define the flat
torus Tflat = (R/(2πR))d, let q(x) = (Q ◦ exp)(x) = Q(ex1 , . . . , exd ), and recall
the notation Te(x) = {exp(x + iy) : y ∈ Tflat} for any x ∈ Rd.

Exercise 11.2. Is the map exp : Rd + i Tflat → C
d
∗ a diffeomorphism?

Let B be a component of the complement of amoeba(Q), fix a direction
r̂∗, and suppose that −r̂∗ · x is minimized on B at a unique point x∗, nec-
essarily on the boundary ∂B. Recall from Definition 6.26 and Exercise 6.8
the open geometric tangent cone tanx(B) to B at a point x, with closed dual
cone normalx(B) = (− tanx(B))∗. These cones are projective: they are cones
over the origin, closed under multiplication by positive real constants. The fol-
lowing result is a combination of [BP11, Corollary 2.15 (i), Corollary 2.16,
Proposition 2.22, Theorem 5.4].

Theorem 11.1. Under the setup above, there exists a bundleZ of convex pro-
jective cones {Z(y) : y ∈ Tflat} with the following properties.

(i) For all y ∈ Tflat the cone Z(y) contains tanx∗ (B).
(ii) Let V⃗ be a smooth nonvanishing section ofZ, so that V⃗ : Tflat → R

d \ {0}
is smooth and V⃗(y) ∈ Z(y) for all y. If x ∈ B then there exists an ε > 0
such that the set{

exp
(
x∗ + δ

[
tV⃗(y) + (1 − t)(x − x∗)

]
+ iy

)
: y ∈ Tflat, 0 ≤ t ≤ 1, 0 < δ < ε

}
(11.1)

is disjoint fromV.
(iii) For each y ∈ Tflat let N(y) = (−Z(y))∗ be the outward dual cone to

Z(y), and let r̂ be any real unit vector. If r̂ ∈ N(y) then exp(x∗ + iy) is
a stratified critical point for hr̂. If r̂ < N(y) then there is some vector
v ∈ Z(y) such that r̂ · v = 1.

(iv) The cones Z(y) vary lower-semicontinuously in y. In particular, if yn →

y in Tflat then Z(y) ⊆ lim inf Z(yn).

Remark 11.2. The cones Z(y) will typically be open cones, such as inter-
sections of open halfspaces. We will see below that we can choose Z(y) to
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be cones of hyperbolicity of the homogenization of q at x + iy, picking the
one that contains tanx(B). While the theorem does not rule out other choices,
choosing smaller cones would be wasteful because then N(y) would be larger
and the last part of conclusion (iii) would apply less often, while choosing
larger cones turns out to make conclusion (ii) impossible to satisfy. The hy-
pothesis that x∗ ∈ ∂B is important: for a counterexample when this fails, see
Exercise 11.10.

The cones N(y) allow us to define a set of points that locally look like min-
imal critical points, except that they “don’t see” points of Q.

Definition 11.3. The set local(r̂) of locally minimal points of Q with respect
to x∗ in the direction r̂ consists of the points z = exp(x∗ + iy) ∈ Te(x∗)
where Q vanishes and r̂ ∈ N(y). We also define the set of logarithmic locally
minimal arguments localarg(r̂) = {y ∈ Tflat : exp(x + iy) ∈ local(r̂)}.

Locally minimal points are the only points that can cause an obstruction
when trying to deform the Cauchy domain of integration to lower height.

Theorem 11.4. Assume the hypotheses of Theorem 11.1 and let T = Te(x)
for any x ∈ ∂B. If local(r̂) is empty then T is homotopic inM to a cycle C∗
whose maximum height is less than h∗ = −r̂ · x∗.

Proof of Theorem 11.4 from Theorem 11.1 Fix x ∈ ∂B and for each y ∈ Tflat

let v(y) denote a vector v as in conclusion (iii) of Theorem 11.1. By semicon-
tinuity, for each y ∈ Tflat there is a neighborhood N(y) of y in Tflat such that
v(y) ∈ Z(y′) when y′ ∈ N(y). Cover Tflat with finitely many of the neigh-
borhoods {N(y j) : 1 ≤ j ≤ m} by compactness, let {ψ j : 1 ≤ j ≤ m} be a
partition of unity subordinate to this finite cover, and for y ∈ Tflat define

V⃗(y) =
m∑

j=1

ψ(y)v(y j) . (11.2)

For each j such that y ∈ N(y j), the vector v(y j) lies in the cone Z(y). The vec-
tor V⃗(y) is a convex combination of these vectors and therefore, by convexity
of the cone Z(y), we see that V⃗(y) ∈ Z(y). By linearity of the dot product with
r̂∗, we also have that V⃗(y) · r̂∗ > 0. In particular, V⃗ is a smooth nonvanishing
section of Z. Let ε > 0 be as in conclusion (ii) of Theorem 11.1. Again using
convexity of Z(y) and the fact that Z(y) ⊇ tanx∗ (B) ⊇ B − x (the set B with
x∗ translated to the origin), we see that the line segment between and V⃗(y) and
any x ∈ B is contained in Z(y).

Define the map ϕ : Tflat ×[0, 1] by

ϕt(y) = exp
{
iy + x∗ + δ

[
(1 − t)(x − x∗) + tV⃗(y)

] }
. (11.3)
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By construction ϕ is continuous with ϕ0(Tflat) being the chain Te(u) for u =
x∗ + δ(x −x∗) ∈ B. Because each line segment from u to V⃗(y) is in Z(y), and
exp(iy+x∗+v) < V for any v in any Z(y), we see that the homotopy ϕ avoids
V. The homotopy ϕ deforms Te(u) to the cycle ϕ1(Tflat), with the height of a
point ϕ1(y) given by −r̂∗ ·Re{x∗ + V⃗(y)}. Because V⃗(y) was picked according
to conclusion (iii) of Theorem 11.1, we see that r̂∗ · V⃗(y) is strictly positive,
and therefore that hr̂∗ (ϕ1(y)) < −r̂∗ · x∗, finishing the proof. □

Theorem 11.5. Assume the hypotheses of Theorem 11.1 and let T = Te(x) for
any x ∈ ∂B. If local(r̂) is finite and non-empty then for any δ > 0 the torus T
is homotopic inM to a cycle whose maximum height is less than h∗ = −r̂ · x∗
outside of balls of radius δ around the points of W = local(r̂).

Proof of Theorem 11.5 from Theorem 11.1 Repeat the proof of Theorem 11.4,
with the following modifications. For y <W, choose a smaller N(y) if neces-
sary so that W∩N(y) = ∅. For y ∈ W, define N(y) to be the preimage under
the exponential map of the ball of radius δ centered at exp(x∗ + iy) and set
v(y) = 0. Choose again a finite open subcover N(y j : 1 ≤ j ≤ m} of Tflat and
construct V⃗ by (11.2) and ϕt by (11.3) as before. The cycle Cδ = ϕ1(Tflat) is
homotopic inM to T(u) and satisfies the conclusion of the theorem. □

Corollary 11.6. The conclusions of Theorems 11.4 and 11.5 can be strength-
ened to hold simultaneously for all r̂ in some neighborhood.

Proof This follows from the finiteness of the open cover in each case and the
fact that the strict inequality over each N(y) actually bounds r̂∗ · V⃗(y) away
from zero. □

A simplified argument for smooth points
It will take a lot of work to prove Theorem 11.1 below, so we first illuminate
the argument by proving a special case that does not need the full theory of
cones of hyperbolicity. Assume for the remainder of this section that

T(x∗) ∩V consists only of smooth points ofV. (∗)

It turns out that cones of hyperbolicity at smooth points are always halfspaces:
Theorem 6.44 in Chapter 6 implies that for a minimal point z ∈ V the vector
∇log Q(z) is a complex scalar multiple of a real unit vector λ, and this real
vector, with proper orientation, defines the correct cone.

Definition 11.7. For y ∈ Tflat with q(x∗ + iy) , 0 define Z(y) = Rd. For
y ∈ Tflat with q(x∗ + iy) = 0 and z = exp(x∗ + iy) a smooth point ofV, let

Z(y) = {x ∈ Rd : x · λ(z) < 0} . (11.4)
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Lemma 11.8. Assume the hypotheses of Theorem 11.1 as well as the smooth
point assumption (*). Then the family {Z(y) : y ∈ Tflat} in Definition 11.7
satisfies conclusions (i), (iii) and (iv) of Theorem 11.1.

Note that we do not require conclusion (ii) of Theorem 11.1 for our special
arguments about deformations in the smooth case below.

Proof Conclusion (i) follows from part (b) of Theorem 6.44. For conclu-
sion (iii), note that N(y) is by definition empty if q(x∗ + iy) , 0, in which
case Z(y) is all of Rd and the conclusion is trivial. Assume therefore that
q(x∗ + iy) = 0 and let λ = λ(y) denote the vector (∇log Q)(exp(x∗ + iy))
after normalizing to a unit vector and orienting to point away from B, so that
N(y) is the ray parallel to λ. The point exp(x∗ + iy) is a critical in directions
precisely ±λ, because smooth points are critical precisely for directions paral-
lel to the logarithmic gradient; this verifies that r̂ ∈ N(y) implies r̂ is a critical
direction. If r̂ , ±λ then the dot product with r̂ is unbounded both above
and below on the halfspace Z(y) with outward normal λ, so we can choose
v ∈ Z(y) with r̂ · v = 1. If r̂ = −λ then r̂ ∈ tanx(B) = Z(y) and we can
choose v = cr̂ where c = ||r̂||−1

2 > 0. Conclusion (iv) follows from the fact that
S = T(x∗) ∩V is closed and ∇log Q is continuous and nonvanishing on S . □

Theorem 11.9 (Theorem 11.4 for smooth points, self-contained). Assume the
hypotheses of Theorem 11.4 as well as the smooth point assumption (*). Then
for x ∈ B, the torus T(x) is homotopic in M to a cycle C∗ with maximum
height less than h∗ = −r̂∗ · x∗.

Proof Fix x ∈ B and mimic the proof of Theorem 11.4 up through (11.2).
That is, for each y ∈ Tflat choose vectors v(y) ∈ Z(y) and neighborhoodsN(y)
with v(y) ∈ Z(y′) when y′ ∈ N(y); then define V⃗(y) via (11.2). We claim,
pickingN ′(y) smaller if necessary, that over eachN ′(y) there is a sufficiently
small δ > 0 such that for all 0 ≤ t ≤ 1,

q
(
x∗ + iy′ + δ[tV⃗(y) + (1 − t)(x − x∗)]

)
, 0 . (11.5)

If q(x∗ + iy) , 0 then we can pick N ′ and δ to keep q from vanishing
by continuity, so we assume that q(x∗ + iy) = 0. Nonvanishing of (11.5) for
sufficiently small δ follows from the Taylor expansion of the left-hand side in
δ. Specifically, because the gradient of q is a multiple of λ, we have

q
(
x∗ + iy + δ[tV⃗(y) + (1 − t)(x − x∗)]

)
= 0 + δλ(y) · (tV⃗(y) + (1 − t)(x − x∗))︸                                    ︷︷                                    ︸

g(t)

+O(δ2).
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Lemma 11.8 implies that g(t) has modulus bounded away from zero over 0 ≤
t ≤ 1 for fixed x and choice of V⃗(y), because both V⃗(y) and x − x∗ are in the
interior of the negative halfspace for λ.

We have now shown that δ can be chosen so that (11.5) holds with y in place
of y′. Choosing N ′ small enough completes the claim for the actual (11.5).
This implies that the homotopy defined by (11.3) remains in M, completing
the proof of Theorem 11.9. □

The same argument gives the following version of Theorem 11.5 for smooth
points.

Corollary 11.10. Assume the hypotheses of Theorem 11.5 as well as the smooth
point assumption (*). Then for x ∈ B and any δ > 0 the torus T(x) is homo-
topic inM to a cycle C∗ with maximum height less than h∗ = −r̂∗ · x∗ except
in a δ-neighborhood of W. □

Exercise 11.3. Let Q(x, y) = 5− x− x−1 − y− y−1, whose amoeba is displayed
below with the boundary points p = (− log 2,− log 2) and q = (log 2, log 2)
specified. For x = p and x = q find T(x)∩VQ, find Z(y) for each x+ iy with
exp(x + iy) ∈ V, and determine whether or not local(r̂) is empty.

Example 11.11. Consider the bivariate rational function

F(x, y) =
1

(1 + 2x)(1 − x − y)

in the main diagonal direction r̂ = (1/2, 1/2). The singular variety of F has
one non-smooth point (x, y) = (−1/2, 3/2), which is not minimal as it has
strictly greater coordinate-wise modulus than the minimal critical point σ =
(1/2, 1/2). The point σ is not finitely minimal because

V ∩ T (σ) = {(1/2, 1/2)} ∪ {(−1/2, eiθ2/2) : θ2 ∈ (−π, π)} ,

but it does satisfy finite criticality. Let us construct the homotopy Φt(y) for
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this example. For (θ1, θ2) ∈ Tflat we have Q(e− ln(2)+iθ1 , e− ln(2)+iθ2 ) = 0 only
when θ1 = θ2 = 0 or θ1 = π. Since

(∇log Q)(1/2, 1/2) = − (1, 1) and (∇log Q)(−1/2, y) = (y − 3/2) × (1, 0) ,

we have

Z(θ1, θ2) =


{z : z · (1, 1) < 0} if θ1 = θ2 = 0

{z : z · (1, 0) < 0} if θ1 = π

R2 otherwise.

Figure 11.1 Left: The elements of Tflat, drawn in [−π, π]2, for which
Q(e− ln(2)+iθ1 , e− ln(2)+iθ2 ) = 0, together with the real vectors equal to (∇log Q)(x, y)
at these points, up to a non-zero scalar multiple. Right: The open sets N1 and
N2 consist of the small circle of radius ε and the rectangular strips on either side
(identified as one large strip since −π = π in Tflat). The open setN3 consists of the
remaining points and some small overlap withN1 andN2 to makeN1 ∪N2 ∪N3

an open cover. The vectors v j are drawn in each region.

Fix ε > 0 sufficiently small, let

N1 = {−π < θ1, θ2 ≤ π : θ2
1 + θ

2
2 < ε} ⊂ R

2 ,

let

N2 = (π − ε, π + ε) × (−π, π] ⊂ R2,

and let N3 be an open set containing Tflat \(N1 ∪ N2) having arbitrarily small
intersection with N1 ∪ N2. We identify N1,N2, and N3 with their cosets in
Tflat = (R/2πZ)2; Figure 11.1 gives a picture of the situation. If

v1 = (−1,−1), v2 = (−1, 2), and v3 = (1/2, 1/2)

then v j ∈ K(y) for y ∈ N j, and v2 · r = v3 · r = 1 as desired (in this case
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one can simply take v3 = v2, but we mirror the general construction described
above). Hence,

η(θ1, θ2) = ψ1(θ1, θ2)v1 + ψ2(θ1, θ2)v2 + ψ3(θ1, θ2)v3

=
(
− ψ1 − ψ2 + ψ3/2 , −ψ1 + 2ψ2 + ψ3/2

)
,

where ψ1, ψ2, and ψ3 form a partition of unity subordinate to N1,N2, and N3,
and

Φt(θ1, θ2) = exp
[
i(θ1, θ2) − (log 2, log 2) − δ(1 − t, 1 − t) + δtη(θ1, θ2)

]
for some δ > 0. When t = 1 and (θ1, θ2) ∈ N1 then ψ2(θ1, θ2) = 0 since N1 and
N2 are disjoint. Thus, the cycle C in Corollary 11.10 is the image of N1 under
the map

Φ1(θ1, θ2) =
(

1
2

eiθ1 e−δψ1+δψ3/2,
1
2

eiθ2 e−δψ1+δψ3/2
)
.

When (θ1, θ2) is sufficiently close to the origin then it lies in N1 \ N3 and

Φ1(θ1, θ2) =
(

1
2

eiθ1 e−δ,
1
2

eiθ2 e−δ
)

is contained in D. As (θ1, θ2) leaves the origin and approaches the boundary,
however, the coordinate-wise moduli of Φ1(θ1, θ2) increase, eventually leaving
D without intersectingV. Ultimately, we can apply the asymptotic arguments
for smooth points to analyse the integral near σ and obtain an expansion

fn,n =
4n

√
πn

(
1
2
−

1
8n
+

1
256n2 +

5
256n3 −

819
65536n4 + O

(
1
n5

))
.

◁

11.2 Proof of Theorem 11.1

In this section we prove Theorem 11.1. Our proof is split into the following
steps.

• In Section 11.2.1 we introduce the hyperbolicity of a homogeneous polyno-
mial and cones of hyperbolicity for a homogeneous polynomial. We show
how a family of cones of hyperbolicity for a homogeneous polynomial can
be defined so as to vary semi-continuously. The definition of hyperbolicity
at this stage is valid only for homogeneous polynomials.
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• In Section 11.2.2 we generalize to certain log-Laurent polynomials by defin-
ing the cone of a function f at one of its zeros x + iy to be a choice of a
cone of hyperbolicity for the leading homogeneous part of f at x + iy. Our
constructions are well defined only for certain values of x.

• Section 11.2.3 introduces notions of weak and strong hyperbolicity. The
weaker notion is equivalent to hyperbolicity of a homogenization, and the
main result of the section is that the stronger notion holds in similar circum-
stances.

• Section 11.2.4 establishes lower semi-continuity for a family of cones intro-
duced in Section 11.2.3.

• Section 11.2.5 completes the proof of Theorem 11.1.
• Section 11.2.6 extends the construction of the deformations Cδ in Theo-

rem 11.5 to a limiting log-linear deformation. This will be important later,
when computing integrals.

11.2.1 Cones of hyperbolicity in the homogeneous case

The following definition of hyperbolicity, originally developed in order to clas-
sify and study wavelike second order partial differential equations, goes back
to [Går50].

Definition 11.12 (hyperbolicity). A homogeneous complex polynomial A of
degree m ≥ 1 is a hyperbolic polynomial in the direction v ∈ Rd if A(v) , 0
and for all x ∈ Rd the polynomial t 7→ A(x + tv) has only real roots. A
seemingly weaker but actually equivalent condition is that A(v + iy) , 0 for
all y ∈ Rd.

The set of v for which A is hyperbolic in direction v is an open set whose
components are convex cones in Rd, and each of these cones is called a cone
of hyperbolicity for the homogeneous polynomial A. Denote by Kv(A) the
cone of hyperbolicity of A containing a given vector v. Some multiple of A is
positive on Kv(A) and vanishing on ∂Kv(A), and for x ∈ Kv(A) the roots of
A(x+tv) will all be negative. These properties are proved, among other places,
in [Gül97, Theorem 3.1].

Example 11.13 (hyperbolicity of a linear function). If A(x) = v · x is a real
linear function then its cones of hyperbolicity are the halfspaces {x ∈ Rd :
v · x > 0} and {x ∈ Rd : v · x < 0}. ◁

Example 11.14 (hyperbolicity of a quadratic function). If A(x) = x2
1−

∑d
j=2 x2

j
is the standard Lorentzian quadratic then its cones of hyperbolicity are the
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so-called positive and negative time-like cones

C+ =
{
x ∈ Rd : x1 >

√
x2

2 + · · · + x2
d

}
and

C− =
{
x ∈ Rd : x1 < −

√
x2

2 + · · · + x2
d

}
.

◁

The following proposition and definition define the first version of the cones
of hyperbolicity that will ultimately lead to the family of cones in Theorem 11.1.

Proposition 11.15. Let A be a homogeneous polynomial, fix x with A(x) = 0,
and let Ã = hom(A,x) denote the leading homogeneous part of A at x. If A
is hyperbolic in the direction u then Ã is also hyperbolic in the direction u.
Consequently, if C is any cone of hyperbolicity for A then there is some cone
of hyperbolicity for Ã that contains C.

Proof If P is a polynomial of degree k then we can recover its leading homo-
geneous part hom(P) by

hom(P)(y) = lim
λ→∞

λkP(λ−1y) .

This limit is uniform as y varies over compact sets, since monomials of degree
k are invariant under the scaling on the right-hand side, while monomials of
degree k + j scale by λ− j, uniformly over compact sets. Thus, in our situation

Ã(y + tu) = lim
λ→∞

λkA(x + λ−1(y + tu))

uniformly as t varies over compact sub-intervals of R. If A is hyperbolic in
direction u then, for any fixed λ, all the zeros of this polynomial in t are real.
Hurwitz’s theorem on the continuity of zeros [Con78b, Corollary 2.6] says that
a (uniform on bounded intervals) limit of polynomials having all real zeros will
either have all real zeros or vanish identically. The limit Ã(y + tu) has degree
k ≥ 1; it does not vanish identically, so if A is hyperbolic in the direction u

then Ã has only real roots and is also hyperbolic. □

Definition 11.16 (family of cones in the homogeneous case). Let A be a ho-
mogeneous polynomial and let C be a cone of hyperbolicity for A. If A(x) = 0
then we define KA,C(x) to be the cone of hyperbolicity of hom(A,x) containing
C, whose existence we have just proved. If A(x) , 0 then we define KA,C(x)
to be all of Rd.

Remark 11.17. When x , 0 the cone KA,C(x) depends only on the direction
x̂ = x/|x|.
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Example 11.18. Let S (x) = x2
1 − x2

2 − · · · − x2
d be the standard Lorentzian

quadratic and let C = C+ be the cone of hyperbolicity at the origin described
in Example 11.14. For x ∈ ∂B, if x , 0 then KS ,C(x) is the tangent halfspace
{x+y : y · (∇ S )(x) ≥ 0}. If x = 0 then KS ,C(x) = C. A Lorentzian quadratic
is a quadratic polynomial obtained from S by a real linear transformation. The
boundary of the cone of hyperbolicity for any Lorentzian quadratic is an alge-
braic tangent cone and the cones of hyperbolicity at these points are halfspaces
whose boundaries are support hyperplanes to time-like cones. ◁

Exercise 11.4. Describe the two cones of hyperbolicity of A(x, y) = x + y at
(x, y) = (5,−5) and, letting C denote one of these cones, find KA,C(5,−5).

11.2.2 Cones of hyperbolicity in the general case

Although the definition of hyperbolicity in the homogeneous case is valid for
complex polynomials and involves complex roots, the role played by the real
subspace is essential. In this section we generalize by defining cones of hyper-
bolicity Kq,B(z) for functions q = Q ◦ exp where Q is a Laurent polynomial.
Our definition are valid only at points z = x + iy for some x on the boundary
of a component B of the complement of amoeba(Q). We do not know whether
Kq,B(z) may be defined in such a way that semi-continuity results still hold
when z is not on the amoeba boundary, or when q is not a log-Laurent polyno-
mial.

Definition 11.19 (hyperbolicity and normal cones). Let Q be a Laurent poly-
nomial, let B be a component ofRd\amoeba(Q), and let exp(z) = exp(x+iy) ∈
VQ with x ∈ ∂B. If q = Q ◦ exp then we define

K(z) = Kq,B(z) = Ku(hom(q,x + iy)) for any u ∈ B (11.6)

to be the (open) cone of hyperbolicity of A = hom(q,x + iy) that contains B.
The existence of this cone is guaranteed by Proposition 11.26 below.

Remarks. (i) Defining Kq,B using hom(q,x+iy) may seem obvious, but the
difficulty proving properties in this case illustrates that the extension is
quite nontrivial.

(ii) We may extend the definition of K to all of T(x) by taking K(z) = Rd

when q(z) , 0.
(iii) When z = x + iy and x is understood, we sometimes write Kq,B(y).

Before going further we give a few examples.

Example 11.20 (cones of hyperbolicity at smooth points). Suppose exp(z) =
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exp(x + iy) is a minimal smooth point ofVQ. Then the leading homogeneous
part q̃ of q at z is a linear function q̃(x) = v · x, and the assumption of min-
imality implies that the vector v is a complex scalar multiple of a real vector.
As in Example 11.13 above, the cones of hyperbolicity of q̃ at z are halfspaces
normal to v. ◁

Example 11.21 (cones of hyperbolicity at multiple points). Suppose exp(z) =
exp(x + iy) is a multiple point of VQ. Then q̃ is a product of linear functions
defining a central hyperplane arrangement. The normal vectors to the factors
of q̃ are scalar multiples of real vectors and the corresponding real hyperplanes
divide Rd into projective cones, each of which is a cone of hyperbolicity for
q̃. ◁

Exercise 11.5. Let Q = (1 − 2x − y)(1 − x − 2y). What are the cones of hyper-
bolicity K(z) when z = exp(1/3, 1/3)? What about when z = exp(1/4, 1/2)?

Example 11.22 (cones of hyperbolicity at quadratic cone points). If Q(x) =
z2

1 −
∑d

j=2 z2
j is the standard Lorentzian quadratic then at the origin q has the

two cones of hyperbolicity C+ and C− discussed above, while the cones of
hyperbolicity of q at any other point are two halfspaces. ◁

11.2.3 Strong and weak hyperbolicity

To prove the existence result Proposition 11.26 and the semi-continuity result
Lemma 11.27, we define intermediate notions of strong and weak hyperbol-
icity. These definitions are somewhat less natural than those above, and are
not used for any other purpose, so readers not interested in the proofs of our
semi-continuity results may safely skip to Section 11.2.5.

Definition 11.23 (strong and weak hyperbolicity). Let q : Cd → C vanish
at z and be holomorphic in a neighborhood of z. We say that q is strongly
hyperbolic at z in the direction of the unit vector v̂ if there is an ε > 0 such
that q(z + tv′ + iu) , 0 whenever: 0 < t < ε, the vector v′ is at distance at
most ε from v̂, and u ∈ Rd has magnitude at most ε. The supremum of the
ε for which this holds is called the radius of strong hyperbolicity at z in the
direction v̂. We say that q is weakly hyperbolic in the direction v̂ if for every
M > 0 there is an ε > 0 such that q(z + tv̂ + iu) , 0 whenever 0 < t|v̂| < ε

and u ∈ Rd has magnitude at most ε with |u|
t|v̂| ≤ M.

Proposition 11.24. The radius of strong hyperbolicity is Lipschitz continuous
with constant 1. Thus, for fixed x strong hyperbolicity at z = x + iy in the
direction v̂ is a neighborhood property in y and v̂.
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Proof Suppose that q is strongly hyperbolic at x + iy in direction v̂ with
radius ε and choose y′ and v̂′ with max{|y′ − y|, |v̂′ − v̂|} = δ < ε. It follows
from the definition that q is strongly hyperbolic at y′ in direction v̂′ with radius
at least ε − δ. Hence the radius function R(y, v̂) for q over x is Lipschitz in
both arguments with constant at most 1. In particular, q is continuous in both
arguments and the set of (y,v) for which q is strongly hyperbolic is open. □

As mentioned in the end of chapter notes, the next two propositions correct
the statement of [BP11, Proposition 2.11] and the proof of [BP11, Proposi-
tion 2.12].

Proposition 11.25. Let q = Q ◦ exp with Q a Laurent polynomial, fix z =

x+ iy, and let A = hom(q, z) be the leading homogeneous term of q(z +w) in
w. Then each of the following properties implies the next.

(i) Strong hyperbolicity of q at z in the direction v̂.
(ii) Hyperbolicity of A in the direction v̂.

(iii) Weak hyperbolicity of q at z in the direction v̂.

Proof Assume without loss of generality that z = 0.
For the contrapositive of the first implication, suppose that A is not hyper-

bolic in direction v̂. Then there is u ∈ Rd such that A(v̂ + iu) = 0. Because
the tangent cone is the limiting secant cone, by Lemma 6.48 there are two
vn,wn sequences of vectors going to zero in Rd such that q(vn + iwn) = 0,
with vn/|vn| → v̂ and wn/|vn| → u. This contradicts the definition of strong
hyperbolicity.

For the second implication, suppose that q is not weakly hyperbolic at the
origin in direction v̂. This means there is some M > 0 such that for any ε > 0
there are t ∈ (0, ε) and u ∈ Rd with |u| ≤ M such that q(t(v̂ + iu)) = 0.
By compactness of the ball of radius M, this is equivalent to the existence of
sequences of real numbers tn and vectors un such that tn → 0, un → u and
q(tn(v̂+ iun)) = 0. Again, because the tangent cone is the limiting secant cone,
this implies A(v̂ + iu) = 0, meaning A is not hyperbolic in direction v̂. □

Proposition 11.26. Let Q be a Laurent polynomial, let B be a component of
amoeba(Q), and let x ∈ ∂B, so that q = Q ◦ exp vanishes at some point
z = x + iy. Fix u ∈ tanx(B) and let q̃ = hom(q,x + iy) denote the leading
homogeneous part of q(x + iy +w) with respect to w. Then

(i) q is strongly hyperbolic at z in direction u;
(ii) q̃ is hyperbolic in direction u;

(iii) Ku(q̃) contains tanx(B);
(iv) some complex scalar multiple of q̃ is real.
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Proof Begin by observing a property of tangent cones in real space: if a unit
vector v̂ is in tanx(B) and vn → 0 with vn/|vn| → v̂ then x + vn ∈ B for
sufficiently large n. Strong hyperbolicity of q in any direction u ∈ tanx(B)
then follows from the definitions of strong hyperbolicity and B.

To derive the second conclusion, suppose for contradiction that q̃ is not
hyperbolic in unit direction u ∈ Rd, meaning that q̃(u + iθ) = 0 for some
θ ∈ Rd. Because the algebraic tangent cone is the limiting secant cone by
Lemma 6.48, there must be sequences of real vectors {αn} and {βn} such that
(αn + iβn)/|αn + iβn| → (u + iθ)/|u + iθ| and q̃(z + αn + iβn) = 0. Because
αn → 0 with αn/|αn| → u, the above observation with vn = αn shows that
x + αn ∈ B for all sufficiently large n. But B is in the complement of the
amoeba, contradicting q̃(z + αn + iβn) = 0 and proving hyperbolicity of q̃ in
direction u.

The third conclusion, Ku(q̃) ⊇ tanx(B), follows immediately. For the fi-
nal conclusion, fix any nonzero real vector ξ. Then q̃(ξ + tu) is a polynomial
of degree m with leading coefficient q̃(u) and constant term q̃(ξ). The ratio
q̃(ξ)/q̃(u) is (−1)m times the product of all the roots. By definition of cones of
hyperbolicity, all the roots are real, therefore q̃(ξ)/q̃(u) is real. Because ξ was
arbitrary, we conclude that q̃(x)/q̃(u) maps Rd to R. □

11.2.4 Semi-continuity

Near any point in any stratum of a complex algebraic variety there are one
or more cones contained in the complement of the variety. Hyperbolicity may
be thought of as a kind of orientability for families of such cones, ensuring a
consistent choice of “inward tangent cone” (see Exercise 11.10 for a related
perspective). This provides some intuition as to why it’s easier to define hy-
perbolicity for minimal points, since the meaning of “inward” can be inferred.
Hyperbolicity is also used to ensure the cones are convex.

Aiming at conclusion (iv) of Theorem 11.1, we quote and briefly outline
proofs of the following semi-continuity results from [BP11, Theorem 2.14 and
Corollary 2.15], where are also discussed in [ABG70, Lemma 3.22] and [Går50;
Hör83].

Lemma 11.27 (semi-continuity). (i) Let A be a homogeneous polynomial
and C a cone of hyperbolicity for A. Then the cone KA,C(y) is lower
semi-continuous in y.

(ii) Let q = Q ◦ exp for some Laurent polynomial Q, let B be a component
of the complement of amoeba(Q), and let x ∈ ∂B. Then Kq,B(z) is lower
semi-continuous as z varies over T(x).
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(iii) With q as in (ii) and q̃ = hom(q, z) for fixed z, suppose further that for u
in some cone of hyperbolicity K of q̃ corresponding to the component B
of amoeba(Q)c,

q(z + iy + su) , 0 for real nonzero s in some interval [−c, c] and all y .
(11.7)

Then

KA,B(z + ŷ) ⊆ lim inf Kq,B(z + yn)

as yn → 0 with yn/|yn| → ŷ.

Remark 11.28. The first conclusion in Lemma 11.27 is nearly a specialization
of the second conclusion to homogeneous functions, except that not every ho-
mogeneous function is the homogenization of a Laurent polynomial composed
with the exponential function. Assumption (11.7) is satisfied whenever a gener-
ating function is symmetric under mapping all coordinates to their reciprocals.
This seems to be a common feature of recursions arising from cluster algebras.
In particular, this is true for the quadratic cone functions (Aztec diamond, cube
grove, fortress) arising later in this chapter, as well as their products with bino-
mial such as (1 − yz). Though not symmetric under reciprocals, the spacetime
generating function for quantum walks also satisfies Assumption (11.7) as a
consequence of the defining matrix being unitary.

Proof Sketch Suppose an analytic function q is strongly hyperbolic in the
direction v at the point z = x + iy and let A = hom(q̃, z). Theorem 2.14
of [BP11] implies that if u ∈ Kv(q) then q is strongly hyperbolic in direction
tv + (1 − t)u for any t ∈ [0, 1]. The first two conclusions follow from this, and
are stated as [BP11, Corollary 2.15].

To prove (iii), let m be the lowest homogeneous degree of q̃ and write q =
q̃+R with R analytic and vanishing to degree m+1 at the origin. By our choice
of u we know q̃(u) , 0, and by homogeneity we know that q̃(su) = smq̃(u).
Using the Weierstrass Preparation Theorem, then expanding, gives

q(z + su) = h(z)
(
sm + a1(z)sm−1 + · · · + am(z)

)
(11.8)

= h(z)
m∏

k=1

(s + µk(z,u)) , (11.9)

where h, a1, . . . , am are holomorphic functions of z with all a j vanishing at the
origin, h does not vanish at the origin, and the roots −µk(z,u) tend to zero as
z → 0. Specializing to some line z = tv, we write (with a slight abuse of
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notation)

f (tv + su) = h(t)
m∏

k=1

(s + µk(t)) .

We claim that the µk(t) are real analytic functions of t in a neighborhood
of 0. To see this, write µk as a Puiseux series

∑
r∈Ak

cr,ktr where Ak is an
arithmetic progression of rational numbers, containing positive entries because
limt→0 µk(t) = 0. Suppose some exponent r ∈ Ak is not an integer, and let b
be denominator of the least nonintegral r ∈ Ak. Then either for t small and
positive, or t small and negative, there will be b roots with arguments asymp-
totically distributed as {π/b+ 2π j/b : 0 ≤ j ≤ b− 1}, one of which is non-real,
contradicting the real-rootedness of q(i(y+zu)). We have thus established our
claim that the µk are real functions of t.

It follows that µk(t) ∼ tλk(t) where λk are the slopes of the lines into which
the bivariate function q̃(tv + su) factors,

q̃(tv + su) = q̃(u)
m∏

k=1

(s + tλk(t)) .

When v is chosen in the same cone of hyperbolicity as u, this further implies
that all λk are positive and that µk are increasing functions of t in a neigh-
borhood of 0. This is sufficient to derive, in the same manner as [ABG70,
Lemma 5.1, 5.9], that the local branches µk are still increasing after perturba-
tion, which implies semi-continuity of the cones. □

Example 11.29. Suppose that exp(z) is a multiple point of Q, so that the
leading homogeneous part q̃ of q at exp(z) is the product of linear factors. The
cones of hyperbolicity of q at z are projective cones that are the components
of Rd when the hyperplanes on which the linear factors vanish are removed.
If q = Q ◦ exp where Q has only multiple point singularities and {zn} is a
sequence with exp(zn) → exp(z) in VQ while remaining in a single stratum
S then exp(z) is in either S or ∂S . In the latter case, the partition near exp(z)
of Rd into projective cones is finer at exp(z) that at the points exp(z′), and the
semi-continuity described in Lemma 11.27 is strict. ◁

Exercise 11.6. Let X be a Whitney stratified space and let m : X → Z>0 be
the dimension function m(x) = dim(S(x)). Is m lower semi-continuous, upper
semi-continuous, or neither?

11.2.5 Proof of Theorem 11.1

We now complete the proof of Theorem 11.1.
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Proof For every y ∈ Tflat, define

Z(y) = Kq,B(x∗ + iy) = Ku(hom(q,x∗ + iy))

where u is any vector in tanx∗ (B). By Proposition 11.26 this cone contains
tanx∗ (B), establishing conclusion (i) of Theorem 11.1. Conclusion (iv) is part
of the conclusion of Lemma 11.27. For conclusion (iii), first suppose that z =
exp(x∗ + iy) is not a stratified critical point for hr̂ on V. Pulling back by
the exponential map, we see that x∗ + iy is not a critical point for the log-
linear map r̂(w) = r̂ · w on the stratum S of exp−1[V] containing x∗ + iy.
Thus d(hr̂ ◦ exp)|S , 0, meaning that r̂ is not orthogonal to the tangent space
Tx+iy(S ), so r̂ < N(y). By the contrapositive, this establishes the first part of
conclusion (iii). Conversely, if r̂ < N(y) then since N(y) = (−Z(y))∗ there
is some v ∈ Z(y) with r̂ · v > 0. The cone Z(y) is projective, so v can be
normalized so that r̂ · v = 1.

To prove conclusion (ii), begin by fixing t, x, and y. By Proposition 11.26, q
is strongly hyperbolic at x+ iy in any direction u ∈ tanx∗ (B) with some radius
ε(u,y) > 0 that is Lipschitz-1 continuous in both arguments. This is (11.1)
with t and y fixed, u = u(t,y) taken to be tV⃗(y) + (1 − t)(x −x∗), and ε set to
ε(u(t,y),y). Let (t,y) vary over the compact set [0, 1]×Tflat and use continuity
to see that ε(u(t,y),y) ≥ ε0 > 0 for some ε0 and all (t,y). Equation (11.1) is
then satisfied for any δ ≤ ε0. □

11.2.6 Projective deformations

This section address a special but reasonably common case where the dominant
critical point z = exp(x + iy) governs a set of coefficient asymptotics whose
directions N(z) form a set with nonempty interior. Because N(z) is a subset of
the lognormal space to the stratum containing z, this implies the stratum is
the 0-dimensional singleton {z}. The prototypical examples are quadratic cone
points, with or without additional linear divisors passing through the cone point
(Aztec diamond, cube groves), as well as the other applications mentioned in
the preliminary section of this chapter: Szegö functions, the GKZ symmet-
ric rational functions, and the Kauers-Zeilberger 4-variable function. Looking
ahead at Figures 11.2 and 11.3 may help to give a mental picture of the variety
and the deformations used. A quick outline of this section and the next goes as
follows.

(i) For a hyperbolic homogeneous polynomial q̃, construct a deformation
from the imaginary fiber u+ iRd over a point u in a cone of hyperbolicity
K to a projective contour: a set closed under multiplication by positive
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real numbers. We will apply this in logarithmic space to the function
q̃ = hom(q,x + iy) where q = Q ◦ exp and exp(x + iy) is a minimal
point of V. The deformation will avoid the zero set Vq̃ of q̃ except for
touching it at a single point (the origin) at a single time (t = 1). This step
is accomplished by Lemma 11.32.

(ii) Letting q = Q ◦ exp, we apply Step (i) to the homogenization q̃ of q
near each point x + iy with y ∈ localarg, (so that exp(x + iy) is a
critical point in direction r̂∗ for Q and r̂∗ lies in the normal cone there).
We then use a partition of unity to piece these local log-projective con-
tours together with the one from Theorem 11.4. This is accomplished in
Theorem 11.33, resulting in a deformation of the contour that avoidsVq

except at t = 1 with y ∈ localarg and is projective in a neighborhood
of localarg.

(iii) We stop the homotopy a bit early near localarg in order to obtain a cy-
cle that avoidsVq = logV entirely. This is discussed in Definition 11.34.

(iv) In the next section, we will see that on the domains of integration of
interest any rational function F = P/Q has local expansions in powers of
1/A where A is a homogenization of Q. This leads to a powerful theorem
showing the asymptotics in this case to be given essentially by the Fourier
transform of q̃.

As above, assume we have fixed Q along with a component B of amoeba(Qc)
and a point x ∈ ∂B, let q = Q ◦ exp, and fix a point x + iy0 where q vanishes.
We assume without loss of generality that y0 = 0, with everything in this
section working equally well for any nonzero y0 ∈ Tflat. Because we want
a log-projective contour, we work mainly in logarithmic coordinates. The log
spaceL = Rd⊕i(R/2π)d is a discrete quotient ofRd⊕iRd, so for analyses taking
place in a sufficiently small neighborhood in L it makes sense to consider the
computations in Cd. In particular, while q is not a polynomial on the log space
L, it is analytic at x and its leading homogeneous term λq̃ is a complex scalar
multiple of a real homogeneous polynomial q̃ of the same degree as the leading
homogeneous part of q(x + iy +w) in w. LetVq̃ denote the zero set of q̃.

Because the homogeneous polynomial q̃ is hyperbolic with some cone of hy-
perbolicity K0 containing tanx(B), Definition 11.16 and part (i) of Lemma 11.27
imply the existence of a lower semi-continuous family of real cones Kq̃,B(y)
of hyperbolicity for the homogenizations of q̃ at y as y varies, with all cones
containing tanx(B). For y < Vq̃, the cone Kq̃,B(y) may be taken to be all of
Rd. By homogeneity, Kq̃,B(λy) = Kq̃,B(y) for any real λ > 0.

Definition 11.30. Recall the normal cone normalx(B) = − tanx(B)∗. We say
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Figure 11.2 Left: A variety V = VQ. Right: The corresponding variety logV =
Vq.

that a direction r̂ in the interior of normalx(B) is a non-obstructed direction
if for any y ∈ Vq̃ the cone Kq̃,B(y) contains a vector v with r̂ · v > 0.

Note that obstruction is a property of the homogenization q̃.

Lemma 11.31. Suppose that r̂∗ is a non-obstructed direction in the interior of
normalx(B). Then there is a 1-homogeneous vector field η on Rd, vanishing
and continuous at the origin and smooth elsewhere, such that η(y) ∈ Kq̃,B(y)
and r̂ · η(y) ≥ |r̂||y| for all y ∈ Rd and all r̂ in a neighborhood of r̂∗.

Proof It suffices define η smoothly on the set of unit vectors, then extend
by η(λy) = λη(y): this extension will be smooth away from the origin and
continuous at the origin, and if r̂ · η(y) is positive on the unit ball then the
inequality in the conclusion of the lemma follows.

By the definition of non-obstruction, there is always a v depending on y

with v ∈ Kq̃,B(y) and v · r̂ > 0. Because of the strict inequality and semi-
continuity of the cones, this same vector v works for nearby r̂′ and nearby y′.
One may therefore cover the unit ball with finitely many open sets on which v

may be taken to be a constant. Construct η from these by a partition of unity,
noting that convex combinations preserve both v · r̂ > 0 and v ∈ Kq̃,B(y). □

We finish step (i) of our outline by finding a projective deformation with
the required properties. To accomplish step (ii) we then piece these together
for finitely many values of y0 and form a single deformation. We introduce
a parameter ε that shrinks the entire deformation so that we can later keep a
piece of it close to the origin.

Lemma 11.32. Let A be a hyperbolic homogeneous polynomial with cone of
hyperbolicity K. Let r̂∗ be a fixed non-obstructed direction in the interior of the
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normal cone −K∗ and let η be the projective vector field from Lemma 11.31.
For ε > 0 and fixed u ∈ K, let Φt be the homotopy from Rd × [0, 1] into Cd

defined by

Φt(y) = Φε,u,ηt = iy + ε
[
(1 − t)u + tη(y)

]
. (11.10)

Then there exists c > 0 such that r̂ · Φ1(y) ≥ c|y| for all y as r̂ varies over
some neighborhood of r̂∗. Furthermore, A(Φt(y)) , 0 for all 0 ≤ t ≤ 1 except
when t = 1 and y = 0. Consequently, the chain u + iRd is homotopic in the
complement of VA to the projective chain C = Φ1[Rd] on which r̂ · y grows
linearly in |y|, uniformly when r̂ varies over some neighborhood N of r̂∗.

Remark. The parameter ε that shrinks the deformation toward x + iy has
no consequence in Lemma 11.32, but will be useful later when we want the
homotopy to avoid a function f whose homogenization is A.

Proof By definition of cones of hyperbolicity for homogeneous functions,
q̃(Φt(y)) cannot vanish except if y = 0 and t = 1. The rest is Lemma 11.31
and the definition of Φt in (11.10). □

The next step is to glue together constructions in a neighborhood of log
space L near each point of localarg(r̂∗). We solve several problems at the
same time. First, in order to remain inM we stop the homotopy slightly before
t = 1 when y is near the set localarg(r̂∗). Second, we do this construction
simultaneously for all w ∈ localarg(r̂∗), gluing together the constructions in
these neighborhoods with a standard construction outside of these neighbor-
hoods. Third, we do this in small neighborhoods of Rd that can be identified
with neighborhoods in L so as to cover the space, thus ensuring that mapping
forward by the exponential map produces a homotopy of the torus to a contour
that is loglinear, with height −r̂∗ · x decreasing linearly on the contour with
distance from the nearest point in local(r̂∗) and has height bounded above by
−x · r̂∗−c outside of these neighborhoods for some positive constant c. Fourth,
we ensure that the homotopy remains in M. Finally, we take the opportunity
to correct the double duty played by the parameter δ in [BP11, Section 5]: we
will use the subscript ρ when restricting a chain to a neighborhood of radius ρ
and keep a superscript δ for how early to stop the homotopy and how near to
localarg to stop it. We always choose δ < ρ, ensuring the contour looks like
Figure 11.3.

Theorem 11.33 (local projective deformation). Let B be a component of the
complement of amoeba(Q). Suppose Q satisfies conclusion (iii) of Lemma 11.27
and that −r̂∗ ·x is minimized on B uniquely at some point x ∈ ∂B. Assume fur-
ther that local(r̂∗) is finite and that r̂∗ is a non-obstructed direction in the
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interior of N(z) for each z ∈ local(r̂∗). Fixing x + u ∈ B, there is a vector
field η : Tflat → R

d and an ε > 0 such that the following are true.

(i) η is a smooth section of Kq,B.
(ii) For each y ∈ localarg(r̂∗), the vector field η(y + ·) is 1-homogeneous

in a neighborhood of 0.
(iii) There is an ε > 0 such that the homotopyΦt = Φ

ε,u,η
t avoids logV except

at t = 1 and y ∈ local(r̂∗).
(iv) There is a constant c > 0 and a neighborhood R of r̂∗ such that −r̂ ·

η(w) < −c|w − y| for every w in some neighborhood of each y ∈

local(r̂∗) and every r̂ ∈ R.

Proof We glue together vector fields on Tflat in small balls around each point
using a partition of unity. Fix ρ > 0 to be determined later. For a point y ∈
localarg(r̂) define N(y) to be the ball of radius ρ centered at y, and define
the vector field V⃗y onN(y) to be the projective vector field η from Lemma 11.31
for the homogenization of q̃ at y. Suppose now that y < localarg(r̂∗). As in
the proofs of Theorems 11.4 and 11.5, we pick a vector v in the cone Z(y) from
Theorem 11.1 such that v · r̂ ≥ 1 for every r̂ ∈ R. Define the vector field V⃗y(·)
to be the constant vector v on a neighborhood N(y) of y sufficiently small
to avoid local(r̂) for every r̂ ∈ R, to avoid proper substrata of the stratum
containing y, and such that v ∈ Z(y′) for every y′ ∈ N(y).

We now have neighborhoodsN(y) and vector fields V⃗y onN(y) chosen for
all y ∈ Tflat whether or not y ∈ localarg(r̂∗). Fix a subcover {N(w) : w ∈ E}
indexed by some finite set E. Choose a partition of unity {ψw} subordinate to
this cover and define the vector field η : Tflat → R

d by

η(y) =
∑
w∈E

ψw(y)V⃗(w) ,

mirroring the definition of V⃗ in (11.2).
Conclusion (i) is immediate from the partition of unity construction and the

fact that ηwas built from vectors V⃗w(y) ∈ Z(y) for w < localarg or V⃗w(y) ∈
Kq̃,y ⊆ Z(y) for w ∈ localarg, provided that ρwas chosen sufficiently small;
see part (iii) of Lemma 11.27. Conclusions (ii) and (iv) are immediate from the
conclusion of Lemma 11.31 and the fact that each element of local(r̂∗) is
forced to be in E. We prove Conclusion (iii) in three cases.

The easiest case occurs when y is not in N(w) for any w ∈ local(r̂∗).
Then by convexity η(y) ∈ Z(y) and we already know Conclusion (iii) for
such y from Conclusion (ii) of Theorem 11.1. The second case occurs when
y ∈ N ′(w) = N(w) \

⋃
w′,wN(w′) for some w ∈ local(r̂∗). Then η is

defined as in Lemma 11.31 applied to the homogenization A of q̃ near w. We
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quote the argument from [BP11, Theorem 5.8]. The range of the homotopy
Φ
ε,u,η
t is a projective set in a neighborhood of w, meaning locally it coincides

with a conical set of the form {λb : b ∈ K, λ > 0} for some closed subset
K of the unit sphere. The variety Vq̃ defined by q̃ is also a closed conical set
intersecting the unit sphere in some set L. On the unit sphere these closed sets
do not intersect and hence are separated by a positive distance ρw. The set of
normalized secants (z −w)/|z −w| for z ∈ Vq and |z −w| < s converges as
s ↓ 0 to L, hence, once the parameter ρ is chosen smaller than half each ρw the
homotopy Φt(y) must avoidVq for all y in this case.

The final case occurs when y ∈ N(w) ∩ N(w′) for some w ∈ local(r̂∗)
and w′ < local(r̂∗). Reasoning as in Conclusion (i), we observe that Kq̃,B(y)
is a subset of the cone Z(y) once ρ is sufficiently small as a consequence of
part (iii) of Lemma 11.27, and the reasoning of the first conclusion applies
again. □

Let c = Φ1(Tflat) be the final cycle in the homotopy described in Theo-
rem 11.33. In order to produce a homotopy and a final cycle that completely
avoidsVq, we stop the homotopy early near localarg. Define ρ(y) by ρ(y) =
minw∈localarg |y −w|, the distance from y to the closest point of localarg.

Definition 11.34 (chains and stopped homotopy). Consider the following def-
initions.

(i) Fix δ > 0 and define the stopped homotopy Φδt (y) := Φε,u,η,δt (y) by

Φδt (y) = iy + x + ε
[(

1 − t
[
1 − (δ − ρ(y))+

])
u + t

[
1 − (δ − ρ(y))+

]
η(y)

]
(11.11)

where the notation x+ for a real number x denotes x+ = max{0, x}.
(ii) Let cδ = Φδ1(Tflat) denote the cycle resulting from the stopped homotopy;

see Figure 11.3 for depictions of c and cδ.
(iii) For w ∈ localarg and 0 < δ < ρ, where ρ is less than half the distance

from w to the nearest other point in localarg, define cδρ(w) to be the
chain obtained by restricting Φ1 to the ball of radius ρ centered at w.

11.3 Evaluating asymptotics

Let F(z) = P(z)/Q(z) =
∑

r arzr be a rational Laurent series whose open
logarithmic domain of convergence is the component B of the complement of
amoeba(Q). Let r̂∗ be a direction such that the height function h(x) = −r̂∗ · x
achieves a unique minimum m on B at some point x∗ ∈ ∂B, and suppose
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Figure 11.3 Deforming the chain: r̂∗ points to the right; the dotted plane is
x−u+iRd . The figure on the left shows that this can be deformed to the projective
contour c. The figure on the right shows that stopping early produces a contour
differing in an arbitrary small neighborhood of any point of localarg and com-
pletely avoidingVq.

that the set of local points local(r̂∗) with respect to x∗ is non-empty. Theo-
rem 11.33 and Definition 11.34 show how to deform T = x∗ −u+ i(R/2π)d in
L with x∗ −u ∈ B into a cycle cδ which is the sum over w ∈ localarg(r̂∗) of
locally projective chains cδρ(w) near x∗+iw together with a chain inM≤m−s for
some s > 0. Applying Cauchy’s integral formula to F, changing coordinates
via the exponential map, and breaking into pieces near each local point gives
the following corollary.

Corollary 11.35. Assume the hypotheses in the previous paragraph and let
f = F ◦ exp. There is a constant c < m, a neighborhood R of r̂∗, and constants
0 < δ < ρ such that

ar =
∑

w∈localarg(r)

1
(2πi)d

∫
cδρ(w)

e−r·z f (z) dz + O(ec|r|)

=
∑

w∈localarg(r)

z−r

(2π)d

∫
B(w,ρ)

e−ir·y f (iy + Φδ1(y))J(y) dy + O(ec|r|)

uniformly as r̂ = r/|r| ranges over R, whereΦδ1 is specified in Definition 11.34
and J is the Jacobian determinant of the map y 7→ Φδ1(y). □

We are left with the task of asymptotically evaluating the integrals in Corol-
lary 11.35. While the use of the locally projective deformation in the last corol-
lary is only to save a few lines in the estimate (Theorem 11.5 would have done
instead), Lemmas 11.37 and 11.39 and Theorem 11.40 do require it.

When asymptotically evaluating integrals, the first step is typically to ap-
proximate the amplitude via a series, with each summand having a canonical
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form that is particularly easy to integrate; for instance, in Chapters 4 and 5
saddle point integrals with general amplitudes are reduced to those whose am-
plitudes are monomials. The key result for doing this is a Big-O Lemma, which
tells us that functions differing by a small quantity will have integrals differing
by a correspondingly small quantity. First, we show how to approximate the
reciprocal of a function by its leading homogeneous part.

Lemma 11.36 (straightening lemma). Suppose that q(x) = q̃(x)+R(x) where
q̃ is a homogeneous polynomial of degree α and R is analytic in a neighbor-
hood of the origin with R(x) = O(|x|α+1). Let K be any closed cone on which q̃
does not vanish. Then on the intersection of K with some neighborhood of the
origin the function q does not vanish and there is a convergent expansion

q(x)−s =

∞∑
n=0

q̃(x)−s−n

 ∑
|m|≥n(α+1)

c(m, n)xm

 . (11.12)

Furthermore,

q(x)−s −
∑

|m|−αn<N

c(m, n)xmq̃(x)−s−n = O
(
|x|−αs+N

)
. (11.13)

Proof Let R(x) =
∑
|m|≥α+1 b(m)xm be a power series expansion for R, ab-

solutely convergent in some ball Bε centered at the origin, and let

M =

sup
|x|∈Bε

∑
|m|≥α+1

|b(m)||x|m

inf
|x|∈∂Bε∩K

q̃(x)
.

By homogeneity ∑
|m|≥α+1

|b(m)xm|

|q̃(x)|
≤ 1/2

on the ball Bε/(2M) of radius ε/(2M) centered at the origin, and the binomial
expansion (1 + u)−s =

∑
n≥0

(
−s
n

)
un converges for |u| < 1/2. Thus, the series

expansion (
1 +

R(x)
q̃(x)

)−s

=
∑
n≥0

(
−s
n

)  ∑
|m|≥α+1

b(m)
xm

q̃(x)

n

converges on Bε/(2M) ∩K, and multiplying through by q̃−s yields (11.12). Con-
vergence on any neighborhood of the origin implies the estimate (11.13). □

Exercise 11.7. Let q(x, y) = y− x− x2. Find q̃ and R, the expansion (11.12) to
second order, and the exponent in the remainder term in (11.13).
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Recall from Definition 6.46 that deg(Q,w) denotes the order of vanishing
of an analytic function Q at a point w, equal to zero if Q(z) , 0. We define the
order of vanishing of a real power Q(z)s to be s · deg(Q, z), and remark that if
Q is a Laurent polynomial then a branch of Qs may be defined on the domain
of convergence of any Laurent series for F. Finally, we also define the degree
of a product Q(z) =

∏k
j=1 Q j(z)s j of Laurent polynomials by

deg(Q,w) =
k∑

j=1

s j deg(Q j,w)

and abuse notation slightly by writing

amoeba(Q) = amoeba

 k∏
j=1

Q j

 = k⋂
j=1

amoeba(Q j) .

Lemma 11.37 (Big-O Lemma). Let Q(z) =
∏k

j=1 Qs j

j (z) for Laurent polyno-
mials Q1, . . . ,Qk and real numbers s1, . . . , sk that are not negative integers, let
F = P(z)/Q(z) for a Laurent polynomial P coprime to Q, and let f = F ◦ exp.
Fix a component B of amoeba(Q)c corresponding to the convergent expansion
F(z) =

∑
r arzr on B, and fix a direction r̂∗ such that −r̂∗ ·x is minimized on B

at a unique point x∗ ∈ ∂B. Let z = exp(x∗ + iw) for some w ∈ localarg(r̂∗).
Assume the last conclusion of Lemma 11.27 and let Cδ(z) = exp[cδ(w)] be
a chain satisfying the conclusion of Lemma 11.32. If r̂∗ is a non-obstructed
vector in the interior to the dual cone N(z) then the following estimates hold
uniformly as r → ∞ while r̂ = r/|r| varies over a neighborhood of r̂∗.

(i) If ϕ(z) is any function that is O(|z|β) at the origin with β + d > 0 then

|zr |

∫
c(w)

exp(−r · z′)ϕ(z′) dz′ = O(|r|)−d−β . (11.14)

(ii) The same estimate holds for the chain cδ(w) in place of c(w).
(iii) Let D = deg(F, z) = deg(P, z)−

∑k
j=1 s j deg(Q j, z). Then for any bounded

function ψ,

|zr |

∫
cδ(w)

ψ(z′)q(z′) exp(−r · z′) dz′ = O
(
|r|−d−D

)
.

(iv) The estimate |z|r ar = O(|r|−d−D∗ ) holds where D∗ = minw∈local deg(F,w).

Proof The cone c(w) is a subset of an infinite cone
⋃
λ≥0 λS , and we may

decompose dz = td−1 dt∧dS where dS is a finite measure on S . It follows from
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conclusion (iv) of Lemma 11.32 that there is a θ > 0 for which Re{r ·y} ≥ θ|r|
on S . Thus,

|zr |

∣∣∣∣∣∣
∫

cδ(w)
exp(−r · z′)ϕ(z′) dz′

∣∣∣∣∣∣ ≤
∫ ∞

0

(∫
S

C e−θt|r|tβ dS
)

td−1 dt

≤

∫ ∞

0
C′e−θt|r|tβ+d−1 dt

= O(|r|)−d−β ,

proving (i).
The chains cδ(w) are all homotopic inM. Thus, for any fixed r the integral

in (ii) is independent of δ. We have seen that β+d > 0 implies absolute integra-
bility on c(w). The same estimates imply that the integral over the intersection
of cδ(w) with an ε-neighborhood of w goes to zero as ε → 0 uniformly in
δ. This implies convergence of the integrals in (ii) to the integral in (i), and
because the integrals in (ii) are all the same, they are all equal to the integral
in (i), proving the second conclusion. The third conclusion follows from the
first with ϕ = ψq and from the estimate q(z′) = O(|z′|)D on cδ(w), which is a
consequence of Lemma 11.36 with q = f . The fourth conclusion follows from
the second and Corollary 11.35. □

11.3.1 Fourier transforms

Our results up to this point hold for an arbitrary product Q(z) =
∏k

j=1 Q j(z)s j

of powers of Laurent polynomials. We now specialize to k = 1 and let Q be
a polynomial whose leading term is a Lorentzian quadratic. The summands in
Corollary 11.35 are evidently Fourier transforms which, as we will shortly see,
are classically known. Recall that the standard Lorentzian quadratic S (y) =
y2

1 −
∑d

j=2 y2
j (discussed in Example 11.22 above) is in fact equivalent to any

other Lorentzian quadratic q in the sense that there is a real linear map M
such that q = S ◦ M−1. The Fourier transform of a Lorentzian quadratic is
known [Rie49; ABG70; BP11], as is the transform of any power S −s as long
as s is not 0 or d/2−1. In the formula that follows, S ∗ denotes the dual quadratic
which has an identical formula r2

1 −
∑d

j=2 r2
j , and q∗(r) = S ∗(M∗r) where M∗ is

the adjoint of the linear map M. Note that what we call the Fourier transform,
while standard, is called the inverse Fourier transform in [ABG70; BP11].

Proposition 11.38 (Fourier transform of a Lorentzian quadratic). Let s be any
real number for which neither s nor s + 1 − d/2 is a nonpositive integer. The
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generalized Fourier transform of S −s is given by

Ŝ −s(r) = eiπs S ∗(r)s−d/2

22s−1π(d−2)/2Γ(s)Γ(s + 1 − d/2)
.

More generally, for any monomial xm and any Lorentzian quadratic q, the
Fourier transform of xm q−s is given by

x̂mq−s(r) = eiπs i|m|
|M|(∂/∂r)mq∗(r)s−d/2

22s−1π(d−2)/2Γ(s)Γ(s + 1 − d/2)
. (11.15)

□

There is a catch to the statements in Proposition 11.38: the function xmq−s

will fail to be integrable at infinity if the homogeneous degree |m|−2s is −d or
more, and the integral defining the Fourier transform blows up at the origin if
|m|−2s ≤ −d. Proposition 11.38 is thus properly stated in terms of generalized
functions. These generalized functions are defined as limits of actual functions
on u+ iRd as u→ 0 in a cone of hyperbolicity of the quadratic, their integrals
over noncompact sets are defined by weak limits of compact integrals, and
their Fourier transforms are defined not by direct integration against eir·x but
by their integrals against (classical) Fourier transforms of smooth, compactly
supported functions. When s or s + 1 − d/2 is a nonpositive integer, a Fourier
transform can be constructed that is itself a generalized function (in particular,
a sort of delta function supported on the hypersurface S = 0). For further
details of generalized functions, we refer to [GS16] or the summary in [BP11].

We do not worry about these subtleties here, and use only the following
result from [BP11, Lemma 6.3]. The proof is not trivial, involving the right
choice of insertions of compactly supported functions and truncation estimates.
The statement in [BP11] assumes that Q is the product of quadratic and linear
factors, but in fact relies only on the conclusion of Theorem 11.33, and thus
holds whenever conclusion (iii) of Lemma 11.27 holds.

Lemma 11.39. Fix x∗ ∈ ∂B, let w be one of finitely many points of localarg,
and let N denote the negative dual of tanx∗ (B). Assume the last conclusion of
Lemma 11.27. As r → ∞ through a compact set of non-obstructed directions
in N, the generalized Fourier transform Ŝ −s(r) correctly computes the integral
of exp(−r ·x)S −s(x) over the chain cδρ(w). More generally, the same is true of
xmq−s and of F ◦ exp when F is a Laurent polynomial. □

11.3.2 Main result on coefficient asymptotics

Let Q(z) =
∏k

j=1 Q j(z)s j be a product of powers of Laurent polynomials
satisfying the conclusions of Theorem 11.33, and let B be a component of
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amoeba(Q)c corresponding to a convergent Laurent expansion of the form
F(z) = P(z)/Q(z) =

∑
r arz

r. Pick x∗ ∈ ∂B and suppose that there is a non-
obstructed direction r̂∗ in the interior of Nx∗ (B), such that the set local(r̂∗) is a
singleton {z} = {exp(x∗+iy)}. Writing q j = Q j◦exp and q̃ j = hom(q j,x∗+iy),
Lemma 11.36 allows us to develop each q−s j

j as a sum of terms of the form
c(m, n, j)xmq̃−s−n

j . Multiplying these series, and then multiplying by P gives
an expansion of the form

f (x) = F(exp(x)) =
∑
m

c(n,m)xmq̃(x)−s−n (11.16)

where q̃(x)−s−n =
∏k

j=1 q̃ j(x)−s j−n j , the vector n has nonnegative integer co-
ordinates, the sum contains only terms whose degrees are the degree of q̃ or
greater, and the sum contains only finitely many terms of any fixed degree.

Theorem 11.40. Under the setup above, let b = (b1, . . . , bk) be the sequence of
degrees of homogeneous polynomials q1, . . . , qk and let χn,m be the general-
ized Fourier transform of xmQ−s−n. Then there is an asymptotic development

ar ≈ z−r(2π)−d
∑
n,m

c(n,m)χn,m(r) (11.17)

valid when r → ∞ with r̂ restricted to some neighborhood of r̂∗. For any N,
there are only finitely many terms with |m|+ d − (s+n) · b < N. When N > 0,
truncating the sum to the finitely many terms satisfying this inequality yields a
remainder of O

(
|r|−N

)
.

If local(r̂∗) has cardinality greater than 1 and r̂∗ is interior to N(z) and
non-obstructed for every z ∈ local(r̂∗) then the series on the right-hand side
of (11.17) can be summed over z ∈ local(r̂∗) to give an asymptotic series for
ar.

Proof We have seen in Corollary 11.35 that, up to a term of lower expo-
nential order, ar is computed by a sum of integrals over chains cδρ(w) of
Fourier integrands f (z)e−r·z dz. We assume without loss of generality that
local(r̂∗) = {z} = {exp(x∗ + iy)}, the case of cardinality greater than one
following by a similar argument. Expand f via the series (11.16), ordered by
increasing homogeneous degree. Equation (11.13) of Lemma 11.36 shows that
the series is a true asymptotic development, in the sense that the remainders be-
ginning with a term of a given homogeneous degree β are O(|x|β) near x + iy
on any closed cone avoiding logV.

Lemma 11.37 tells us we can integrate f (z)e−r·z dz term by term over cδρ(y)
for all terms of homogeneous degree less than β, and as long as β > −d the re-
mainder of the integral will be O(|r|−β−d). By Lemma 11.39 each integral over
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c is given by its generalized Fourier transform χn,m, proving the theorem in
the case that β > −d. Finally, if β ≤ −d we observe that the generalized Fourier
transform of a homogeneous function of degree α is always homogeneous of
degree −α− d. Therefore, letting α run over all degrees of terms that are in the
interval [β,−d], the remainder is expressed as the sum of finitely many terms of
type O(|r|−α−d) together with a remainder that is at most O(1). This establishes
that the remainder is O(|r|−β−d) and finishes the proof. □

11.4 Examples and consequences

We now give several examples computing asymptotics determined by a mini-
mal point that is a Lorentzian quadratic.

Example 11.41 (power of a cone). Let F(x, y, z) = 1/Q(x, y, z)β where

Q(x, y, z) = (1 − x)(1 − y) + (1 − x)(1 − z) + (1 − y)(1 − z).

Friedrichs and Lewy [FL28] were interested in nonnegativity of the power
series coefficients of F when β = 1 while they studied a discretized time-
dependent wave equation in two spatial dimensions; such nonnegativity was
proven for β > 1/2 in classical work of Szegö [Sze33]. A vast generalization
of this result, applying to the reciprocal of the Tutte polynomial of a graph with
all variables e replaced by 1 − e, was later studied by Scott and Sokal [SS14].

In logarithmic coordinates (u, v,w) = exp(x, y, z), the leading homogeneous
term of Q at the singular point (0, 0, 0) of logV is the second elementary sym-
metric function q(u, v,w) = uv + uw + vw. The power series expansion of F
corresponds to the component of amoeba(Q)c containing points (−N,−N,−N)
with N sufficiently large, and the normal cone at this singular point is the cone
of all directions (r, s, t) such that r2 + s2 + t2 < 2(rs + rt + st). This cone
is contained in the positive orthant and its boundary is tangent to the coor-
dinate hyperplanes along the directions (1, 1, 0), (1, 0, 1), and (0, 1, 1). Thus,
N = N(0,0,0)(B) is a symmetric cone inscribed in the positive orthant. Because
nonnegativity of the coefficients is known for some β, the boundary of the
amoeba is contained in the real variety; the real variety does not intersect the
projective dual cone in log space, so this example satisfies Assumption (11.7).

Substituting the result of Proposition 11.38 into Theorem 11.40, taking β to
be greater than 1/2, we compute that the dual to q is 2(rs+ st+rt)−(r2+ s2+ t2)
and deduce

ar ∼
41−β

√
πΓ(β)Γ(β − 1/2)

(2rs + 2rt + 2st − r2 − s2 − t2)β−3/2



386 Cone point asymptotics

as r → ∞, uniformly as r̂ varies over compact subsets of the interior of N. ◁

Stringing together several facts we have accumulated concerning amoebas,
tangent cones, and hyperbolicity leads to a useful one-sided bound. Given a
Laurent polynomial Q and a component B of the complement of amoeba(Q),
we know from Proposition 11.26 that any z = exp(x + iy) ∈ ∂B ∩ V has a
cone of hyperbolicity K containing tanx(B). From the remarks following Defi-
nition 11.12, we know that K is convex and is a component of the complement
of the zero set of A = hom(Q ◦ exp,x) in Rd. The homogeneous polynomial
A vanishes on the boundary of the cone K. Dualizing, we see that the alge-
braic dual A∗ to A vanishes on the boundary of the dual cone N(z). It follows
that N(z) is a subset of the largest subset L of the halfspace dual to u that is
bounded by the algebraic dual A∗ to A. From this, it follows that for any r < L
the set local(r) is empty, whence by Theorem 11.4 the exponential rate β(r̂)
is strictly less than β*(r̂) = −r̂ · x. This proves an ACSV analogue of the
Paley-Wiener Theorem for Fourier transforms, which asserts that the general-
ized Fourier transform of a homogeneous function vanishes outside the dual
cone.

Theorem 11.42 (Paley-Wiener theorem for ACSV). Let B be a component of
the complement of amoeba(Q), let Q vanish at z = exp(x + iy), and let u be
any element of tanx(B). Then β(r̂) < −r̂ · x for any r̂ outside the closed dual
cone normalx(B) = (− tanx(B))∗. In particular, when tanx(B) is bounded by
the algebraic tangent cone then normalx(B) is bounded by the algebraic dual
cone. □

When the point x is the origin, as it is in many probabilistic examples, The-
orem 11.42 implies that the Laurent coefficients ar decay exponentially as
r → ∞ with r̂ bounded outside the algebraic dual cone at the origin.

Example 11.43 (cube groves). Let

F(x, y, z) =
1

1 + xyz − (x + y + z + xy + xz + yz)/3

be the cube grove creation generating function, let x = 0, and let B be the
component of amoeba(Q)c containing the negative orthant. Then

A = hom(Q ◦ exp) = 2xy + 2xz + 2yz

is twice the second elementary symmetric function. This quadratic form is rep-
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resented by the matrix

M =


0 1 1
1 0 1
1 1 0


while the dual of A is represented by the matrix

M−1 =
1
2


−1 1 1
1 −1 1
1 1 −1

 .
Thus

A∗(r, s, t) = rs + rt + st −
1
2

(
r2 + s2 + t2

)
and the zero set of A∗ is a circular cone ∂L tangent to the three bounding
planes of the positive orthant at the diagonals {x = y, z = 0}, {x = z, y = 0}, and
{y = z, x = 0} bounding a solid cone L. It follows from Theorem 11.42 that ar
decays exponentially as r → ∞ in any closed cone disjoint from L. ◁

Example 11.43 derives the “easy” direction for asymptotics, which follows
directly from Theorem 11.42 and the computation of the dual cone. Neverthe-
less, this computation and its counterpart for orientation probabilities (where
the denominator has an extra factor of 1 − z) are the main results in the pa-
per that introduced cube groves [PS05]. The analysis here is simpler because
the hyperbolicity results above reduce geometric questions in complex codi-
mension 1 to corresponding analyses in real codimension 1, where one can
use connectivity and natural orientations. The machinery of algebraic duals
and Theorem 11.42 combine to make it almost automatic to show exponential
decay outside a set of directions whose boundary is the algebraic dual.

The “hard” direction for asymptotics is showing that there is no exponential
decay when r is in the interior of L. This is harder to do because we typi-
cally need to evaluate the integral near the points of local(r̂) to show that
asymptotics are indeed not decaying exponentially. In this case we can apply
Theorem 11.40 and Proposition 11.38 directly to obtain the following result
for cube grove creation rates.

Corollary 11.44. The creation rates {ar,s,t} defined by the power series expan-
sion of F(x, y, z) in (11.43) satisfy

ar,s,t ∼
1
π

[
rs + rt + st −

1
2

(r2 + s2 + t2)
]−1/2

as (r, s, t)→ ∞ within a closed subcone in the interior of L. □
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Example 11.45 (Aztec Diamond). Let Q(x, y, z) = 1−(x+x−1+y+y−1)z/2+z2.
The Laurent expansion of

F(x, y, z) =
z/2

(1 − yz)Q(x, y, z)

in the domain of convergence containing the point (1, 1, 0) enumerates infor-
mation about the Aztec Diamond, a combinatorial structure we do not describe
here. The singular variety VQ is smooth except at ±(1, 1, 1) where it is rep-
resented by a Lorentzian quadratic. The homogenization q̃ of q = Q ◦ exp
at the origin is the circular cone 2z2 − (x2 + y2) and the cone of hyperbol-
icity containing the negative z-axis, which is the one of interest, is the cone
B− = {(x, y, z) : z < −

√
(x2 + y2)/2}. Its dual is given by

B∗− =
{

(r, s, t) : r2 + s2 ≤
1
2

t2
}
.

The other factor 1 − yz is smooth at ±(1, 1, 1) and is in fact already linear
when put in logarithmic coordinates: if (x, y, z) = exp(u, v,w) then yz = 1
becomes v + w = 0. The cones of hyperbolicity are the two halfspaces H− =
{v+w < 0} andH+ = {v+w > 0}, the former containing the negative z-axis. The
amoeba of a product is the intersection of the amoebas of the factors, hence the
component corresponding to the chosen Laurent expansion is B0 = B− ∩ H−.
Dualizing, B∗0 is equal to the convex hull of B∗− ∪ H

∗
−. Projectively, B∗− is the

cone over the circle {r̂2 + ŝ2 ≤ 1/2} while H∗− is the single point (0, 1). The
convex hull of the union is the teardrop shape shown in Figure 11.4. We thus
have the following consequence of Theorem 11.42.

Figure 11.4 The teardrop-shaped region in Example 11.45.

Corollary 11.46. Outside of the teardrop shaped region given by the convex
hull of B∗− ∪ {(0, 1)}), the Aztec Diamond placement probabilities decay ex-
ponentially. More specifically, the north-going placement probabilities decay
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exponentially unless either r̂2 + ŝ2 ≤ 1/2, in which case these converge to a
quantity in (0, 1) for fixed r̂ as r → ∞, or r̂2 + ŝ2 > 1/2 and ŝ > |r̂|, in which
case the north-going placement probability converges to 1.

◁

Example 11.47 (fortress tiling). The fortress tiling ensemble is a combinato-
rial structure enumerated by a generating function of the form G/(Q1 · · ·Qk ·Q)
where the Qi are all smooth at the point (1, 1, 1) and Q is a nondegenerate quar-
tic and the homogeneous part of Q ◦ exp at (0, 0, 0) is given by

A(x, y, z) = 200z2
(
2z2 − x2 − y2

)
+ 9

(
x2 − y2

)2

(see, for example, [Du11]). The zero set of A is a cone over the curve 400 −
200x2 − 200y2 + 9

(
x2 − y2

)2
= 0 depicted in Figure 11.5.

Figure 11.5 Cross-section of the homogeneous part of the fortress generating
function.

The Fourier transform of A will be computed in forthcoming work of Barysh-
nikov and Pemantle. Without this, however, we can still prove that the coeffi-
cients arst decay exponentially outside the algebraic dual curve. Computing a
Gröbner basis of the ideal ⟨r−Ax, s−Ay, t−Az, A⟩ produces a basis whose first
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entry is the algebraic dual

A∗(r, s, t) = 729 t8 − 13608 t6s2 − 22896 s4t4 + 64000 s6t2 + 102400 s8

− 13608 r2t6 + 412992 s2t4r2 − 1104000 s4r2t2 + 870400 s6r2

− 22896 r4t4 − 1104000 r4s2t2 + 2054400 s4r4 + 64000 r6t2

+ 870400 r6s2 + 102400 r8 .

This projective curve is a cone over the octic affine curve

q∗(r, s, t) = 729 − 13608 s2 − 22896 s4 + 64000 s6 + 102400 s8 − 13608 r2

+ 412992 s2r2 − 1104000 s4r2 + 870400 s6r2 − 22896 r4

− 1104000 r4s2 + 2054400 s4r4 + 64000 r6 + 870400 r6s2 + 102400 r8

whose zero set is shown in Figure 11.6. The real part of this octic curve has two

Figure 11.6 The fortress dual curve.

components, consisting of a concave aster-shaped region inside a nearly circu-
lar region. The dual cone N(1, 1, 1) must be contained within the outer curve,
leading to the following “octic circle” result, conjectured by Cohn and Peman-
tle in 1998 and proved when Kenyon and Okounkov obtained asymptotics for
this ensemble [KO07].
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Theorem 11.48. Let K be the cone over the region bounded by the outer dual
curve q∗. Then, uniformly over closed cones disjoint from the closure of K, the
coefficients of the fortress generating function decay exponentially. A normal-
ized vector (r/t, s/t, 1) is in the region of exponential decay if q∗ is positive
there and it is not in the inner area which is separated from the outer circle by
any circle lying between them (such as r̂2 + ŝ2 = 1/4). □

◁

Product of a cone and a plane
The Fourier transforms for the Aztec Diamond and the cube grove probability
generating functions, which involve the product of a function with a cone point
singularity and a smooth hyperplane, are explicitly computable. The compu-
tation, contained in [BP11], is too long to include here, but the result can be
understood intuitively as follows.

The Fourier transform of a linear function is a Heaviside function, the delta
function of a ray {tû : t ≥ 0}. The Fourier transform of a product is the con-
volution of the transforms of the factors, whence the Fourier transform of a
product L · L where L is linear is given by∫ ∞

0
L̂(r − tû) dt .

When L̂ is supported on a cone (e.g., by the Paley-Wiener theorem) and for
any r the integrand vanishes for sufficiently large t, this leads to a simple in-
tegral. Formalizing this intuition involves a lot of checking that certain lim-
its commute and appears daunting. Instead, the integral was computed in a
roundabout but rigorous manner in [BP11, Section 4.1–4.2], leading to inverse
trigonometric functions.

Theorem 11.49 ([BP11, Theorem 4.1–4.2]). Let {ar,s,t} be the series coeffi-
cients for

A(x, y, z) =
z/2

(1 − yz)(1 − (x + x−1 + y + y−1)/2 + z2)

corresponding to the amoeba complement component B containing the nega-
tive z-axis. These coefficients satisfy

arst ∼ (1 + (−1)i+ j+n+1)
1

2π
arctan

 √t2 − 2r2 − 2s2

t − 2s


uniformly over compact subsets of the interior of the disconnected set which
is the teardrop-shaped region in Figure 11.4, taken to exclude the dashed line.
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Here, the arctangent is taken in [0, π] so that it varies continuously as s/t
increases through 1/2.

Let {br,s,t} be the series coefficients of

B(x, y, z) =
2z2

(1 − z)(1 + xyz − (x + y + z + xy + xz + yz)/3)

corresponding to the amoeba complement component B containing the nega-
tive diagonal. These coefficients satisfy

brst ∼
1
π

arctan

 √
2(rs + rt + st) − (r2 + s2 + t2)

r + s − t


uniformly over compact subsets of the interior of the region shown in Fig-
ure 11.7 in symmetrized coordinates. Again, the arctangent is taken in [0, π]
and the solid vertical line is excluded from the region. □
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Figure 11.7 The dual cone in symmetrized coordinates.

Exercise 11.8. Use the same intuition to recompute asymptotics for the power
series expansion of the multiple point at (1, 1, 1) in the generating function

1
(1 − x)(1 − y)(1 − xy)

. The Fourier transforms of the factors are delta func-

tions in the directions of the rays in the respective directions (1, 0), (0, 1), and
(1, 1). The convolution of the first two is 1 on the positive quadrant and zero
elsewhere. Up to a constant multiple, what do you get when you convolve this
with the third delta function? Check your answer against Example 10.47.

Presence of a lacuna
Given the dimension d of the space and the power s of the Lorentzian quadratic
S , the Fourier transforms χn,m(r) of S −s−n in the expansion of (11.17) are well
known; see for example [BP11, Theorem 6.4]. When s = d/2 − 1, this Fourier
transform is not a function but rather a distribution (generalized function in the
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terminology of [GS16]) which vanishes on the inside of the normal cone N as
well as the outside, being supported entirely on ∂ N. In the optics literature, this
phenomenon is called a lacuna. For directions r̂ interior to N the asymptotic
development in Theorem 11.40, which has decreasing scales |r|−kz−r for inte-
gers k going to infinity, is everywhere zero, and the result only states that the
asymptotics inside the cone are smaller in magnitude than any such term.

While Theorem 11.40 relies on Assumption (11.7) which does not hold for
this example, topological analysis [BMP19, Theorem 2.3] gives us everything
we need. It shows that for r̂ ∈ N◦ and x ∈ B, where B is the component of the
amoeba complement corresponding to ordinary power series, the torus Te(x)
is homologous to a cycle whose maximum height is less than the height of the
cone point. This, together with a computation ruling out CPAI and a Morse
theoretic analysis along the lines of Theorem 7.35, shows that asymptotics are
characterized by critical points of lower height. We include such an example
here, pulling together many of the methods developed thus far to exhibit a
minimal point p for which np = 0 even when r̂ is interior to the normal cone
N at p, and illustrating nonzero coefficients not in {±1, 0}.

Example 11.50. Gillis, Reznick and Zeilberger [GRZ83] consider a family of
4-variable generating functions Fλ(z) = 1/(1 − z1 − z2 − z3 − z4 + λz1z2z3z4)
with λ a real parameter, having origins in the earlier work [AG72; Sze33].
The behavior of the function and its coefficient array differs in the cases λ <
27 and λ > 27. At the critical parameter value λ = 27 the denominator Q
fails to be smooth, having instead a singularity at the diagonal point p =

(1/3, 1/3, 1/3, 1/3) diffeomorphic to a Lorentzian quadratic. For a direction
r̂ in the interior of N(p), one would normally expect β(r̂) = −

∑4
j=1 r j log(1/3).

In other words, if np , 0, then log |ar,s,t,u| ∼ (r + s + t + u) log 3 inside the
normal cone and n−1 log an,n,n,n → log 81.

However, the number of variables d is 4, the minimum for d/2 − 1 to be a
positive integer. The coefficients of F27(z) = Q(z)1−d/2 = Q(z)−1 exhibit a
lacuna, and the exponential rate is in fact given by log |ar,s,t,u| ∼ (r + s + t +
u)(log 3)/2 so that n−1 log an,n,n,n → log 9. The bulk of [BMP19] is devoted to
showing that the contour for the Cauchy integral for the main diagonal of the
ordinary power series expansion is homologous to a cycle Γ supported at height
less than log 81. This is not achieved by a deformation but rather by an explicit
cobordism which is the limit of deformations in perturbed varieties. Informally,
one might say there is a deformation that passes through the singularity at the
cone point. Assuming this as a black box result, we complete the analysis as
follows.

A quick Gröbner basis computation shows that the critical points in the di-
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agonal direction are precisely p = (1/3, 1/3, 1/3, 1/3), w = (ζ, ζ, ζ, ζ), and
w = (ζ, ζ, ζ, ζ), where ζ = (−1 + i

√
2)/3 has modulus

√
3. Further computer

algebra shows V to have the geometry of a Lorentzian cone near p, and Al-
gorithm 1 from Chapter 8 verifies that there are no CPAI in the main diagonal
direction. Applying Corollary 7.17 to the black box result, we see that the cy-
cle Γ may be pushed down further to the level of the next critical points w and
w. As these are the only two remaining critical points, and the asymptotics are
not eventually zero, we know that

ar ≈ κ (Φw(r) + Φw(r)) = 2κRe{Φw(r)} (11.18)

for some nonzero integer κ and Φw given by (9.4).
We compute κ for the main diagonal direction, which extends automatically

to a neighborhood of the diagonal, by comparing (11.18) to asymptotics com-
puted from an analysis of the ODE obtained by representing the diagonal as
a D-finite function using the techniques described in Section 8.4.2 of Chap-
ter 8. In particular, creative telescoping methods compute that the generating
function f (z) of the main diagonal satisfies

z2(81z2 + 14z + 1) f (3)(z) + 3z(162z2 + 21z + 1) f (2)(z) + (21z + 1)(27z + 1) f ′(z)

+ 3(27z + 1) f (z) = 0 .
(11.19)

This ODE is Fuschsian: all singular points of solutions are regular and are
contained in the set of roots {0, ζ4, ζ4} of the leading polynomial coefficient
z2(81z2+14z+1). The techniques described in Chapter 8 for D-finite functions
compute a basis for the three-dimensional vector space of solutions to (11.19),
whose expansions at the origin begin

a1(z) = log(z)2
(

1
2
−

3z
2
+

9z2

2
+ · · ·

)
+ log(z)

(
− 4z + 18z2 + · · ·

)
+

(
8z2 − 48z3 + · · ·

)
a2(z) = log(z)

(
1 − 3z + 9z2 + · · ·

)
+

(
− 4z + 18z2 + · · ·

)
a3(z) = 1 − 3z + 9z2 + · · · ,
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and another basis of solutions whose expansions around ζ4 begin

b1(z) = 1 +
13

2
+

43
√

2
4

i
 (z − ζ4)2 +

8165
48
+

943
√

2
30

i
 (z − ζ4)3 + · · ·

b2(z) =
√

z − ζ4 +

13
3
−

365
√

2
96

i
 (z − ζ4)

3
2 −

7071
1024

−
1041

√
2

32
i
 (z − ζ4)

5
2 + · · ·

b3(z) = (z − ζ4) +
17

3
−

31
√

2
6

i
 (z − ζ4)2 −

1013
72
+

1805
√

2
36

i
 (z − ζ4)3 + · · · .

In the {a j} basis, the diagonal generating function f (z) is a3(z), because this
is the only element of the span that is continuous in a neighborhood of the
origin and has constant coefficient 1. A change of basis matrix between the
{a j} and {b j} bases can be computed numerically, in this case giving

f (z) = a3(z) = C1b1(z) +C2b2(z) +C3b3(z)

where C1,C2, and C3 are constants which can be rigorously approximated to
arbitrary precision. As b2(z) is the only element of the {b j} basis that is singular
at z = w, the dominant singular term in the expansion of f (z) near z = w is
C2

√
z − ζ4 where

C2 = −
( (

3.5933098558743233 . . .
)
+ i

(
0.38132214909311386 . . .

))
.

Thus, f (z) has a singularity at z = ζ4 and the asymptotic contribution of this
singularity to an,n,n,n is

Ψ1(n) =

(
4i
√

2 − 7
)n

n3/2

( (
0.543449606382202 . . .

)
+ i

(
0.259547320313100 . . .

))
√
π

+ O(9nn−5/2) .

Repeating the same analysis at the point z = ζ
4

gives an asymptotic contribu-
tion

Ψ2(n) =

(
4i
√

2 + 7
)n

n3/2

( (
0.543449606382202 . . .

)
− i

(
0.259547320313100 . . .

))
√
π

+ O(9nn−5/2) ,

so that an,n,n,n has the asymptotic expansion an,n,n,n = Ψ1(n) + Ψ2(n).
Comparing this expansion to (11.18) gives two expressions for asymptotics:

one with complex coefficients numerically determined to arbitrary precision
and another with undetermined coefficients that are known to be integers. Since
one needs only 1 decimal digit to identify an unknown integer, combining these
expansions proves that the unknown integer κ = 3. ◁
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Notes

Hyperbolicity, as defined here, arose first in the context of PDEs. If f is a com-
plex polynomial, let f (D) denote the corresponding linear partial differential
operator obtained by replacing each x j by ∂/∂x j. For example, if f is the stan-
dard Lorentzian quadratic x2

1−
∑d

j=2 x2
j , then f (D) is the wave operator. Gårding

set out to investigate when the equation

f (D) u = g

with g supported on a halfspace has a solution supported in the same halfspace.
When f (D) is the wave operator, this is true and the solution is unique. It
turns out that the class of homogeneous polynomials f for which this is true is
precisely characterized as the hyperbolic homogeneous polynomials.

The concept of hyperbolicity was used in the study of lacunas by [ABG70]
to construct the deformations we have borrowed in this chapter. Later, the prop-
erty of hyperbolicity turned up in algebraic combinatorics under the name of
the real root property. Polynomials with this property are called real stable
polynomials. Hyperbolicity and real stability are linked to a wide range of the-
orems and conjectures, including the van der Waerden conjecture, the Strong
Rayleigh property, and the Kadison-Singer problem, solved in 2013 by Mar-
cus, Spielman and Srivastava. The importance of these concepts seems to stem
from the closure of the class of real stable polynomials under a great many
algebraic and combinatorial operations, surveyed in [Wag11]. For polynomi-
als which are generating functions of joint distributions of binary variables,
the property implies a number of negative dependence properties, and this has
resulted in the solution of a number of outstanding conjectures in the theory
of negative dependence [BBL09]. Although Proposition 11.15 follows from
the conclusion (3.45) of [ABG70, Lemma 3.42], the self-contained proof pro-
vided above is satisfying, and was told to the authors of [BP11] by J. Borcea
(personal communication).

In this chapter, while we have mostly excerpted and condensed [BP11], we
have also taken the opportunity to correct some errors. The second implication
of Proposition 11.25 is proved in [BP11, Proposition 2.11], however the last
sentence of the cited result mistakenly claims a reverse implication (see Ex-
ercise 11.9). The implication in the wrong direction (ii) ⇒ (iii) is then used
to prove Proposition 11.26, one of the key results original to [BP11, Proposi-
tion 2.12]. Our statement here of Proposition 11.25 corrects [BP11] by elim-
inating the mistaken reverse implication in [BP11, Proposition 2.11], and our
statement and proof of Proposition 11.26 derives [BP11, Proposition 2.12]
without using the mistaken converse in the previous result. Beyond this, the



11.4 Examples and consequences 397

first sentence of the last paragraph of [BP11, page 3177], “We piece these to-
gether . . . with a partition of unity argument as before,” while not known to be
wrong, requires considerable justification not provided there. While this will
be corrected in a forthcoming erratum, we have opted here to provide a more
direct fix, Lemma 11.27 part (iii), whose hypotheses cover all the examples
we discuss in Section 11.4 except for one covered by a direct topological anal-
ysis. Part (iii) of Lemma 11.27 is used to amplify the problematic sentence
from [BP11] into an argument by cases consuming three paragraphs at the
end of the proof of Theorem 11.33; the lemma is used crucially in case (iii).
Most other results in Section 11.2 correspond to [BP11] as follows. Theo-
rems 11.4, 11.5, 11.33, and 11.42 above correspond to Lemma 5.1, Lemma
5.3, Theorem 5.8, and Lemma 6.8 of [BP11], respectively. Lemma 11.32 cor-
responds to [BP11, Theorem 5.6].

There is another possible approach to asymptotics governed by points other
than smooth and multiple points, namely resolution of singularities. A reso-
lution at a singular point z is a change of variables which is one-to-one away
from z and after which the local geometry at z is a normal crossing, that is, one
or more smooth, transversely intersecting sheets. Resolution of singularities
is effective [BM97], however the phase function becomes highly degenerate,
complicating the integral substantially.

Additional exercises

Exercise 11.9. (weak hyperbolicity versus hyperbolicity of the homogeneous
part) Let f (x, y) = x2 + y3. Show that f is weakly hyperbolic in direction (0, 1)
at the origin but that hom( f , 0) = x2 is not hyperbolic in direction (0, 1).

Exercise 11.10. (tangent cones at a cubic point) Let f (x, y, z) = xy + z3. First,
compute a stratification of the zero set V of f . The tangent cones to V at
(x, y, z) vary continuously as (x, y, z) moves within a stratum. Describe these,
then prove or disprove that there exists a lower semi-continuous choice of tan-
gent cone K(x, y, z) in some neighborhood of the origin.

Exercise 11.11. (Explicitly constructing the vector field) Let f (x, y, z) = z2 −

x2 − y2 be the standard Lorentzian quadratic and let B = {(x, y, z) : z <

−
√

x2 + y2} be the cone of hyperbolicity for f containing the downward di-
rection. Let r̂∗ = e3, the elementary vector in the positive z-direction. Find a
projective vector field v(y) such that for all y , 0, the function w 7→ f (iy+w)
does not vanish on tu + (1 − t)v(y) for t ∈ [0, 1]. You may use the proof of
Lemma 11.32 or provide a sketch.
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Combinatorial applications

The utility of any mathematical theory is ultimately determined by the breadth
of problems it can solve. In this chapter we illustrate the techniques of ACSV
developed in previous chapters on a large selection of combinatorial examples.
These examples are arranged taxonomically in Section 12.1, helping readers
identify a template for their work when trying to apply ACSV to new prob-
lems. Sections 12.2, 12.3, and 12.4 give detailed applications of our basic
theory to the study of Riordan arrays, Lagrange inversion, and the transfer
matrix method, respectively. Section 12.5 discusses the use of higher order
asymptotics, and Section 12.6 studies algebraic generating functions by en-
coding them as subseries of higher-dimensional rational generating functions.
Section 12.7 presents miscellaneous examples chosen to illustrate particular
aspects of the theory. Combinatorics and discrete probability are closely re-
lated, and Section 12.8 applies the results of Chapter 9 to prove probabilistic
limit laws for asymptotics governed by smooth points, leading to a local central
limit theorem in Theorem 12.36.

12.1 Some classifications

We begin with a guide to help users of ACSV find examples similar to their
intended application, with some of the examples occurring in earlier chapters
and some in this chapter. We classify the examples by local geometry, by form
of generating function, and by intended application. We also point to some
examples where our standard hypotheses fail to hold. The website for this book
contains links to Sage worksheets computing many of the examples listed here.

398
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Local geometry of GF Examples
Smooth nondegenerate; explicit critical
points

9.10, 9.11, 9.13, 9.14, 12.11, 12.13,
12.15, 12.27, 12.30

Smooth nondegenerate; implicit critical
points

12.5, 12.6, 12.9, 12.10, 12.17, 12.18,
12.20, 12.22, 12.23, 12.24, 12.25, 12.26

Smooth nondegenerate; periodicity 9.14, 12.11, 12.13
Smooth nondegenerate; torality 12.11, 12.13, 11.11
Smooth degenerate 9.32, 9.39
Multiple transverse n < d 12.29
Multiple transverse n = d 10.28, 10.27, 10.66
Multiple arrangement n > d 10.35, 10.47, 12.28
Multiple not arrangement 10.69, 13.3
Cone point 11.41, 11.43, 11.45, 11.47, 11.50

Table 12.1 Guide by local geometry (dimension d, number of local sheets n).

Classification by geometry of contributing points

Table 12.1 collates examples arranged by local geometry. Because smoothness
is a generic property, smooth singular critical points dictate asymptotics in
many applications. Although the coordinates of critical points can be solved in
radicals for simple examples, such as Examples 9.10 and 9.11, this is usually
not the case. Thus, many examples use the algebraic techniques discussed in
Chapter 8 to work with critical points implicitly. A generating function with
more than one contributing point for a given direction leads to periodicity in
coefficients — for instance, the rational function

F(x, y) =
1

1 − x2 − y2

has four contributing singularities in the main diagonal direction, reflecting
the fact that the only terms that appear in any series expansion of F are those
with even exponents. We may even have a continuum of critical points, such
as when F(x, y) = 1/(1 − xy), which can be handled under the strong torality
hypothesis discussed in Section 9.1 of Chapter 9. Although the vast majority
of our results require nondegenerate critical points, an example with cubic de-
generacy was studied in Example 9.39 of Chapter 9. Degeneracies of any order
can be handled in two dimensions using Theorem 9.38.

The difficulty of analysing a multiple arrangement point w depends both on
the dimension of the problem and on the number of smooth sheets intersect-
ing at w. The simplest cases occur when there is a single sheet (which is the
smooth case) or when the number of sheets equals the dimension (where there
is a complete intersection). Arrangement points with more sheets than factors
are handled through an algebraic decomposition.
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Form of GF Examples
Denominator linear in a variable 9.10, 9.11, 9.13, 9.14, 9.39, 12.5, 12.6,

12.9, 12.10, 12.11, 12.13, 12.15, 12.17
Bivariate 9.10, 9.11, 9.13, 9.14, 9.32, 9.39, 10.28,

10.27, 10.35, 10.47, 10.66, 10.69,
11.11, 12.5, 12.6, 12.9, 12.15, 12.18,
12.22, 12.23, 12.25

Trivariate 11.41, 11.43, 11.45, 11.47, 11.50, 12.20,
12.26, 12.29

Higher/arbitrary dimension 12.10, 12.17, 12.27
Repeated factors, m < d 12.29
Repeated factors, m = d 10.28, 10.27, 10.66
Repeated factors, m > d 10.32, 10.35, 10.47, 12.28
Meromorphic, not rational 12.24, 12.30
Algebraic 12.18, 12.20
Non-combinatorial 9.32

Table 12.2 Guide by form of GF (dimension d, number of denominator
factors m).

Multiple points that are not arrangement points are tricky, and the general
theory has not been worked out. Two sheets that are tangent behave basically
like a single repeated sheet, as seen in Proposition 10.68 of Chapter 10, al-
though more complicated singularities can arise, as in Example 10.9. Chap-
ter 11 contains essentially all that we know for more complicated singularities,
with explicit results for cone points.

Classification by form of generating function

Table 12.2 classifies our examples by the algebraic form of the generating func-
tion F(z) = P(z)/Q(z). The simplest case occurs when Q is linear in one of
its variables, and the (perhaps surprising) ubiquity of examples of this form is
a reflection of the fact that the sequence construction on combinatorial classes
(described in Section 2.2 of Chapter 2) corresponds to the quasi-inverse map
f 7→ 1/(1 − f ) on generating functions. The technique of Lagrange inversion
can also be incorporated into this framework. Sections 12.2 and 12.3 cover ap-
plications to Riordan arrays and Lagrange inversion, respectively. Section 12.4
discusses the transfer matrix method.

Our formulas are flexible enough to work in any dimension, and even for
families with arbitrary dimension as a parameter, although computations are
often simpler in lower dimensions. Repeated denominator factors correspond
to higher order poles, and thus change asymptotic behavior, while multiple
distinct factors lead to a multiple points.
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Structure/application Typical type of GF Examples
regular languages, words,
strings

rational smooth 12.6, 12.10, 12.17

lattice walks rational, smooth/multiple 12.26
trees algebraic or Riordan 12.9
quantum walks rational, toral 12.11, 12.13
tilings rational, cone/nasty 11.43, 11.45, 11.47
sums of independent ran-
dom variables

Riordan 12.34

number triangles Riordan 9.10, 9.11, 9.14, 12.15,
12.20, 12.24

constant coefficient linear
recurrences

rational, smooth/multiple 12.22

partitions infinite product 12.30

Table 12.3 Guide by application area.

Most of our generating functions are rational, but our asymptotic results hold
more generally for meromorphic functions. Some examples, such as F(x, y) =
1/(1 − ex − ey), require solving transcendental equations for critical points,
while others, such as

F(x, y) =
∞∏

i=1

1
1 − xi − yi

can be reduced to cases with polynomial denominators. We can also find asymp-
totics of algebraic generating functions by embedding them in rational series
of higher dimension.

Classification by application

Many combinatorial families gives rise to multivariate generating functions
with the same type of behavior, which can be analysed together, and Table 12.3
gives a rough guide for readers seeking to quickly find a relevant application.
Note that some problems fall into multiple areas, due to bijections between
various combinatorial objects.

Examples where our standard hypotheses fail to hold

Most asymptotic expansions derived in this text hold for nondegenerate con-
tributing points, require intersections of multiple denominator factors to be
transverse, and occur in directions in the interior of cones where asymptotic
behavior transitions smoothly with direction. Furthermore, the first order terms
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Exception Examples
Degenerate contributing points 9.39
Non-transverse intersection 10.69
Boundary directions 10.66
Vanishing numerator 12.18, 12.20

Table 12.4 Guide to non-generic examples.

in our asymptotic expansions typically do not vanish. Table 12.4 collects ex-
amples where the above assumptions fail to hold.

Non-transverse intersections may be arbitrarily complicated, and we cover
only a simple example. Similarly, we discuss one example with a degenerate
contributing point. From the point of view of Fourier-Laplace integrals, asymp-
totics in directions on boundaries of the cones dictating uniform behavior are
half of what they would be if the direction was interior to the cone. The first or-
der term in our asymptotic expansions of a sequence with generating function
F vanishes when the numerator of F is zero at its contributing singularities. In
this case, we can usually determine dominant asymptotic behavior by comput-
ing higher order coefficients in the expansion.

12.2 Powers, quasi-powers and Riordan arrays

Let v(z) be a power series (or polynomial) and suppose that we want to esti-
mate the coefficient [zr]v(z)k of a large power of v. This coefficient equals the
coefficient of zrwk in the power series expansion

F(z,w) =
1

1 − wv(z)
, (12.1)

so we can determine asymptotics using the tools of ACSV. The combinatorial
constructions discussed in Section 2.2 of Chapter 2 show some ways in which
generating functions of this form arise. Another common application comes
from probability: if v(z) =

∑
r arzr where ar = Pr(X j = r) for a family

{X j} of independent, identically distributed random variables taking values in
Nd then v(z)n is the probability generating function for the partial sum S n =∑n

j=1 X j, and hence

P(S n = r) = [zr]v(z)n .

It has long been known that, under suitable hypotheses, such large powers
lead to Gaussian behavior. An early work on multivariate analytic combina-
torics [BR83] observed that this behavior is robust enough to hold not only
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for exact powers, but also for quasi-powers, meaning sequences of functions
{ fn(z)} satisfying

fn(z) ∼ Cng(z) · h(z)n (12.2)

uniformly as z ranges over certain polydisks. Gaussian behavior of coeffi-
cients of quasi-powers is the basis for the GF-sequence method developed by
Bender, Richmond, and collaborators in a series of papers including [Ben73;
BR83; GR92; BR99]; see also the work of Hwang extending this to algebraic-
logarithmic singularities [Hwa96; Hwa98a; Hwa98b]. These papers give con-
ditions under which a multivariate generating function

F(z1, . . . , zd,w) =
∞∑

n=0

fn(z)wn (12.3)

is a quasi-power in the sense of (12.2). They then show that if g and h are
analytic in a ∆-domain (recall Figure 3.1), if h has a unique dominant singu-
larity where the boundary of the region intersects the positive real axis, and
if the quadratic part of h is non-degenerate there, then, after a rescaling, the
coefficients of fn(z) have a Gaussian limit distribution as n→ ∞.

Riordan arrays

An important combinatorial family of quasi-powers is the set of Riordan ar-
rays {ank : n, k ≥ 0} whose generating functions F(x, y) =

∑
n,k≥0 ank xnyk

satisfy

F(x, y) =
ϕ(x)

1 − yv(x)
(12.4)

for some analytic functions ϕ and v with ϕ(0) , 0. Just as (12.1) repre-
sents sums of independent, identically distributed random variables when v
is a probability generating function, the function (12.4) is a delayed renewal
sum [Dur04, Section 3.4], where an initial random variable X0 may be added
that is distributed differently from the others. Riordan arrays cover an enor-
mous number of examples arising in applications, including many lattice path
problems, and are useful for simplifying sums because of the Pascal-like re-
currences the terms satisfy — see [Mer+97; Spr94].

Remark 12.1. Some authors require that v(0) = 0 in (12.4), but we do not
make this assumption.
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Define the functions

µ(v; x) :=
xv′(x)
v(x)

(12.5)

σ2(v; x) :=
x2v′′(x)

v(x)
+ µ(v; x) − µ(v; x)2 = x

dµ(v; x)
dx

, (12.6)

whose symbols are motivated by probability theory (see Section 12.8 below).

Theorem 12.2. Let (v(x), ϕ(x)) determine a Riordan array with generating
function (12.4). Suppose that v(x) has radius of convergence R ∈ (0,∞] and is
aperiodic with nonnegative coefficients. If ϕ has radius of convergence at least
R then

(i) the function µ(v; x) is strictly increasing for x ∈ (0,R), and its range
contains the interval J = (A, B) where A = µ(v; 0) and B = µ(v; R) are
defined as one-sided limits;

(ii) there is an asymptotic expansion of the form

ars ≈ x−rv(x)ss−1/2
∞∑

k=0

bk(r/s)s−k (12.7)

uniformly as r/s varies over compact subsets of J, where x is the unique
positive real solution to µ(v; x) = r/s. The leading term in this expansion
is

ars ∼ x−rv(x)s ϕ(x)√
2πsσ2(v; x)

. (12.8)

Proof Writing P(x, y) = ϕ(x) and Q(x, y) = 1−yv(x), we see thatV is smooth
because Q and Qy never simultaneously vanish. Furthermore, the smooth crit-
ical point equations simplify to show that (x, 1/v(x)) is critical in the direction
(r, s) if and only if µ(v; x) = r/s. Lemma 6.41 shows that all points of the form
(x, 1/v(x)) for x ∈ (0,R) are strictly minimal points. The Hessian determinant
appearing in the asymptotic expansion (9.2) simplifies to σ2(v; x), so the result
follows from an application of Theorem 9.4 after we show that µ is strictly
increasing for x ∈ (0,R). The latter result follows from (12.6). □

Remark 12.3. If v has coefficients of mixed sign, more complicated behavior
can occur — see Exercise 12.8.

Remark 12.4. Riordan arrays are often specified by a recursion of the form

an+1,k+1 =

∞∑
j=0

c jan,k+ j ,
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where the generating function C(t) =
∑∞

j=1 c jt j is known explicitly but v(x)
is known only implicitly through the equation v(x) = xC(v(x)). Subtleties that
arise in computations when dealing with such implicitly defined v are discussed
in [Wil05].

Example 12.5 (Packing paths in paths). Došlić [Doš19] derives the bivariate
generating function

F(x, y) =
∑
n,k

ank xnyk =
1 − xm

1 − x − xm(1 − xm)y

for the number ank of ways to maximally pack a path of length m in a path of
length n, using exactly k copies of the smaller path. This is a Riordan array
with ϕ(x) = (1 − xm)/(1 − x) and v(x) = xmϕ(x), and ϕ and v have infinite radii
of convergence since they are both polynomials.

Taking derivatives shows that

µ(v; x) = m +
x + 2x2 + · · · + (m − 1)xm−1

1 + x + x2 + · · · + xm−1 ,

and µ increases from m to 2m − 1 as x increases from zero to infinity, cov-
ering all directions of combinatorial interest [Doš19, Proposition 2.1]. Thus,
when λ = n/k remains in a compact sub-interval of (m, 2m − 1) the Gaussian
asymptotic expansion (12.7) holds.

To determine the leading term in this expansion with respect to λ, one can
compute a lexicographic Gröbner basis of the ideal ⟨µ(v; x) − λ, σ2(v; x) −
S , ϕ(x) − T ⟩ in Q(λ)[x, S ,T ] to eliminate x and write σ2 and ϕ in terms of
λ. For instance, when m = 3 we obtain the irreducible elimination polynomials

p(S ; λ) = S 2 +

(
2λ2 − 16λ +

88
3

)
S + λ4 − 16λ3 +

281
3
λ2 −

712
3
λ + 220

q(T ; λ) = (λ − 5)2T 2 + (3λ − 16)T + 3.

In this case we can use the quadratic formula to express σ2 and ϕ explicitly
in terms of λ, but for general m one must identify the correct branch of the
elimination polynomials implicitly. Note that the system p(S , λ) = pS (S , λ) =
pλ(S , λ) = 0 has no solutions, so the two branches given by solving p(S , λ)
for S do not meet. Because σ2 is a continuous function of λ on the interval
[m, 2m − 1], and limλ→m+ σ

2(v; x) = limx→0+ σ
2(v; x) = 0, the value of σ2 as

a function of λ is the branch of p(S , λ) = 0 passing through the point (S , λ) =
(0,m). The correct branch of q(S , λ) = 0 for ϕ with respect to λ is determined
analogously. ◁

The condition in Theorem 12.2 that ϕ has at least as large a radius of con-
vergence as v is satisfied in many, but not all, applications.



406 Combinatorial applications

Example 12.6 (Maximum number of distinct subsequences). Flaxman, Har-
row and Sorkin [FHS04] study strings of length n over the alphabet {1, 2, . . . , d}
which contain as many distinct (not necessarily contiguous) subsequences of
length k as possible. Let ank denote the maximum number of distinct subse-
quences of length k that can be found in a single string of length n. Initial
segments S |n of the infinite string S consisting of repeated blocks of the string
12 · · · d turn out always to be maximizers, meaning S |n has exactly ank distinct
subsequences of length k. The generating function for {ank} is then computed
to be

F(x, y) =
∑
n,k

ank xnyk =
1

1 − x − xy(1 − xd)
,

meaning ank is a Riordan array with ϕ(x) = (1−x)−1 and v(x) = x+x2+ · · ·+xd.
Assume for nontriviality that d ≥ 2. The singular variety V is the union of

the line x = 1 and the smooth curve y = 1/v(x), which meet transversely at the
double point (1, 1/d); see Figure 12.1 for an illustration with d = 3.

Figure 12.1 V in the case d = 3.

The radius of convergence of ϕ, namely 1, is now less than the radius of
convergence of v, which is infinity. Taking derivatives shows that

µ(v; x) =
1

1 − x
−

dxd

1 − xd =
1 + 2x + 3x2 + · · · + dxd−1

1 + x + x2 + · · · + xd−1 ,

so that µ increases from 1 to (d+1)/2 as x increases from 0 to 1. The Gaussian
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asymptotics of (12.7) still hold, but only when λ = n/k remains in a compact
sub-interval of (1, d+1

2 ), and the computations to compute terms in this asymp-
totic expansion are analogous to those for Example 12.5 above.

Proposition 6.41 implies that there is a strictly minimal point in the positive
quadrant controlling asymptotics in any direction. When λ ≥ (d + 1)/2 this
turns out to be the non-smooth point (1, 1/d), and Corollary 10.14 from Chap-
ter 10 implies that aλk,k ∼ dk in this case. Note that this is trivial when λ ≥ d
because any prefix of the infinite string S with length at least dk will allow all
possible k-subsequences to occur, meaning ank = dk in this regime. ◁

12.3 Lagrange inversion

On many families of recursively defined combinatorial classes, such as tree
enumeration problems, the combinatorial constructions discussed in Chapter 2
yield generating functions satisfying functional equations of the form f (z) =
zv( f (z)) for some function v that is analytic at the origin and does not vanish
there. Although this equation can be solved exactly for f in some simple cases,
the method of Lagrange inversion gives an invaluable tool for computing the
coefficients of f , and their asymptotic behavior, directly from this functional
equation.

Proposition 12.7 (Lagrange inversion formula). If f (z) = zv( f (z)) with v an-
alytic and v(0) , 0 then

[zn] f (z) =
1
n

[
yn−1

]
v(y)n. (12.9)

Proof Change variables to y = f (z) so that the implicit equation for f implies
z = y/v(y) and dz = dy[1/v(y) − yv′(y)/v(y)2]. The Cauchy integral representa-
tion

[zn] f (z) =
1

2πi

∫
z−n−1 f (z) dz

over a circle sufficiently close to the origin becomes the integral

1
2πi

∫ (v(y)
y

)n

−

(
v(y)

y

)n−1

v′(y)

 dy

around the origin in the y-plane. The difference between this integral and

1
n

[
yn−1

]
v(y)n =

1
2πi

∫
1
n

(
v(y)

y

)n

dy
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equals

1
2πi

∫ (v(y)
y

)n−1

−
n − 1

n

(
v(y)

y

)n dy =
1

2πi

∫
d
[

y
n

(
v(y)

y

)n]
dy = 0 ,

as claimed. □

Using multivariate asymptotic analysis to estimate the right-hand side of (12.9),
we consider the generating function

1
1 − xv(y)

=

∞∑
n=0

xnv(y)n

which generates the powers of v, so that

[zn] f (z) =
1
n

[
xnyn] y

1 − xv(y)
. (12.10)

This formula holds at the level of formal power series and, if v has a nonzero
radius of convergence, at the level of analytic functions.

Asymptotics for [zn] f (z) can be derived in terms of the power series coeffi-
cients of v using (12.10). For example, it follows from Theorem VI.6 of [FS09]
that

[zn] f (z) ∼
1√

2πv′′(y0)/v(y0)
n−3/2v′(y0)n (12.11)

where y0 is the least y > 0 such that the tangent line to v at (y, v(y)) passes
through the origin. In our notation y0 is the smallest positive solution to µ(v; y) =
1.

For a fixed power k, the generalization

[zn] f (z)k ∼
k
n

yk−1
0√

2πnv′′(y0)/v(y0)
v′(y0)n

can also be obtained with univariate methods. Using multivariate methods,
however, we may go further and derive bivariate asymptotics for [zn] f (z)k as
k, n→ ∞, holding uniformly as λ = k/n varies over compact subsets of (0, 1).

Proposition 12.8. Let v be analytic and nonvanishing at the origin, where its
power series expansion is aperiodic with nonnegative coefficients, and of order
at least 2 at infinity. Let f be the nonnegative series satisfying f (z) = zv( f (z))
and define µ and σ2 by equations (12.5) and (12.6) above, respectively. Let
λ = λ(k, n) = k/n and let xλ be the positive real solution of the equation
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µ(v; x) = 1 − λ. Then

[zn] f (z)k ∼ v(xλ)nxk−n
λ

λ√
2πnσ2(v; xλ)

= (1 − λ)−nv′(xλ)n λxk
λ√

2πnσ2(v; xλ)
,

(12.12)
uniformly as λ varies over any compact subset of (0, 1).

Proof Exercise 12.5 below asks the reader to prove that if ψ is analytic at the
origin then

[zn]ψ( f (z)) =
1
n

[
yn−1

]
ψ′(y)v(y)n , (12.13)

a classic extension of Proposition 12.7. Assuming this result and taking ψ(y) =
yk, we see that

[zn] f (z)k =
k
n

[
yn−k

]
v(y)n

=
k
n

[xnyn−k]
1

1 − xv(y)
, (12.14)

representing coefficients in the powers of f as a Riordan array determined
by the (known) function v. We thus apply Theorem 12.2 with ϕ ≡ 1, after
reversing the roles of x and y to obtain the Riordan array {ars} with generating
function 1/(1 − yv(x)), yielding

[zn] f (z)k =
k
n

an−k,k

∼ λv(xλ)nxk−n
λ n−1/2 1√

2πσ2(v; xλ)
.

The final equality in (12.12) follows from the defining equation µ(v; xλ) =
1 − λ. □

Examples seen in previous chapters, including binomial coefficients and De-
lannoy numbers, fit into this framework, but we present a more interesting ex-
ample here.

Example 12.9 (Forests of trees with restricted offspring sizes). Consider the
class of unlabelled plane trees with the restriction that the number of chil-
dren of each node must lie in a prescribed finite subset Ω ⊆ N. The gener-
ating function f (z) counting such trees by their number of vertices satisfies
f (z) = zv( f (z)) where v(z) =

∑
j∈Ω y j (see [FS09, Section VII.3]) and asymp-

totic behavior follows from Proposition 12.8. For instance, unary-binary trees
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are defined by Ω = {0, 1, 2}, giving v(z) = 1 + z + z2 and

µ(v; z) =
2z2

z2 + z + 1

σ2(v; z) =
z
(
z2 + 4z + 1

)
(z2 + z + 1)2 .

When k/n = 1/4, so that the average tree size in a forest is 4, Proposition 12.8
implies that the number [zn] f (z)k of forests of unary-binary trees with n nodes
and k trees is asymptotically given by Cαnn−1/2 where C ≈ 0.12666642608296
and α ≈ 2.8610046903287. ◁

12.4 Transfer matrices

The univariate transfer matrix method, discussed in Chapter 2, is easily ex-
tended to multivariate generating functions that enumerate multiplicatively
weighted paths. If M is a matrix indexed by a finite set S , the weight w(x)
of the path x = (x0, . . . , xn) ∈ S n under M is

∏n
r=1 Mxr−1,xr . The sum of weights

of all paths of length n from i to j under M is given by (Mn)i, j, yielding the
generating function Fi j(z) = (I − zM)−1

i j enumerating weighted walks from
i to j by length. Similarly, the multivariate generating function enumerating
weighted walks by length while also tracking d additive integer valued func-
tions v1, . . . , vd defined by their values v(i, j) on single steps (i, j) is

Fv(y, z)i, j = (I − zMv)−1
i j ,

where Mv is the matrix whose (i, j)-coefficient is Mi, jy
v(i, j). We consider two

applications of this observation, message passing and quantum random walks.

Example 12.10 (Message passing). Let G be the graph on K + L + 2 vertices
which is the union of two complete graphs of sizes K+1 and L+1, with a loop
at every vertex and one edge between them. Paths on this graph correspond to
a message or task being passed around two workgroups, with communication
between the workgroups not allowed except between the bosses. If we sample
uniformly among paths of length n, how much time does the message spend
among the common (non-boss) members?

To analyse this problem we build a new graph, with vertices {v1, v2, v3, v4}

where v1 represents the common Group 1 members, v2 represents the Group
1 boss, v3 represents the Group 2 boss, and v4 represents the common Group
2 members. Every time the message moves to v1 it can do so in K ways, and
every move to v4 can be done in L ways. The generating function counting
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paths by time spent among the common members of each workgroup and by
total length is (I − zA)−1, where

A =


Ku Ku 0 0
1 1 1 0
0 1 1 1
0 0 Lv Lv


with u tracking time among common Group 1 members, v tracking time among
common Group 2 members, and z tracking the total time. The entries of (I −
zA)−1 are rational functions with common denominator Q(Ku, Lv, z) where

Q(u, v, z) = uz2 + uz2v − uz − uz4v + z2v − 2z − zv + 1 + z3v + uz3 ,

and the coefficient of zn in the power series expansion of any entry gives a prob-
ability distribution for the amount of time spent among the common members
of each group after time n. Using Gröbner bases (or simply by computing a
resultant) it can be shown that the system Q(u, v, z) = Qz(u, v, z) = 0 has no so-
lutions with u, v > 0. Thus, by the limit theorem discussed in Theorem 12.33
below, the times spent in Group 1 and Group 2 as a portion of the length n
converge to m = −∇log Q(K, L, z0), where z0 is the minimal modulus root of
f (z) = Q(K, L, z).

The portion of time spent among the common members of Group 1 is given
by KQu(K, L, z)/(z0Qz(K, L, z0)). Plugging in K = L = 1, for example, we
see that Q(1, 1, z) = 1 − 4z + 3z2 + 2z3 − z4 so z0 � 0.382 and a proportion
of approximately 0.154 of the time is spent among the common members of
Group 1. If bosses and employees had equal access to communication then,
by symmetry, this portion would be 1/4, so the effect of communicating only
through bosses reduced the time each message spends with each non-boss by
nearly 40%. This effect is more marked when the workgroups have different
sizes: increasing the size of the second group to 2, we plug in K = 1 and
L = 2 to find that z0 � 0.311 and the fraction of time spent among the common
members in Group 1 plummets to just under 0.038. ◁

Example 12.11 (One-dimensional quantum walk). In Example 9.47 the notion
of a quantum random walk, and its associated spacetime generating function
F, was introduced. Letting p(r, n) denote the amplitude for the random walk to
be at location r at time n, we have

F(z) =
∑
r,n≥0

p(r, n)xryn = (I − yMU)−1

where U is a k×k unitary matrix and M is a k×k diagonal matrix whose entries
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xa run through the k possible steps (a, b) of the walk. It is shown in [BP07] that
when k = 2 there is no loss of generality in taking U to be the real matrix

Uc =

 c
√

1 − c2
√

1 − c2 −c


and taking the entries of M to be 1 and x, meaning that the walk either stays
where it is or moves one to the right. The universal spacetime generating func-
tion for a two-dimensional quantum walk is therefore given by

Fc(x, y) =
Pc(x, y)
Qc(x, y)

=
Pc(x, y)

1 − cy + cxy − xy2

where the numerator Pc depends on initial chiralities (one of k hidden states
of the walk) and plays no special role. For example, if k = 2 and starting and
ending chiralities are both in state 2 then Pc(x, y) = 1 − cy. ◁

Theorem 12.12 (Spacetime asymptotics for one-dimensional quantum walk).
There is a real phase function ρ(r, s) such that

p(r, s) =
2
π

λ
√

1 − c2

(1 − λ)s
√
−((1 − c2) − 4λ + 4λ2)

cos2(ρ(r, s)) + O
(
s−3/2

)
uniformly as λ = r

s varies over any compact subset of the interior of Jc =

[(1 − c)/2, (1 + c)/2]. Conversely, if λ varies over a compact subset of the
complement of Jc then p(r, s)→ 0 exponentially.

The variation of probabilities in the feasible region for c = 1/2 is illustrated
in Figure 12.2. Qualitatively similar results hold for the other starting and end-
ing chiralities, and for combinations of chiralities.

Proof The denominator Q = 1 − c(1 − x)y − xy2 is quadratic in y and linear
in x, so the critical point equations can be solved explicitly in radicals. Fur-
thermore, Q satisfies the strong torality hypothesis (Definition 9.20) so that
Corollary 9.21 applies. The intersectionV1 ofV with the unit torus is a topo-
logical circle x = (cy − 1)/(cy − y2) winding twice around the torus in the x
direction and once in the y direction. The logarithmic Gauss map is a smooth
map on this circle with two extreme values, (1−c)/2 and (1+c)/2, and no other
critical points. Therefore, for each λ in the interior of Jc there are precisely two
points (x1, y1) and (x2, y2) inV1 with ∇log Q(x j, y j) ∥ (λ, 1) and an application
of (9.7) implies

p(r, s) =
2∑

j=1

1 − cy j
√

2π
x−r

j y−s
j

√
−y jQy(x j, y j)

sQ(x j, y j)
+ O

(
s−3/2

)
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Figure 12.2 The time n = 100 probabilities starting and ending in state 2 when
c = 1/2, and their upper envelope obtained by dropping the cos2(ρ) term in The-
orem 12.12.

where Q is given by (9.6). The two critical points (x1, y1) and (x2, y2) are con-
jugate, meaning

p(r, s) = 2 Re

1 − cy j
√

2π
x−r

j y−s
j

√
−y jQy(x j, y j)

sQ(x j, y j)

 + O
(
s−3/2

)
.

Defining ρ to be the argument of the expression in braces, writing (x, y) for
either one of the two points, and taking the square modulus, we obtain

p(r, s) =
2
π

cos2(ρ)

∣∣∣∣∣∣(1 − cy)2−yQy(x, y)
sQ(x, y)

∣∣∣∣∣∣ + O
(
s−3/2

)
.

Using the techniques of Chapter 8, we compute that at the critical point (x, y)
the quantity

w = (1 − cy)2−yQy(x, y)
nQ(x, y)

satisfies

λ2(1 − c2) + 4
(

(1 + c)
2

− λ

) (
λ −

(1 − c)
2

)
(1 − λ)2w2 = 0,



414 Combinatorial applications

where λ and c are parameters. Solving, we find

|w| =

√
1 − c2λ

(1 − λ)s
√
−((1 − c2) − 4λ + 4λ2)

,

proving the claimed asymptotics when λ ∈ Jc.
If λ < Jc then either (0, 0) does not minimize the height function in the

direction (λ, 1) on the amoeba complement component corresponding to the
power series expansion of Fc, meaning β ≤ β* < 0, or (0, 0) is the minimizing
point but there are no critical points on T (1, 1), so Theorem 11.4 implies β < 0.
In either case, p(r, s) decays exponentially. □

Example 12.13 (QRWs in higher dimensions). Example 9.47 of Chapter 9
shows that, in general, the spacetime generating function for a quantum walk
with steps v(1), . . . ,v(k) has the form

F(z) = (I − zd+1MU)−1

where z◦ = (z1, . . . , zd) are d space variables, the variable zd+1 tracks time, and
M is the diagonal matrix whose ( j, j)-entry is (z◦)v

( j)
. The common denomi-

nator of the Fi j is Q(z) = det(I − zd+1MU). As noted in Example 9.47, the
feasible velocity region R is the image of the logarithmic Gauss map and the
limit law for the amplitudes can be written, up to an oscillatory term, in terms
of the Gaussian curvature.

Consider the two-dimensional family of walks with the nearest neighbor unit
vectors v(1), . . . ,v(4) as steps and the unitary matrix

U = S (p) =



√
p
√

2

√
p
√

2

√
1−p
√

2

√
1−p
√

2

−
√

p
√

2

√
p
√

2
−

√
1−p
√

2

√
1−p
√

2√
1−p
√

2
−

√
1−p
√

2
−
√

p
√

2

√
p
√

2

−

√
1−p
√

2
−

√
1−p
√

2

√
p
√

2

√
p
√

2


.

Setting α =
√

2p to simplify notation, we have

Q(x, y, z) = (x2y2 + y2 − x2 − 1 + 2xyz2)z2 − 2xy

− αz(xy2 − y − x + z2y − z2x + z2xy2 + z2x2y − x2y)

and a lexicographic Gröbner Basis for the ideal generated by Q and its partial
derivatives includes the polynomial

zα2(α2 − 1)(α2 − 2) = 2zp(2p − 1)(2p − 2).

The only root of this polynomial with x, y, z , 0 and 0 < p < 1 occurs when
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p = 1/2, and back substitution of this value implies that −z+ z5 = z3 +2y− z =
−z − z3 + 2x = 0. The first of these polynomials vanishes on the unit circle
when z ∈ {±1,±i}, however when z = ±1 the second polynomial only vanishes
when y = 0, and when z = ±i the third polynomial only vanishes when x = 0,
so Q and its partial derivatives do not simultaneously vanish on T (1).

Thus, if Qz vanishes at some point (a, b, c) of V1 = V ∩ T (1) then (a, b, c)
contributes to nonvanishing asymptotics in a direction (r, s, 0) for some (r, s) ,
(0, 0). This is ruled out from our knowledge of the generating function, be-
cause the velocity of QRW is at most the longest step, so Qz does not vanish
on V1 and the projection (x, y, z) → (x, y) is a smooth fourfold cover of the
unit torus in C2. There are many fourfold covers of the two-torus, but in this
case some trigonometry [Bar+10, Proposition 4.6] shows thatV1 is in fact the
union of four two-tori, each mapping diffeomorphically to the two-torus under
the logarithmic Gauss map. Figure 12.13 shows the four components for the
parameter value p = 1/2 by graphing z as a function of x and y with the torus
depicted as the unit cube with wraparound boundary conditions.

Figure 12.3 The four tori comprisingV1 for S (1/2).

Asymptotic behavior follows from Corollary 9.46 in Chapter 9.

Theorem 12.14. For each r̂ in the image of the logarithmic Gauss map onV1
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let W be the set of four preimages of r inV1 for the S (p) walk with 0 < p < 1
and fixed states i and j. Then, as r → ∞ with r̂ in a compact subset of the
feasible velocity region R, the amplitude p(r) satisfies

p(r) = (−1)δ
1

2π|r|

∑
z∈W

z−r
P(z)

∥ ∇log Q(z)∥22

1√
| K (z)|

e−iπτ(z)/4 + O
(
|r|−3/2

)
(12.15)

where δ = 1 if ∇log Q is a negative multiple of r̂ (to account for the absolute
value in Corollary 9.46) and zero otherwise.

◁

12.5 Higher order asymptotics

Our results give effective methods for computing asymptotic expansions of
multivariate generating functions. Although the first term in such an expansion
generically dictates behavior of the sequence under consideration, there are
several reasons for wanting to compute higher order terms. Most obviously,
computing more terms in such expansions gives better approximations.

Example 12.15. Consider the (4, 3)-diagonal of the Delannoy numbers with
generating function F(x, y) = 1/(1 − x − y − xy). The critical point in this
direction are (−2,−3) and (1/2, 1/3), both of which are smooth, and the point
w = (1/2, 1/3) is strictly minimal. Corollary 5.17 implies

[x4ny3n]F(x, y) = 432n
(
a1n−1/2 + a2n−3/2 + O(n−5/2)

)
as n→ ∞, where

a1 =

√
30

10
√
π
≈ 0.3090193616

a2 = −

√
30

288
√
π
≈ −0.01072983895 .

Comparing this approximation with the actual Delannoy numbers for small
n gives (after scaling out the exponential growth) the results in Table 12.5. The
error in the 1-term approximation clearly decays as 1/n while the 2-term error
decays as 1/n2 — note the extreme accuracy even for n = 1. The question of the
optimal order to which to truncate an asymptotic series in a given application
goes beyond our scope here.
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n 1 2 4 8 16
exact 0.2986 0.2148 0.1532 0.1088 0.07709
1-term 0.3090 0.2185 0.1545 0.1093 0.07726
rel. error -0.03486 -0.01742 -0.008698 -0.004345 -0.002171
2-term 0.2983 0.2147 0.1532 0.1088 0.07709
rel. error 0.001077 0.0002450 0.00005820 0.00001417 0.000003496

Table 12.5 Approximations to scaled Delannoy numbers 432nF4n,3n.

Higher order terms in an asymptotic expansion for any direction r̂ with pos-
itive coordinates can be computed symbolically with the coordinates of r̂ as
parameters. ◁

Although the first terms in our asymptotic expansions are typically non-
zero, and thus determine dominant asymptotic behavior, they can vanish. In
this case, higher order terms need to be computed in order to determine how
the sequence behaves.

Example 12.16. The rational functions

F1(x, y) =
1

1 − x − y
, F2(x, y) =

y(1 − 2y)
1 − x − y

, and F3(x, y) =
x − y

1 − x − y

all admit (x, y) = (1/2, 1/2) as a minimal contributing point in the main di-
agonal direction. Applying the results of smooth ACSV gives an asymptotic
expansion (9.4) of the coefficients of F1 whose leading term is non-zero. The
leading term in the asymptotic expansion of the coefficients of F2 vanishes, as
the numerator of F2 vanishes at the contributing point, but the second order
term in this expansion is non-zero (in fact, the main diagonal of F2 is the gen-
erating function of the Catalan numbers — see Example 12.18 below). On the
other hand, it can be shown that the main diagonal of F3 is identically zero, so
all coefficients in the asymptotic expansion must vanish. It is not obvious how
to detect automatically the vanishing of all terms in the asymptotic expansion
for a general rational function. ◁

Another reason why we may need higher order terms is because of cancel-
lation of terms when we combine asymptotic expansions of related functions.

Example 12.17. Consider the (d + 1)-variate function

W(x1, . . . , xd, y) =
A(x)

1 − yB(x)
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where

A(x) =
1

1 −
∑d

j=1
x j

1+x j

B(x) = 1 − (1 − e1(x))A(x)

for the elementary symmetric function e1(x) =
∑d

i=1 x j. The combinatorial
constructions discussed in Chapter 2 imply that W enumerates words over the
alphabet {1, . . . , d} where x j marks occurrences of the letter j and y marks oc-
currences of snaps, which are nonoverlapping pairs of duplicate letters. The
factor A(x) counts snapless words over X, which are the Smirnov words de-
scribed in Example 2.11. If ψ denotes the random variable counting snaps
among words with n occurrences of each letter then the expected value and
variance of ψ satisfy

E(ψ) =
[xn1]Wy(x, 1)
[xn1]W(x, 1)

=
[xn1]A(x)−1B(x)(1 − e1(x))−2

[xn1](1 − e1(x))−1

and V(ψ) = E(ψ2) − E(ψ)2 with

E(ψ2) =
[xn1]

(
Wyy(x, 1) +Wy(x, 1)

)
[xn1]W(x, 1)

=
[xn1]A(x)−2B(x)(B(x) + 1)(1 − e1(x))−3

[xn1](1 − e1(x))−1 .

Each of the above coefficient extractions applies to a rational function whose
denominator is a power of Q(x) = 1 − e1(x). By Lemma 6.41, asymptotics
can be determined by applying the smooth ACSV results of Chapter 9 to the
strictly minimal critical point (1/d, . . . , 1/d) of each function, giving

E(ψ) =
3
√

3
8π −

61
√

3
192π n−1 + O(n−2)

√
3

2π n−1 −
√

3
9π n−2 + O(n−3)

= (3/4)n − 15/32 + O(n−1)

and

E(ψ2) =
9
√

3
32π n − 35

√
3

128π + O(n−1)
√

3
2π n−1 −

√
3

9π n−2 + O(n−3)

= (9/16)n2 − (27/64)n + O(1)

so that V(ψ) = (9/32)n + O(1). Note that determining the leading term of
V(ψ) requires the second-order terms in the expansions of E(ψ) and E(ψ2).
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Comparing these approximations when d = 3 with the actual values for small
n, we obtain the following table.

n 1 2 4 8
E(ψ) 0 1.00000 2.50909 5.52056
(3/4)n 0.75 1.5 3 6
(3/4)n − 15/32 0.28125 1.03125 2.53125 5.53125
one-term relative error undefined 0.50000 0.19565 0.086846
two-term relative error undefined 0.031250 0.0088315 0.0019363
V(ψ) 0 0.8 1.20057 2.31961
(9/32)n 0.28125 0.5625 1.125 2.25
relative error undefined 0.29688 0.062942 0.030013

◁

12.6 Algebraic generating functions

Algebraic generating functions in one variable can be analysed asymptotically
by the transfer theorems of Section 3.4 in Chapter 3, and often exactly by La-
grange inversion as described in Section 12.3 above. Of course, the situation
in several variables is more complicated. For the purposes of asymptotics, we
can sometimes ignore the fact that the generating function is algebraic, because
the contributing points determining asymptotics might occur in regions where
the generating function is meromorphic (this happens in several Riordan array
examples). The more difficult cases occur when asymptotics are determined
by an algebraic singularity. Assuming that we have an analytic branch at the
origin, we aim to compute asymptotics of the coefficients of its power series
expansion as done for rational and meromorphic functions in previous chap-
ters.

Section 2.4 gives an approach to asymptotics by embedding algebraic gen-
erating functions as subseries of higher-dimensional rational functions. Un-
fortunately, there are several difficulties with this approach. First, the results
of Chapters 9–11 cannot capture asymptotics of all algebraic generating func-
tions: for any β ∈ Z there exists a univariate sequence an with an algebraic
generating function such that an ∼ Cαnnβ, but our results for nondegenerate
critical points only give asymptotics of this form with β = k/2 for k ∈ Z. This
asymptotic behavior also shows that the leading terms in our asymptotic ex-
pansions often vanish when applied to rational functions constructed by such
lifting procedures (Exercise 12.11 asks you to prove that this vanishing always
occurs for an embedding given by the method presented in Proposition 2.36).

Algebraic generating functions are often well-behaved as they are built from
nice combinatorial constructions, but the rational functions obtained from a
lifting procedure are built from algebraic machinery and are thus often worse
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behaved. For instance, the lifted functions usually have negative power series
coefficients, making the determination of minimal points harder to verify, and
may have critical points at infinity. Finally, there is no guarantee that the ratio-
nal generating function will have a contributing singularity of a type that we
can deal with using current technology.

Despite these qualifications, the rational embedding approach does work in
many situations.

Example 12.18. Consider the shifted Catalan number generating function f (x) =∑
n anxn = (1 −

√
1 − 4x)/2 with minimal polynomial P(x, y) = y2 − y + x.

Proposition 2.34 implies that f (x) is the main diagonal of the bivariate rational
function F(y, z) = y(1 − 2y)/(1 − x − y). The singular variety V of F is glob-
ally smooth and the critical point equations yield the single solution (1/2, 1/2)
which is strictly minimal. The first term in the expansion (9.4) vanishes, as ex-
pected, while the second term does not vanish and implies an ∼ 4n−1/

√
πn3. ◁

Remark 12.19. For bivariate algebraic singularities it is also possible to de-
termine asymptotics through a transfer theorem [Gre18].

Example 12.20. As shown in Example 2.37, the generating function for the
Narayana numbers ars is the subseries of

F(w, x, y) =
w(1 − 2w − wx(1 − y))
1 − w − xy − wx(1 − y)

consisting of terms whose powers of w and x are equal. Since F can be written

F(w, x, y) =
(1 − w)−1

1 − xy − wx
1−w

,

its power series expansion is combinatorial. To determine asymptotics of aαn,βn

as n → ∞ with α > β > 0, we compute asymptotics of the power series
coefficients of F in the direction (α, α, β). The critical point equations yield the
unique solution

(w, x, y) =
(
β

α
,

(α − β)2

αβ
,

β2

(α − β)2

)
,

which can be shown to be minimal as F is combinatorial. An asymptotic ex-
pansion can thus be computed using Theorem 9.5 in Chapter 9. In particular,
the exponential growth of aαn,βn is

(
αα

ββ(α−β)α−β

)2
, with the maximum exponential

growth of 4 achieved when α/β = 2. ◁

One positive feature of the embedding approach is that there are many possi-
ble embeddings of a given algebraic generating function, so if a rational func-
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tion obtained by one embedding procedure is too difficult to analyse, it may be
possible to find one better suited to ACSV.

Example 12.21. The combinatorial univariate algebraic generating function
√

1 − x − 1 =
∑

n anxn is the main diagonal of

2 (Y x − 1)(Y + 1)Y
Y2x + 2 Y x − Y + x − 2

.

It is easily checked that among affine points of the singular variety, there are
no non-smooth points and no critical points for the main diagonal direction,
so asymptotics are determined by a critical point at infinity. The generating
function 2xY/(2 − x − Y) has the same main diagonal but is much easier to
analyse, giving an ∼ (πn)−1/2, as we expect from Newton’s binomial theorem
and Stirling’s approximation. ◁

See Section 13.5 for further discussion on ACSV and algebraic generating
functions.

12.7 Additional worked examples

We now run through several other examples.

Example 12.22 (A constant coefficient bivariate recurrence). Consider the
constant coefficient linear recurrence

f (m, n) = f (m − 1, n − 1) + f (m − 1, n − 2) + 2 f (m − 2, n − 1) (m, n ≥ 2)

with boundary conditions f (m, n) = 0 if m < 0 or n < 0 and f (m, n) = 1
when 0 ≤ m ≤ 1 or 0 ≤ n ≤ 1. Grau Ribas [Gra] asked for the limit
of f (n + 1, n + 1)/ f (n, n) which, based on numerical computations such as
f (100, 100)/ f (99, 99) = 2.70265 . . . , appears to exist and be close to e.

Introducing the generating function F(x, y) =
∑

m,n f (m, n)xmyn, the defining
recurrence of f implies

F(x, y) =
1

Q(x, y)

with Q(x, y) = 1 − xy − xy2 − 2x2y. Gröbner basis computations verify thatV
is smooth, and the critical points in the main diagonal direction are the points
(x, 2x) where x is a root of 8x3 + 2x2 − 1. If w = 0.85 . . . denotes the unique
real root of 8x3 + 2x2 − 1 then Lemma 6.41 implies that (w, 2w) is minimal,
and it is the only critical point on the torus T (w, 2w). The limit

f (n + 1, n + 1)
f (n, n)

→
1

2w2
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is algebraic, and therefore not equal to e. Reducing R = 1/(2w2) modulo the
minimal polynomial for w implies R is the unique positive root of the polyno-
mial 8 − R + 2R2 − R3. ◁

Example 12.23 (Horizontally Convex Polyominoes). The generating function

F(x, y) =
∑
r,s≥0

arsxrys =
xy(1 − x)3

(1 − x)4 − xy(1 − x − x2 + x3 + x2y)
(12.16)

enumerates horizontally convex polyominoes (HCPs) [Pól69; Odl95; Wil06;
Sta97] by total size r and number of rows s. Letting Q denote the denomi-
nator of F in (12.16), we know from Example 8.4 that V is smooth except
at the point (1, 0). By Proposition 6.38, there is a part of the graph of Q in
the first quadrant consisting of minimal points, which are the points shown in
Figure 12.4 with x ≤ 1.

Figure 12.4 Minimal points ofV in the positive real quadrant.

The only combinatorially interesting directions occur in Ξ = {(r̂, ŝ) : 0 <

ŝ < 1/2}, because an HCP cannot have more rows than its size. As r̂ varies
over Ξ from the horizontal to the diagonal, the unique contributing point in
the direction r̂ moves along this graph from (1, 0) to (0,∞). The numerator
P = xy(1 − x)3 of F in (12.16) is nonvanishing on this component and, using
Gröbner bases, we find that the quantity Q in the asymptotic expansion (9.7)
does not vanish at any of these contributing points.

Since for each direction there are only finitely many critical points, and no
others lie on the same torus as the one we have identified, it follows from
Theorem 9.12 that asymptotics for ars are uniform as s/r varies over a compact
subset of the interval (0, 1) and have the form ars ∼ Cx−ry−ss−1/2. Algebraic
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methods may then be used to determine x, y and C as explicit functions of
λ = s/r, giving asymptotics for the number of HCPs that are uniform as long
as s/r remains in a compact subinterval of (0, 1). For instance, when λ = 1/2
the smooth critical points (x, y) satisfy 3x2 + 18x − 5 and 75y2 − 288y + 256,
with the contributing singularity occurring at

(x0, y0) =

√32
3
− 3,

48 −
√

512
25

 ≈ (0.265986, 1.397442),

and a floating point computation gives an,n/2 ∼ (0.237305 . . . )(3.18034 . . . )nn−1/2.
Note that the exponential growth of 3.18034 . . . in this case is only a slightly
less than the exponential growth 3.20557 . . . for all HCPs — a reflection of the
fact that the exponential growth varies quadratically around its maximum.

We can also derive limit laws. For instance, let q(x) = Q(x, 1) = 1−5x+7x2−

4x3 and let a ≈ 0.3120 be the root of q with minimum modulus. Theorem 12.33
below, with the roles of x and y switched, proves that the number of rows k of
a uniformly chosen HCP of total size n satisfies k/n→ m in probability, where

m =
yQy(a, y)
aQx(a, y)

=
5 − 9a + 11a2

4(5 − 14a + 12a2)
=

1
2.207 . . .

.

In other words, the average row size converges to a little over 2.2.
◁

Example 12.24 (Symmetric Eulerian numbers). The symmetric Eulerian num-
bers A(r, s) count the number of permutations of the set [r+s+1] = {1, 2, . . . , r+
s+ 1} with precisely r descents, and admit the exponential generating function

F(x, y) =
ex − ey

xey − yex =
∑
r,s≥0

A(r, s)
r! s!

, (12.17)

see [Com74, page 246] and [GJ04, p. 2.4.21]. To represent the numerator and
denominator of F as analytic functions with no common divisor we factor out
a term x−y from each, writing F(x, y) = P(x, y)/Q(x, y) for P = (ex−ey)/(x−y)
and Q = (xey − yex)/(x − y). We know by its combinatorial definition that the
power series coefficients of F are nonnegative, and the power series expansion
of Q is aperiodic, so the results of Section 6.4 imply that the minimal points of
F have positive coordinates. The graph of Q in this quadrant of R2 is monotone
decreasing with x and asymptotic to both axes; see Figure 12.5.

It can be verified by a direct computation that the singular variety of F is
smooth, and the quantity Q in the asymptotic expansion (9.7) does not vanish
at positive real points — in fact, Q(x, y) reaches its minimum value of e3/12
at the point (1, 1). The logarithmic gradient of Q at any point (x, y) in the first
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Figure 12.5 The zero set of (xey − yex)/(x − y) in the first quadrant.

quadrant is a non-zero multiple of (α, 1 − α) where

α =
xQx(x, y)

xQx(x, y) + yQy(x, y)
,

which simplifies to

α =
1 − x
y − x

for points on V, except when (x, y) = (1, 1) and α = 1/2. Thus, Theorem 9.5
implies that asymptotics in the direction (α, 1−α) can be computed by solving
the system

α =
1 − x
y − x

, xey = yex

for positive real values (x, y) and using the expansion (9.7). The result, recalling
that F is an exponential generating function, is that A(r, s) is asymptotically
estimated by

A(r, s) ∼ Cα(r + s)−1/2γr+sr!s!

where γ = x−αyα−1 and Cα is a messy constant determined by (9.6) and (9.7).
◁

Example 12.25 (Number of successes in a coin-flipping game). Consider a
single player game with biased coins, so that heads appears with probability
p = 2/3 for the first n flips and p = 1/3 thereafter. The player is told to get r
heads and s tails, and is allowed to choose n. On average, how many choices
of n ≤ r + s will be winning choices?
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Decomposing the probability that n is a winning choice for the player by
how many heads are rolled in the first n throws shows that the probability is∑

a+b=n

(
n
a

)
(2/3)a(1/3)b

(
r + s − n

r − a

)
(1/3)r−a(2/3)s−b .

If ars is the sum of the winning probability over all n, then the array {ars}

is the convolution of the arrays
(

r+s
r

)
(2/3)r(1/3)s and

(
r+s

r

)
(1/3)r(2/3)s, so the

generating function F(x, y) =
∑

rs arsxrys is the product

F(x, y) =
P(x, y)
Q(x, y)

=
1(

1 − 1
3 x − 2

3 y
) (

1 − 2
3 x − 1

3 y
) .

The complete intersection asymptotic results of Chapter 10 imply that ars =

3 plus an error term which is exponentially small as r, s → ∞ provided that
r/(r + s) stays in a compact subinterval of (1/3, 2/3). A purely combinatorial
analysis of the sum may be carried out to yield the leading term 3, but says
nothing about the error terms. ◁

Example 12.26 (Lattice paths constrained to a quadrant). Consider the class
of lattice paths on Z2 that start at the origin and must remain in the nonneg-
ative quadrant N2 while using the set {(1, 0), (1,−1), (−1, 0), (−1, 1)} of allow-
able steps. The kernel method [Mel21, Chapter 4] allows one to prove that the
generating function enumerating such walks by number of steps is the main
diagonal of

F(x, y, t) =
(x + 1)(x−2 − y−1)(x − y)(x + y)
1 − xyt(x + xy−1 + yx−1 + x−1)

.

This is a rational function with smooth singular variety, and minimal critical
points p1 = (1, 1, 1/4) and p2 = (−1, 1, 1/4). As the numerator of F has a
zero of order 2 at p1 and a zero of order 3 at p2, only p1 contributes to domi-
nant asymptotics. Computation with a computer algebra system shows that the
counting sequence for the number of walks on these steps satisfies

sn =
4n

n2 ·
8
π
+ O

(
4n

n3

)
.

ACSV provides a powerful framework to determine asymptotics of such lattice
path models [Mel21, Chapters 6 & 9]. ◁

Example 12.27 (alignments). Fix a positive integer d. The (d,n)-alignments
are d × m binary matrices for some m, such that no columns are identically
zero and the ith row sum is ni. These structures have relevance to bioinformat-
ics [RT; Wat95], and the generating function enumerating such alignments by
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multi-index n is

F(z) =
1

2 −
∏d

i=1 (1 + zi)
=

∑
n∈Nd

anzn.

In the main diagonal direction, the symmetry of F and the combinatorial ape-
riodic nature of the problem combine with Lemma 6.41 to imply that there is
a single, strictly minimal, contributing point (z, . . . , z) in the positive orthant,
where z = 21/d − 1. Theorem 9.5 then yields

an,...,n ∼
2(1−d2)/d

(21/d − 1)
√

dπd−1
(21/d − 1)−knn−

d−1
2 ,

recovering a result of [Gri+90]. ◁

Example 12.28 (integer solutions to linear equations). Let A be a d×m matrix
of nonnegative integers and, for r ∈ Nd, let ar denote the number of nonnega-
tive integer solutions to Ax = r. The generating function for the array {ar} is
given by

F(z) =
∑
r∈Nd

arzr =

m∏
j=1

1

1 − zAeT
j

,

where e j is the jth elementary vector. This enumeration problem is discussed
at length in [DS03] (see also [Sta97, Section 4.6]) which uses the running
example

A =


1 0 0 1 1
0 1 0 1 0
0 0 1 0 1


with generating function

F(z) =
1

Q1Q2Q3Q4Q5
=

1
(1 − x)(1 − y)(1 − z)(1 − xy)(1 − xz)

.

The divisors of F are all binomials of the form 1 − zα, and their zero sets all
intersect at (1, 1, 1). The logarithmic gradients of the divisors at (1, 1, 1) are the
columns of A.

Every triple of columns of A except for (1, 2, 4) and (1, 3, 5) forms a linearly
independent set. The circuits of the matroid defined by A are therefore these
triples and the only quadruple (2, 3, 4, 5) not containing either triple, so the
broken circuits are (1, 2), (1, 3) and (2, 3, 4), and the bases containing no broken
circuit are (1, 4, 5), (2, 3, 5), (2, 4, 5) and (3, 4, 5). By Theorem 10.33, a basis for
rational functions with simple poles onVQ1 , . . . ,VQ5 is given by{

1
Q1Q4Q5

,
1

Q2Q3Q5
,

1
Q2Q4Q5

,
1

Q3Q4Q5

}
.
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To reduce F to the sum of terms whose support is in BC(F) we use relations
expressing Qi in terms of {Q j : j ∈ C \ {i}} where i is the greatest element in a
circuit. A little scratch work uncovers these relations for the respective circuits
(1, 2, 4), (1, 3, 5) and (2, 3, 4, 5), giving

Q4 = Q1 + Q2 − Q1Q2 (12.18a)

Q5 = Q1 + Q3 − Q1Q3 (12.18b)

Q5 = −y−1Q2 + y−1Q3 + xQ4 . (12.18c)

The first relation (12.18a) divided by QQ4 yields

1
Q
=

1
Q2Q3Q2

4Q5
+

1
Q1Q3Q2

4Q5
−

1
Q3Q2

4Q5
. (12.19)

We are finished manipulating the third term of (12.19), as its support {3, 4, 5}
is in BC(F). The second term of (12.19), after an application of (12.18b), be-
comes

1
Q3Q2

4Q2
5

+
1

Q1Q2
4Q2

5

−
1

Q2
4Q2

5

.

The first term of (12.19), after an application of (12.18c), yields

−1/y
Q3Q2

4Q2
5

+
1/y

Q2Q2
4Q2

5

+
x

Q2Q3Q4Q2
5

and, using (12.18c) once again on the last of these three terms, replaces that
term by

−x/y
Q3Q4Q3

5

+
x/y

Q2Q4Q3
5

+
x2

Q2Q3Q3
5

.

Putting this all together gives the decomposition

F = −
1

Q3Q2
4Q5
+

1
Q3Q2

4Q2
5

+
1

Q1Q2
4Q2

5

−
1

Q2
4Q2

5

+
−1/y

Q3Q2
4Q2

5

+
1/y

Q2Q2
4Q2

5

+
−x/y

Q3Q4Q3
5

+
x/y

Q2Q4Q3
5

+
x2

Q2Q3Q3
5

,

and the techniques of Chapter 10 can now be applied to each term to determine
asymptotic behavior. ◁

Example 12.29 (Serial Dictatorship). The trivariate sequence

an jr =


(r−s

t−s)
( r

t−1)
if 1 ≤ s ≤ t ≤ r

0 otherwise
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arises in the study of the Serial Dictatorship algorithm for allocating indivisible
goods (it gives the probability, under IID uniform strict preferences of r agents
over r items, that the sth agent receives its tth most preferred item).

The generating function for the numerators brst =
(

r−s
t−s

)
is

F(x, y, z) =
∑

r,s,t≥0

brst xryszt =
xyz

(1 − x − xz)(1 − xyz)
.

Let Q1(x, y, z) = 1 − z − xz and Q2(x, y, z) = 1 − xyz. Because Q1 is inde-
pendent of y, points on the stratum where Q1 vanishes but Q2 is non-zero can
only be critical points for directions (r, s, t) with s = 0. Similarly, the stratum
where Q1 is non-zero but Q2 vanishes contains only critical points in the main
diagonal direction (which results in a trivial sequence). Thus, all interesting
directions correspond to points where both factors vanish, which is the curve
parametrized by (x, 1/(1 − x), (1 − x)/x) for x , 0.

A point on this curve is a contributing point for asymptotics in the direction
(r, s, t) if and only if the direction lies in the lognormal cone at the point. This
means that (r, s, t) = λ(1, 0, 1 − x) + µ(1, 1, 1) for some λ, µ ≥ 0. Solving this
system gives the unique contributing point( r − t

r − s
,

r − s
t − s

,
t − s
r − t

)
for any such direction, when r > t > s > 0. Each such point is minimal by
Corollary 6.39. Theorem 10.38 applies and yields the dominant asymptotic
behavior. We obtain the first order approximation for the numerator

brst ∼
(r − s)r−s+ 1

2

√
2π(r − t)r−t+ 1

2 (t − s)t−s+ 1
2

.

The relative error is less than 2% even for (r, s, t) = (20, 5, 10). Note that the
approximation is uniform in the union of the cones spanned by (1, 1, 1) and
(1, 0, 1 − x) as x ranges over any compact subset of (0, 1). The cones cover the
entire range of interest r > t > s > 0. ◁

Example 12.30 (Infinite products: Quivers and Littlewood-Richardson coeffi-
cients). Consider the infinite product generating function

F(x, y) =
∞∏

i=1

(
1 − xi − yi

)−1

arising both in the study of chiral operators in 4-dimensional quiver gauge the-
ories [RWZ20] and in the enumeration of Littlewood-Richardson coefficients
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cλµν, since

F(x, y) =
∑
λ,µ,ν

(
cλµν

)2
x|µ|y|ν|

(see Harris and Willenbring [HW14] for a derivation and background on Littlewood-
Richardson coefficients). Although F is meromorphic and not rational, its anal-
ysis is surprisingly simple. Write

F(x, y) =
P(x, y)

1 − x − y

where P(x, y) =
∏∞

i=2

(
1 − xi − yi

)−1
. It is easy to compute that for a direction

(r, s) with positive coordinates the unique critical point on V1−x−y occurs at
w =

(
r

r+s ,
s

r+s

)
. Because the coordinates of w lie in (0, 1), the polynomial

1 − xi − yi does not vanish at (x, y) = w when i > 1 and w is a smooth
strictly minimal singularity of F where P does not vanish. Theorem 9.5 and
Equation (9.7) thus imply that

ar,s ∼
P

(
r

r+s ,
s

r+s

)
√

2π

(r + s)r+s+ 1
2

rr ss
√

rs
.

◁

12.8 Limit laws from probability theory

We now show how to use the techniques of ACSV to derive limit laws. Al-
though probabilistic interpretations and limit laws can hold for series with neg-
ative coefficients, to simplify our presentation we restrict to the most common
case of a series F with nonnegative coefficients. Suppose the array {ar} en-
codes some combinatorial structure, and that the size of an object is given by
a map γ(r) into the integers — most commonly γ(r) = rd or γ(r) = |r|.

To discuss typical behavior, we define a grand measure µ on Zd as a sum of
point mass measures

µ =
∑
r∈Zd

arδr,

where δr(s) = 1 if s = r and 0 otherwise, and normalize its slices

µk =

∑
γ(r)=k arδr∑
γ(r)=k ar

on the objects of size k to be probability measures. One can ask for limit laws
with varying degrees of subtlety. A weak law tells us that µk is concentrated on
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a region of diameter o(k). More precisely, a weak law with limit m holds for
the sequence {µk} if, for any ε > 0,

µk

{
r :

∣∣∣∣∣rk −m
∣∣∣∣∣ > ε}→ 0 (12.20)

as k → ∞. More delicate is a central limit theorem, which states that the distri-
bution of µk in a region of diameter O(k1/2) around km has Gaussian behavior:

µk

{
r :

r − km
k1/2 ∈ A

}
→ Φ(A) (12.21)

as k → ∞, where A is any ‘nice’ region and Φ is a multivariate normal distri-
bution.

Exercise 12.1. When a central limit theorem holds, what (if anything) can you
conclude from (12.21) about the probabilities µk {⌊km⌋}, where the greatest
integer function is applied coordinatewise? What about the probabilities

µk

{
r :
|r − km|

k
> c

}
for fixed c > 0 as k → ∞?

Even better is a local central limit theorem (LCLT) which estimates µk at
individual points. A LCLT tells us that µk(r) ∼ n(r) where n is the density of
a multivariate normal distribution. In the case where the size parameter is rd,
for example, the normal density looks like

n(r) = (2π rd)(1−d)/2
√

det N exp
[
−1
2

(r◦ − rdv)T N (r◦ − rdv)
]

(12.22)

where r◦ denotes (r1, . . . , rd−1), the vector v is the mean of the limit Gaussian
distribution, and the matrix N is the inverse covariance matrix. As we will see,
so-called Ornstein-Zernike behavior ar ∼ C(r̂)|r|(1−d)/2z−r leads to Gaussian
estimates for individual probabilities if the coordinates of z are nonnegative
real numbers. Ornstein-Zernike asymptotics are precisely the conclusion of
our asymptotic estimates in the case where there is a single smooth point and
the Hessian matrix is nondegenerate. Thus, all we require for a weak law and
LCLT is that asymptotics are governed by a single smooth point with nonde-
generate Hessian matrix. The remainder of this section is devoted to the state-
ment and proof of a weak law and local central limit theorem, holding under
smoothness and nondegeneracy assumptions.

Exercise 12.2. Suppose ar = 0 unless
∑d

j=1 r j is even.

(a) How would you expect (12.22) to be altered?
(b) How would you expect this to be reflected in the generating function?
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Weak laws

Unless otherwise specified, our results in this section apply to the power series
expansion of a generating function F(z) = P(z)/Q(z) with nonnegative coef-
ficients, where Q is a polynomial containing all variables z1, . . . , zd. Confining
our statements to power series rather than Laurent series simplifies matters by
ensuring finite support of the cross-sectional measures µk.

Theorem 12.31 (weak law for diagonal slices). Let q(z) = Q(z, . . . , z) and let
p > 0 be the smallest value such that q(p) = 0. If z = p is a strictly minimal
simple zero of q(z) and P(p, . . . , p) , 0 then the sequence {µk} of probability
measures defined above satisfies a weak law (12.20) with limit m, where

m = −∇log Q(p, . . . , p).

Proof The domain of convergence of the power series defined by F cor-
responds to the component B of the complement of amoeba(Q)c that con-
tains all points of the form −(N, . . . ,N) for all sufficiently large N > 0. In
fact, because B is convex the set of points (x, . . . , x) for x ∈ R must inter-
sect ∂B (or else B would be all of Rd). Proposition 6.38 then implies that
q(ex) = Q(ex, . . . , ex) = 0 has a real solution, so the polynomial q has posi-
tive roots and p > 0 is well-defined.

Due to nonnegativity of the coefficients, every point of ∂B is a zero of Q ◦
exp. Write p = (p, . . . , p) and define logp coordinate-wise. If ∇Q(p) = 0 then
q(z) would have a zero of order at least two at z = p, so our assumptions imply
∇Q(p) , 0, hence ∇(Q ◦ exp)(logp) , 0 and the zero set of Q ◦ exp in a real
neighborhood of logp is a smooth hypersurface normal to m.

Letting Z denote the real points of V, we claim that the logarithm maps
a neighborhood of p in Z into ∂B. Denoting the homeomorphism type of a
(d − 1)-ball with a distinguished interior point (N, x), the intersection I of B
with a closed ball around logp is compact and, via projection from the center
of a sphere in the interior, has homeomorphism type (N, x). By the implicit
function theorem, a neighborhood of p in Z also has type (N, x). Any homeo-
morphism from one pair of type (N, x) to another covers a neighborhood of the
distinguished point. Therefore, the logarithm maps some neighborhood of p in
Z into a neighborhood of logp in ∂B, and we see that Z coincides locally with
∂B.

Thus, for any r not parallel to m the maximum value of r · x over x ∈ B
is strictly greater than r · logp, so ar = O((p + ε)−|r|) for some ε > 0 whose
choice is uniform as r̂ varies over any neighborhood not containing m̂. The
generating function

∑
k≥0 Ckzk of the sequence Ck =

∑
γ(r)=k ar is F(z, . . . , z),

which has a strictly minimal simple pole at z = p. Proposition 3.1 then implies
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that Ck ∼ cp−k for some constant c. In particular,
∑

r∈R ar = o(Ck) as k →
∞ where R consists of all indices whose directions are in a compact set not
containing m̂, so a weak law holds with limit m. □

Example 12.32 (multinomial distribution). Let c1, . . . , cd > 0 sum to 1 and let
F(z) = 1/(1− c ·z) be the generating function for the multinomial distribution

ar =
(
|r|

r1, . . . , rd

)
cr1

1 · · · c
rd
d

with parameters c. The denominator of F is Q(z) = 1−c·z, whence Q(z, . . . , z) =
1 − z regardless of c and the hypotheses of Theorem 12.31 are satisfied with
p = 1. Thus, there is a weak law with limit m = −∇log Q(p, . . . , p) = c, recov-
ering the well-known weak law for repeated rolls of a die with weights c. ◁

Often combinatorial classes are enumerated by a size parameter that is not
the sum |r| of the indices but is just one of the indices, say rd. A similar weak
law holds in this case, except that the probability measures {µk} no longer have
finite support and an added hypothesis is required. Adding this hypothesis al-
lows us to work with Laurent series, instead of only power series.

Theorem 12.33 (weak law for coordinate slices). Let F(z) = P(z)/Q(z) =∑
r arz

r be a Laurent series with nonnegative coefficients converging on a
component B of amoeba(Q)c. Suppose there is some p > 0 such that Q(1, p) =
0 and (0, log x) ∈ B if and only if 0 < x < p. Then Ck =

∑
rd=k ar is finite for

all k and if z = p is also a strictly minimal simple zero of q(z) = Q(1, z) and
P(1, p) , 0 then the sequence {µk} of probability measures defined by

µk =
1

Ck

∑
rd=k

arδr

satisfies a weak law with limit

m = −∇log Q(1, p).

Proof Arguing as in the proof of Theorem 12.31, we see again that exp(u) ∈
V for every u ∈ ∂B and that ∇(Q ◦ exp) is nonvanishing at (0, log p). Because
(1, log x) ∈ B for 0 < x < p, we have convergence of the sum

F(1, zd) =
∑
rd=k

arzrd
d =

∑
k≥0

Ckzk
d

whenever 0 < zd < p, so Ck takes on finite values and its univariate generating
function has radius of convergence p. Just as in the proof of Theorem 12.31,
our hypothesis that q(z) has a simple strictly minimal zero at z = p implies
Ck ∼ cp−k for some constant c, and the total weight of µk is o(p−k) on sets
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for which r̂ is bounded away from m̂, since any hyperplane through (0, log p)
other than the hyperplane normal to the dth coordinate plane intersects the
interior of B. □

Example 12.34 (IID sums). Let µ be a probability measure on a finite subset
E ⊆ Zd−1. The spacetime generating function F for convolutions of µ is given
by

F(z) =
∑
k≥0

∑
r∈Zd−1

µ(k)(r)z(r,k) =
1

1 − zdϕµ(z1, . . . , zd−1)

where ϕµ is the (d − 1)-variable generating function for µ. Then 1 is a simple
pole of Q and is strictly minimal as long as ϕ is aperiodic. Directly, ∇log Q(1) =
(m, 1) where m is the mean vector of µ. Theorem 12.33 then recovers the weak
law of large numbers for sums of IID samples from µ. ◁

Remark. More generally, we may allow µ to be any measure on Zd−1 whose
moment generating function is finite everywhere. This takes us out of the the-
ory of amoebas of polynomials. However, all the facts that are required con-
cerning logarithmic domains of convergence still hold. Because we have not
developed the theory of analytic amoebas, we do not include a statement or
proof of this result. The greatest generality for weak laws via this type of ar-
gument is achieved by weakening the hypothesis to finiteness of the moment
generating function in a neighborhood of the origin.

Exercise 12.3. Find a weak law for the binomial coefficients ars =
(

r+s
s

)
with

generating function 1/(1 − x − y) under the size γ(r, s) = r + 2s. Rather than
using Stirling’s formula, maximize m−1 log ars over r + 2s = m using that the
exponential growth of ars is x−ry−s where (x, y) = (r/(r + s), s/(r + s)) is the
critical point in the direction r = (r, s) computed in Example 9.10.

Central limits

We now derive a local central limit theorem for the profile {ar : rd = k} as
k → ∞. Similar limit theorems for profiles such as {ar : |r| = k} also hold, but
the arguments are similar and we find it simplest to stick to the case where the
size parameter is the last coordinate, mirroring classical limit theorems for the
spacetime generating function of a stochastic process on Zd−1. We do, however,
weaken our hypotheses to allow F to be a (non-rational) meromorphic function
in a suitable domain.

Before giving a limit theorem we need a lemma describing Ornstein-Zernike
behavior in this setting. We use the notation e j for the jth elementary unit
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vector and recall the notation Te(x) for the set of complex vectors z with
(log |z1|, . . . , log |zd |) = x.

Lemma 12.35. Let F(z) =
∑

r∈Zd−1×N arz
r be a d-variate series with logarith-

mic domain of convergence of convergence B ⊆ Rd. Suppose that B intersects
the negative ed-axis in the ray (−∞, t] for some real number t, that F is mero-
morphic on a neighborhood of the torus Te(0, t) with F(z) = P(z)/Q(z) for
analytic functions P and Q in a neighborhood of w = (1, et), and that w is a
strictly minimal pole of F where Qzd (w) , 0. Then the logarithmic pole vari-
ety logV of F is a smooth complex analytic hypersurface in a neighborhood
of logw = (0, t).

Let m denote the vector (∇log Q)(1, et) scaled so that md = 1, and let g
be the function parametrizing (x◦, xd) ∈ logV by xd = g(x◦) near logw. If
the Hessian matrix H for g is nonsingular at the origin then as r varies over
a neighborhood of m in S = Rd−1 × {1} the point w(r) ∈ V near w with
(∇log Q)(w(r)) = r varies smoothly. In this case there is an Ornstein-Zernike
estimate

ar ∼
(2π |rd |)(1−d)/2√
sgn(rd) detH

·
− sgn(rd)P(w(r))

zdQzd (w(r))
· exp(−r ·w(r)) . (12.23)

Proof The first conclusion, that logV is a smooth complex analytic hypersur-
face near logw, follows from the Implicit Function Theorem since ∇(Q ◦ exp)
is nonvanishing at logw under our assumptions. Proposition 9.44 implies that
nonsingularity of the Jacobian of the Gauss map is equivalent to nondegener-
acy of the critical point w, and to nonvanishing of the Gaussian curvature of
V. Thus, the inverse of the map z 7→ (∇log Q)(z) is smooth near w and w(r)
varies smoothly with r. Theorem 9.4 and Remark 9.19 from Chapter 9 then
yield (12.23). □

Theorem 12.36 (LCLT). Let F be a d-variate generating function satisfying
the hypotheses of Lemma 12.35 and let M = H(0) denote the Hessian matrix
of g at the origin. If M is nonsingular then there is a constant c such that

etk ar◦,k ∼ c nk(r◦)

as k → ∞ with |r◦ − km| = o(k2/3), where

nk(r◦) =
(2πk)(1−d)/2

√
det M

exp
[
−

1
2k

(r◦ − km)T M−1(r◦ − km)
]

(12.24)

denotes the (d − 1)-variate normal density with mean km and covariance M.
It follows that

sup
r:rd=k

k(d−1)/2
∣∣∣etk ar − c n(r◦)

∣∣∣→ 0



12.8 Limit laws from probability theory 435

as k → ∞.

Remark. We can compute the constant c by comparing (12.23) and (12.24),
although a LCLT traditionally does not require knowledge of the normalizing
constant.

Proof Let x(r) = logw(r). Comparing (12.24) to (12.23) in Lemma 12.35,
it is sufficient to prove that the rate function β(r) = −r · x(r) satisfies

β(km + y) = −
1
2k

yT M−1y +Ck + o(1)

as k → ∞ with |y| = o(k2/3). The rate function is homogeneous of degree one,
so this is the same as

β(m + y) = −
1
2
yT M−1y +C′k + o(k−1) (12.25)

where we have scaled y by 1/k so it is now restricted to be o(k−1/3).
The hyperplane with normal r going through x(r) is a support hyperplane

to B, so x(r) is a minimizing point for −r ·x on B. When r ∈ S we may write
r = (r◦, 1), and we write x = (x◦, g(x◦)) for points x in a neighborhood of
x(m) in logV∩∂B. The function g is concave, because locally the logarithmic
domain of convergence B is described by {(x, u) : u ≤ g(x)} and logarithmic
domains of convergence are convex. Thus,

β(r◦, 1) = inf
x◦∈Rd−1

{−g(x◦) − r◦ · x◦}

which is the negative of the convex dual of the convex function −g. As dis-
cussed in Chapter 6, the convex dual of the quadratic form x 7→ xT Ax rep-
resented by a positive definite matrix A is represented in the dual basis by the
inverse matrix r 7→ rT A−1r. The quadratic Taylor expansion of the convex
dual at a point r is determined by the quadratic Taylor expansion of the func-
tion (assuming this is nondegenerate) at the point where the minimum occurs.

The minimizing point for r = m is at the origin and the quadratic term in
the expansion of −g at the origin is the matrix −M representing the Hessian of
−g at the origin. Therefore the Taylor expansion of β about m on S is given by

β(m + y) = β(m) −
1
2
yT M−1y + O(|y|3) .

The condition |y| = o(k−1/3) is exactly what is needed for O(|y|3) to be o(k−1)
and taking C′k to be β(m) (not depending on k after all) establishes (12.25) and
the first conclusion.

Pick ν with 1/2 < ν < 2/3. When |r− km| ≤ kν, the first conclusion implies
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that

|etk ar − c n(r)| = o(n(r)) = o(k(1−d)/2) .

It remains to establish the second conclusion when |r − km| ≥ kν, which we
do by showing that both terms being compared are small separately. The term
n(r) is in fact bounded above by exp(−ckν−1/2) for some c > 0. On the other
hand, when r ∈ S the quantity r · x(r) differs from its value at r = m by
at least a constant multiple of |r −m|2. In general, when rd = k the value of
r · x(r) differs from its value at r = km by at least a constant multiple of
k−1|r − km|2. When |r − km| ≥ kν this is of order at least k2ν−1, which is a
positive power of k. Plugging this into (12.23) shows that ar is also at most
exp(−ck2ν−1), completing the proof. □

Classical LCLT

We end by deriving the classical LCLT for sums of independent lattice ran-
dom variables whose moment generating functions are everywhere finite using
Theorem 12.36. Let µ be an aperiodic probability distribution on Zd, let µ(k)

denote the k-fold convolution of µ, and let

F(z, zd+1) =
∑

(r,k)∈Zd×N

µ(k)(r)zrzk
d+1

denote the spacetime generating function for the random walk with increments
distributed as µ. The d-dimensional probability generating function ϕ for µ is
defined by

ϕ(z) =
∑
r∈Zd

µ(r)zr

and finiteness of the moment generating function implies ϕ is an entire func-
tion. The spacetime generating function F is related to the moment generating
function ϕ for the distribution µ via

F(z) =
1

1 − zd+1 ϕ(z)
.

The singular variety of F is globally defined by zd+1 = 1/ϕ(z) so the logarith-
mic singular variety is the graph of the function

g(x) = − log ϕ(exp(x)) .

Nonnegativity of series coefficients implies that (x, t) is in the interior of the
domain of convergence when t < g(x), while no point (x, g(x)) lies in the
logarithmic domain because it is on logV. When z is on the torus Te(x, g(x)),
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aperiodicity implies that ϕ(z) , 0 unless z is real. Therefore, each point of
VR = V ∩ R

d is the only point ofV on its torus, and such a minimal point is
strictly minimal.

As µ is a probability measure, g(0) = log(1) = 0. The chain rule further
implies

∂

∂x j
g(0) = −

∂

∂x j
(log ◦ϕ ◦ exp)(0) = −

e0ϕz j (exp(0))
ϕ(exp(0))

= −ϕz j (1) ,

and this partial derivative evaluates to
∑

r∈Zd r jµ(r), so

m = −∇(ϕ ◦ exp)(0) =
∑
r∈Zd

rµ(r)

is the mean of the distribution µ. Differentiating again, if i , j we find that

∂

∂xix j
g(0) = −

[
exi ex jϕziz j ◦ exp

ϕ ◦ exp
−

exi ex j (ϕzi ◦ exp)(ϕz j ◦ exp)

(ϕ ◦ exp)2

]
(0)

= ϕziz j (1) − mim j

so that the (i, j) entry of the Hessian of g at the origin is indeed the covariance
of the i and j coordinates under µ. A similar computation works for i = j and
establishes that the Hessian matrix of g at the origin is the covariance matrix
for µ. Applying Theorem 12.36, we see that µ(k)(r) is asymptotically equal to
c nk(r). There is no need to compute c because we know

∑
r◦ µ

(k)(r◦) = 1.
Thus c = 1 and we recover the classical LCLT.

Theorem 12.37. If µ is an irreducible aperiodic probability measure on Zn

with moment generating function ϕ everywhere finite, then

µ(k)(r) ∼ nk(r)

as k → ∞ with |r−km| = o(k2/3), where nk is defined by (12.24) with d = n+1,
the vector m equal to the mean of µ, and M equal to the covariance matrix of
µ. It follows that

sup
r∈Zd

kd/2 |ar − n(r)| → 0

as k → ∞. □

Example 12.38. Recalling nonnegative Riordan arrays from Section 12.2, ob-
serve that setting x = 1 gives

µ(v; 1) =
v′(1)
v(1)



438 Combinatorial applications

and

σ2(v; 1) =
v(1)v′′(1) − v′(1)2 + v(1)v′(1)

v(1)2 .

Thus, when the hypotheses of Theorem 12.33 are satisfied, a WLLN holds with
mean m = µ(v; 1). Here µ(v; 1) is simply the mean of the renormalized distri-
bution on the nonnegative integers with probability generating function v, and
σ2(v; 1) is the variance of the renormalized distribution. The quadratic form in
the exponent of (12.24) in Theorem 12.36 is given by (s−µ(v; 1)r)2/(2kσ2(v; 1)),
meaning a local central limit theorem holds with variance σ2(v; 1). ◁

Exercise 12.4. Large deviation theory is used to provide bounds on µ(k){|r −

km| > Ck}, which are exponentially small in k. What bounds on this kind of
event follow from Theorem 12.37?

Notes

The material in Sections 12.2 and 12.3 is largely taken from [PW08, Sec-
tion 4.3], as is the message passing example in Section 12.4. The idea for
Exercise 12.6 comes from [Nob10], and Exercise 12.8 comes from [PW02, Ex-
ample 3.4]. Exercise 12.9 is suggested by a line of work on rook walks, see for
example [KZ11]. The results of Exercise 12.10 are generalized in [Wil15] to
diagonal asymptotics of products of combinatorial classes. Elementary deriva-
tions of some of the limit theorems presented here are given in Melczer [Mel21,
Section 5.3.3].

Riordan arrays have been widely studied. In addition to enumerating a great
number of combinatorial classes, Riordan arrays also behave in an interest-
ing way under matrix multiplication (note that the condition v(0) = 0 implies
ank = 0 for k < n, and, by triangularity of the infinite array, that multiplication
in the Riordan group is well defined). Surveys of the Riordan group and its
combinatorial applications may be found in [Spr94; Sha+91].

There are many multivariate generalizations of the Lagrange Inversion For-
mula, but we know of none that are useful for our purposes. Proposition 12.8
was given in [Wil05]. The asymptotic behavior of univariate QRWs is derived
in several papers, of which [CIR03] is perhaps the most complete. Some of
our presentation comes from [BP07], and our second QRW example comes
from [Bar+10, Section 4.1].

It is an interesting question to pick how many terms to compute in an asymp-
totic expansion when the goal is to numerically approximate a fixed coefficient.
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The books [PK01; Par11] give a good introduction, and applications to inte-
grals arising from coefficient extraction are treated in [DH02].

Additional exercises

Exercise 12.5. (general Lagrange inversion) Use the change of variables de-
scribed in the proof of Proposition 12.7 and the exact differential d

[
ψ(y)

n

(
v(y)

y

)n]
to prove the more general Lagrange inversion formula (12.13).

Exercise 12.6. Compute dominant asymptotics for µ(n, n) where µ(m, n) =∑n
k=0(−1)k

(
n
k

)(
2m
k

)
. Hint: Replace −1 by z, multiply by xmyn and sum over k,m, n

to obtain a trivariate generating function.

Exercise 12.7. Using the results in Section 12.2, compute asymptotics for the
generalized Dyck paths described in Section 2.3.

Exercise 12.8. Let F(x, y) = 1/(3 − 3x + x2 − y) be the generating function
of a generalized Riordan array {ars}. Compute asymptotics for directions (r, s)
when r/s > 1, then do the same thing when 0 < r/s < 1. What happens when
r = s?

Exercise 12.9. Let ar count the number of ways in which a chess rook can
move from the origin to r by moves that increase one coordinate and do not
decrease any other. The methods of Chapter 2 yield the generating function

F(z) =
∑
r∈Nd

arzr =
1

1 −
∑d

i=1
zi

1−zi

=

∏d
i=1(1 − zi)∑d

j=0(−1) j( j + 1)e j(z)
,

where e j is the jth elementary symmetric polynomial.

a) Use Theorem 2.32 in Chapter 2 to find the generating function of the main
diagonal of F when d = 2. What happens when you try this for d = 3?

b) Compute the first order asymptotic approximation to ar for d = 3.
c) Use a computer algebra system, or write your own program, to compute ar

exactly, for values of d up to 10. Compare with the first order asymptotic
when r = (100, . . . , 100).

d) Compute the next term in the expansion and determine how much better
is the accuracy of the 2-term asymptotic approximation when d = 3 and
r = (100, 100, 100).
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Exercise 12.10. Derive the bivariate generating function
∑

r,s≥0 arsxrys for the
number of ordered pairs of ordered sequences of integers with parts in a fixed
set A ⊂ N, the first summing to r and the second to s, each having the same
number of parts. Compute the asymptotics of the coefficients on the main di-
agonal. Compare your results and methods with those in [BH12].

Exercise 12.11. Prove that embedding an algebraic generating function A into
a rational one R using the method of Lemma 2.36 always makes the numerator
of R vanish at the contributing points of R.
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Challenges and extensions

In this final chapter we look to the future of ACSV, discussing the most im-
portant challenges and extensions of current results. Work attacking several of
these problems is ongoing. The breadth of behavior exhibited by multivariate
generating functions is vast, and new applications arise constantly that require
additional techniques.

13.1 Contributing singularities and diagonals

Let F(z) be the generating function of a sequence (ar). Theorems 7.20 and 7.35
represent ar as an integer sum of saddle point integrals near critical points of
F, which can be analysed to determine asymptotics of ar. Unfortunately, iden-
tifying the integer coefficients in this sum seems to be extremely difficult, if
not undecidable. Even identifying the contributing singularities of F, which
are the critical points of highest height with non-zero coefficients, is currently
only possible in general for minimal critical points, in two dimensions, or when
F is the product of linear factors.

Being able to identify the contributing singularities of a general rational
function would be an important theoretical breakthrough for ACSV. One (topo-
logical) approach is to generalize the two-dimensional algorithm discussed in
Section 9.3 to higher dimensions. Another (computational) approach is to use
software for D-finite functions. Recall from Section 8.4.2 that for any fixed
r ∈ Zd the r-diagonal of a multivariate rational function is D-finite, and the
methods of creative telescoping produce a D-finite equation satisfied by the
diagonal. Thus, it is possible to study rational diagonals using both ACSV and
techniques for D-finite functions. In fact, these methods are complementary:
ACSV often determines asymptotics up to unknown integers that are diffi-
cult to determine, while D-finite techniques often determine asymptotics up

441
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to unknown complex numbers that can be rigorously approximated. The com-
bination of these two representations was used in Example 11.50 to determine
asymptotics for a multivariate generating function with cone singularities, and
it is natural to ask how far this combined method can be pushed — both to
characterize the behavior of multivariate rational diagonals, and to attack the
connection problem for the asymptotics of sequences with D-finite generating
functions.

Problem 13.1. Classify the types of rational functions for which this hybrid
ACSV and D-finite numeric method applies.

Remark 13.1. The diagonal of any bivariate rational function is algebraic,
so asymptotics in any fixed direction can always be decided by computing the
minimal polynomial for the diagonal and applying univariate techniques. How-
ever, the complexity of the computation to reduce to the one-dimensional case
can increase with the size of the integers representing a direction of interest,
and does not work for general direction. Thus, it is interesting to study even
bivariate rational diagonals using multivariate methods.

Example 13.2. The (a, b)-diagonal of the bivariate generating function

F(x, y) =
1

1 − x − y − xy

for the Delannoy numbers has the representation

G(x) =
[
t0
]

F
(
x1/a/tb, ta

)
=

1
2πi

∫
γx

F
(
x1/a/tb, ta

)
t

dt

=
1

2πi

∫
γx

tb−1

tb − x1/a − ta+b − x1/ata dt ,

for x sufficiently close to the origin and γx a circle around the origin that ap-
proaches the origin as x→ 0. This integrand has a single pole t = s(x) satisfy-
ing limx→0 s(x) = 0, which is a pole of order b, so

G(x) = Res
t=s(x)

F
(
x1/a/tb, ta

)
/t

= lim
t→s(x)

1
(b − 1)!

∂b−1
t

(
(t − s(x))bF

(
x1/a/tb, ta

)
/t
)
.

The product rule gives this limit as an algebraic expression in s(x), which can
be combined with the defining algebraic equation for s(x) to give an algebraic
equation satisfied by G, however this expression is extremely unwieldy for
large a and b, and the complexity of the operations grows with a and b. In
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contrast, asymptotics of the Delannoy numbers in all diagonal directions was
given in Example 9.11 using ACSV. ◁

13.2 Phase transitions

Our asymptotic approximations typically hold uniformly as r → ∞ with r̂

staying in certain cones of directions, corresponding to contributing points at
which the local geometry ofV does not change. When the local geometry ofV
does change, asymptotic behavior is no longer uniform. For instance, consider
the situation of Example 9.39 in Chapter 9: asymptotic behavior grows like a
constant times r−1/2 and is uniform in any direction bounded away from the
main diagonal, while asymptotic behavior on the main diagonal grows like a
constant times r−1/3. Without some kind of result to bridge the gap we cannot,
for instance, conclude that

lim sup
log ar
log |r|

= −1/3 . (13.1)

A similar issue for trivariate functions arises in the analysis of spacetime
generating functions for two-dimensional quantum random walks, where the
logarithmic Gauss map maps a 2-torus to a simply connected subset Ξ of the
plane. Such a map must have entire curves on which it folds over itself, and
some points of greater degeneracy where such curves meet or fold on them-
selves.

There is some work in this area. A combinatorial generating function with
the behavior of Example 9.39 was discussed in [Ban+01] under the name Airy
phenomena (in the rescaled window s = λr + O(r1/3), the leading term con-
verges to an Airy function). A start on a general formulation of such asymp-
totics in dimension d = 2 was made by Lladser [Lla03], and (13.1) follows
from [Lla03, Corollary 6.12]. Lladser [Lla06] also shows that if there is a
change of degree of the amplitude and the phase does not change degree, then
can derive a uniform formula for the coefficients in the expansion.

Problem 13.2. Characterize asymptotic transitions in more than two variables.

13.3 Degenerate phase

Most of our results in previous chapters have relied on reduction to a stationary
phase integral for which the phase is quadratically nondegenerate at an isolated
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critical point, and hence amenable to a Complex Morse Lemma argument, but
more complicated situations can arise.

Example 13.3. Recall from Example 10.69 the generating function

F(x, y) =
∑
r,s

arsxrys =
1

(1 − xy)(1 − x/2 − y/2)

with main diagonal terms arr =
∑r

j=0 4− j
(

2 j
j

)
.

The critical point equations for the factor H1 = 1− x/2−y/2 in the direction
(1, 1) have a unique solution (1, 1), while every point on the torus |x| = |y| = 1
satisfies the critical point equations for the factor H2 = 1 − xy. The point
(1, 1) is therefore a minimal, but not strictly minimal, critical point which is a
double point of the singular variety. In addition to a torus of singularities with
the same coordinate-wise modulus, the varieties V(H1) and V(H2) intersect
tangentially at (1, 1).

A systematic application of the surgery approach reduces the problem of
finding asymptotics of arr as r → ∞ to finding asymptotics of

1
2π

∫
D

A(θ, t) exp (−λϕ(θ, t)) dµ

as λ→ ∞, where

A(θ, t) =
2

2 − eiθ

ϕ(θ, t) = − log
(
1 − t

(
1 −

e−iθ

2 − eiθ

))
,

the domain of integration D = [−π, π] × [0, 1] ⊂ R2, and µ is the Lebesgue
measure. Note that Re ϕ is nonnegative on D, with minimum value 0. The
stationary points of ϕ on D are (0, t) for 0 ≤ t ≤ 1, and (θ, 0) for −π ≤ θ ≤ π.
Not only is the phase not equivalent via a smooth change of variables to t2 + θ2

(it looks more like tθ2), the stationary phase set consists of more than a single
point, being a 1-dimensional T-shaped subset of the rectangle. ◁

Example 10.69 derived asymptotics for Example 13.3 using an ad hoc ap-
proach.

Example 13.4. Develop a systematic theory for such degenerate integrals. ◁

Example 13.5. If S denotes the set of n×n Hermitian matrices with Frobenius
norm 1, and E denotes the subset of S containing matrices with repeated eigen-
values, then E has positive codimension in S but has a volume with respect to
the Riemannian metric inherited from S . It turns out1 that this volume is, up
1 K. Kozhasov (personal communication)
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to an easily computed constant, the coefficient of (z1z2z3z4)n in the generating
function

M(z1, z2, z3, z4) =

∏
1≤i< j≤4

(zi − z j)

1 − e1(z)2 + 4e2(z)
,

where e j is the jth elementary symmetric function in the variables z1, z2, z3, z4.
While symmetry initially makes the problem tractable, the stationary phase
set is a union of curves rather than points and, to make things worse, the nu-
merator vanishes to different orders on these curves and their intersections. By
computing a D-finite equation satisfied by the main diagonal of M, and using
the numeric methods discussed in Section 8.4.2 and Section 13.1 above, it can
be shown that the coefficient of interest has asymptotic behavior Cn−5/264n as
n → ∞ for a constant C ≈ 0.4527. It would be interesting to derive this result
using multivariate techniques. ◁

In the case of real phase, it is possible to compute a degenerate integral as
a Laplace integral by determining volumes of level sets. Suppose we wish to
compute an integral of the form∫

D
exp(−λϕ(x))A(x) dx

where D = [0, 1]d ⊂ Rd in some dimension d ≥ 1, the parameter λ is large,
and ϕ and A are analytic functions on D. Fubini’s theorem tells us that for a
nonnegative measurable function f defined on a measure space (X, µ) we have∫

X
f (x) dµ(x) =

∫ ∞

0
µ ({x : f (x) ≥ z}) dz,

and the change of variable z = exp(−u) converts this integral to∫ ∞

−∞

e−uµ
(
{x : − log f (x) ≤ u}

)
du.

Let Vu denote the measure of the sub-level set µ
(
{x : − log f (x) ≤ u}

)
. Letting

f (x) = e−λϕ(x), we obtain

Vu =

∫
D

1ϕ(x)≤u/λdµ(x)

and, for simple enough ϕ, it may be possible to compute Vu explicitly. Propo-
sition 4.7 can then be applied to determine asymptotics.

Exercise 13.1. Compute asymptotics as λ→ ∞ for∫ 1

0

∫ 1

0
e−λxy2

xy dx dy.
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Degeneracies of phase can also, in principle, be handled by resolving singu-
larities to obtain a normal crossing, using a change of coordinates mapping the
phase function into a monomial, expanding the resulting amplitude function
into a power series, and then applying known exact asymptotics to each term.
Resolution of singularities, together with the methods of [Var77], implies that
the possible asymptotic behaviors for any rational asymptotics fall in a limited
set of leading terms.

13.4 Critical points at infinity

Let T = T (x) where x is in some component B of the complement of the
amoeba of the denominator Q of some rational function. As seen in Chapter 7,
non-existence of CPAI in the direction r̂ is a sufficient condition for [T ] to be
representable as the sum of cycles corresponding to attachments at affine criti-
cal points in direction r̂. However, this non-existence is by no means necessary.
For instance,

• The trajectories flowing to a CPAI may not be trajectories of any stratified
gradient-like flow.

• A trajectory flowing to a CPAI may be a gradient-like flow, but the particular
torus [T ] may flow down to an affine critical point and not be pulled down a
path leading to this CPAI.

• [T ] may not flow down without being pulled to infinity, but there may be a
cobordism between T and a cycle lower than any CVAI.

• Even if [T ] is pulled to infinity by some gradient-like vector field, the CPAI
there may not alter the topology and it might be possible to deform [T ] to
“come back from infinity.”

Problem 13.3. a) Can there be unreachable CPAI, meaning that there is a
downward gradient-like field that has no flows reaching a CPAI?

b) If so, how can we compute which CPAI are like this?
c) Do all CPAI alter the topology of V∗? Is there an attachment theory for

CPAI, giving a way to compute the topological effect of each CPAI?
d) If there is a local attachment, can we find a cycle α representing it and

determine
∫
α
z−r−1F(z) dz?

Another useful tool would be the capability to rule out the existence of CPAI
in some direction without an overly long computer algebra computation. An
early conjecture, which turned out not to be true, was that all CPAI must be
parallel to some face of the Newton polytope of Q. Some ongoing work proves
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that this conjecture is true when the polytope is schön, a property defined in
terms of compactifications via toric varieties [Huh13, Definition 3.6]. The set
of directions parallel to a face of the Newton polytope is a small set (it has
positive codimension) so it is useful to know when CPAI are restricted to these
directions. Generally, we would like to find computable restrictions on the pos-
sible directions of CPAI.

13.5 Algebraic GFs

Section 12.6 showed how to study algebraic generating functions by embed-
ding them as diagonals of higher-dimensional rational functions. The simplest
embedding method, due to Furstenberg, is easy to apply when it works, but
does not apply to any algebraic generating function intersected by one of its
algebraic conjugates at the origin. There are several known methods for resolv-
ing singularities in such cases, for instance the algorithm of Safonov [Saf00]
mentioned in Theorem 2.41 and the less constructive procedure of Denef and
Lipshitz [DL87].

Example 13.6. Let f (x) = x/
√

1 − x be an algebraic function with minimal
polynomial P(x, y) = (1− x)y2− x2. Because f (x) = x+O(x2) and its algebraic
conjugate − f (x) = −x+O(x2) intersect at the origin, the embedding method of
Furstenberg does not apply. Safonov’s procedure subtracts some initial terms
via the substitution y = xz+x, yielding a minimal polynomial (1−x)(z+1)2−1 to
which Proposition 2.34 now applies. Converting back to the original variables
then gives f as the main diagonal of

F(x, y) =

(
2 y3x + 3 y2x − 2 y2 + 2 yx − 3 y + x − 2

)
yx

y2x + 2 yx − y + x − 2
.

We remark that F has no affine critical points in the main diagonal direction,
so it admits critical points at infinity which determine asymptotic behavior,
making the analysis difficult. An alternative embedding, following the method
of [DL87], is obtained through the much less obvious substitution y = x/(1−z),
expressing f (x) as the main diagonal of

G(x, y) =
2xy

1 − x − y
.

In contrast to the difficult behavior of F, the function G is combinatorial and
has a smooth contributing critical point at (1/2, 1/2), allowing for an easy
asymptotic analysis. ◁
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Problem 13.4. Give a complete analysis of algebraic generating functions f (x)
with quadratic minimal polynomials.

Problem 13.5. Can an algebraic series f (x) with nonnegative coefficients al-
ways be embedded as the diagonal of a combinatorial rational function? Find
an efficient algorithm that converts coefficient extraction for algebraic func-
tions to coefficient extraction for rational functions in a way that preserves the
combinatorial nature of the problem.

Recent work [Gre+22] develops software to analyse a variety of algebraic
generating functions, ultimately cataloguing twenty combinatorial examples.
An alternative approach being developed [BJP23] integrates algebraic gener-
ating functions directly. If f is an algebraic function defined by P(z, f ) = 0
and f (0) = c, with y = c a simple zero of P(0, y), coefficients of the power
series expansion of f at the origin are given by

ar =
1

(2πi)d

∫
T

f (z)z−r−1 dz , (13.2)

where T is a torus about the origin, sufficiently small so the polydisk with the
same radii contains no singularities of f . Because (0, c) is a simple zero of P,
there is a neighborhoodN of (0, c) in Cd+1 such that projection π onto the first
d coordinates of the hypersurface VP in Cd+1 restricted to this neighborhood
is a bi-analytic map to a neighborhood of the origin in Cd. Choosing T smaller
if necessary so as to be contained in this neighborhood of the origin, the set
C = π−1(T ) is a small torus inVP and (13.2) becomes

ar =
1

(2πi)d

∫
C

yz−r−1 dz. (13.3)

Aside from the high negative powers of z1, . . . , zd, the integrand y has no
denominator, however the coefficients ar may be recovered the same way as
one recovers coefficients of rational functions. In the absence of critical points
at infinity, the d-dimensional complex varietyV∗ = VP ∩C

d
∗ has a Morse the-

oretic decomposition into cycles attaining their maximum height near critical
points of the height function h(r̂,0)(z) =

∑d
j=1 r j log |z j|. One then resolves the

chain C in this basis. For instance, if the surface VP is smooth and there are
no CPAI for P in the direction (r̂, 0) then the asymptotics of ar are given by
some linear combination of Φw from (9.4) over critical points w of P in the
direction (r̂, 0).

Example 13.7. Let f (x) = 1−
√

1−4x
2x be the Catalan generating function, with

minimal polynomial P(x, y) = xy2 − y + 1 = 0. The point (0, f (0)) = (0, 1) is
a smooth point of VP, and a small circle about (0, 1) in V∗ projects by π to a
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small circle about the origin in C1. The smooth surface VP has precisely one
critical point p = (1/4, 2) in the direction (1, 0), defined by the simultaneous
vanishing of P and Py. There is a critical point at infinity because the value
of Py goes to zero as x → 0, however the height function goes to infinity as
x → 0 so Morse theory tells us that the initial curve C can be deformed in
V∗ to a smooth contour γ in P passing through p so that the minimum of
log |x| on γ occurs at p. A standard stationary phase integral for

∫
γ

x−n−1ydx
leads to an asymptotic series for the Catalan numbers. Because the amplitude
y is stationary at p, there will be one more negative power of n than the usual
n−1/2 obtained from a univariate saddle point integral. This recovers without
computation the fact that the nth Catalan number is Θ

(
n−3/24n

)
. ◁

Exercise 13.6 below explores what happens when (0, c) is not a simple pole
of P. We conclude with an exercise illustrating a multivariate algebraic func-
tion.

Exercise 13.2. Let

f (x, y) =
1 + x(y − 1) −

√
1 − 2x(y + 1) + x2(y − 1)2

2
be the Narayana bivariate generating function from Example 2.37, defined by
the minimal polynomial

P(x, y,w) = w2 − w
[
1 + x(y − 1)

]
+ xy

and the fact that f (0, 0) = 0.

(a) Show that P is smooth.
(b) Find c = f (0, 0) and determine whether (0, 0, c) is a simple zero of P.
(c) Find the critical points for P in the direction (2, 1, 0).
(d) Among the critical points, which have finite height?
(e) Are there critical points at infinity in the direction (2, 1, 0)?
(f) What asymptotics for a2n,n do you get from integrating

∫
γ

wx−2n−1y−n−1 dxdy
over an appropriate contour γ?

13.6 Asymptotic formulae

In Section 9.4.2 we presented a geometric interpretation, in terms of Gaussian
curvature, of the first term in our basic smooth point formula.

Problem 13.6. Give a coordinate-free formula for the next term in the basic
smooth point asymptotic expansion. Give similar formulae for arrangement
points.
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Theorem 10.38 and Corollary 10.41 in Chapter 10 imply that the asymptotic
contribution of a minimal arrangement point is unchanged when the factors in
the denominator are replaced by their first order terms.

Problem 13.7. Let Q(z) be any polynomial in d variables and let p be a zero
of Q such that the homogeneous part H(z) of Q at p (in the sense of Defini-
tion 6.46) factors into k < d linearly independent factors. Under what condi-
tions is the dominant asymptotic contribution of p to the series coefficients of
1/Q(z) the same as the dominant asymptotic contribution of p to the series
coefficients of 1/H(z)?

An approach to Problem 13.7 is provided by a series of results in [BP11].
Lemma 2.24 of that paper shows that in the interior of the normal cone at
p, the function 1/Q(z) can be expanded in negative powers of H(z), while
Lemma 6.3 there shows that the Cauchy integral for the leading negative power
is the inverse Fourier transform. These results are stated for points with specific
types of local factorizations, but in fact appear to be much more general. As
summarized in Chapter 11 of this text, the construction of a conical contour,
and the error estimates that follow, rely only on the direction r̂ being non-
obstructed. In fact the types of local divisors allowed are Lorentzian quadratics
and smooth divisors, which as a degenerate case (having no quadratics) include
arrangement points. Thus, solving Problem 13.7 for a large class of functions
should be possible by an application of the results in [BP11].

Some caution is indicated due to the asymptotics for two smooth tangential
divisors, worked out in a special case in Proposition 10.68, and that fact that
asymptotics for the square of a single smooth divisor are a special case but do
not capture the results of Proposition 10.68 in general. The difficulty here may
be traced back to the fact that the expansion in [BP11, Lemma 2.24] only holds
in the interior of a cone where the homogeneous part does not vanish; because
two tangential curves cannot be separated by a cone, the expansion does not
hold near where Q vanishes.

13.7 Symmetric functions

Multivariate generating functions often possess some degree of symmetry. For
example, the denominators in the Delannoy generating function, the cube grove
generating function, the Friedrichs-Lewy-Szegö generating function, and the
Gillis-Reznick-Zeilberger generating functions are all symmetric polynomi-
als. The denominator in the Aztec Diamond generating function is symmetric
in two of its variables.
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A symmetric function Q always has critical points in the main diagonal
direction, since ∇log Q(z) ∥ 1 whenever z = (w, . . . ,w) and w is a root of
the univariate polynomial Q(z, . . . , z). When Q is symmetric and multi-affine,
meaning Q has degree 1 in each variable, then there must be a minimal critical
point.

Theorem 13.8 ([Bar+18, Lemma 15]). Let Q be a multi-affine elementary
symmetric function and let δQ denote the univariate diagonalization δQ(z) :=
Q(z, . . . , z). If w is a root of δQ of minimal modulus then (w, . . . ,w) is a minimal
point for Q in the main diagonal direction.

Proof Denote the roots of δQ by α1, . . . , αk where |α1| is a root of least mod-
ulus, and let

M(z) =
k∏

j=1

(z j − α j) .

For any ε > 0, the polynomial M has no zeros in the polydisk D centered at
the origin whose radii are all |α1| − ε. For any d-variable polynomial P, denote
its symmetrization by

P∗(z) :=
1
d!

∑
π∈Sd

P
(
zπ(1), . . . , zπ(d)

)
.

Then M∗ = Q and the Borcea-Brändén symmetrization lemma [BB09, Theo-
rem 2.1] implies that Q has no zeros in the polydisk D. Because ε > 0 was
arbitrary, we conclude that (α1, . . . , α1) is a minimal point of Q. □

Exercise 13.3. In d variables, the jth elementary symmetric function is the
polynomial

e j(z) =
∑
S∈E j

∏
i∈S

zi,

where E j consists of all subsets of {1, . . . , d}with j elements. Use Theorem 13.8
to find minimal points for the following denominators without resorting to ge-
ometric arguments.

(a) In 2 variables, Q(x, y) = 1 − e1(x, y) − e2(x, y) (the Delannoy generating
function)

(b) In 3 variables, Q(x, y, z) = 3− e1(x, y, z)− e2(x, y, z)+ 3e3(x, y, z) (the cube
grove generating function)

(c) In 4 variables, Q(z) = 1 − e1(z) + 27e4(z) (the GRZ generating function
with critical parameter)
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Problem 13.8. Find a way analogous to Theorem 13.8 to conclude minimal-
ity in some off-diagonal direction for some class of multi-affine polynomials.
Replace the multi-affine hypothesis in Theorem 13.8 by something weaker so
that the conclusion still holds.

Naively applying Gröbner basis methods typically breaks symmetry, how-
ever recent research in computer algebra has given effective methods for solv-
ing polynomial systems with symmetric polynomials, including critical point
systems [HL16; Fau+23].

Problem 13.9. Incorporate software for symmetric polynomial solving into
packages for ACSV computations.

Exercise 13.4. In four variables, let G = 1 − e1 + 27e4 be the Gillis-Reznick-
Zeilberger denominator, let K = 1 − e1 + 2e3 + 4e4 be the Kauers-Zeilberger
denominator, let S = e3(1 − x, 1 − y, 1 − z, 1 − w) be the Szegö denominator,
and let L = e2(1 − x, 1 − y, 1 − z, 1 − w) be the Lewy-Askey denominator.

(a) Express G,K, S , and L as polynomials P1, . . . , P4 in the elementary sym-
metric functions e1, . . . , e4.

(b) Compute a Gröbner basis for ⟨P1, . . . , P4⟩ as polynomials in the variables
e1, . . . , ed and describe the variety Ve defined by the points (e1, . . . , ed)
where the P j simultaneously vanish.

(c) Use this computation to find the elements ofV(G,K, S , L).

13.8 Conclusion

This book aims to illustrate effective methods for computing asymptotic ap-
proximations to the coefficients of multivariate generating functions. Such meth-
ods have many applications, and have already been used to study problems
arising in, among other areas, dynamical systems, bioinformatics, number the-
ory, statistical physics, algebraic statistics, string theory, information theory,
and queueing theory. We expect the number of applications to grow steadily.
While many (most?) applied problems can be tackled by a smooth point anal-
ysis, there are many interesting problems that involve much more complicated
local geometry, such as the tiling models discussed in Section 11.4.

From the standpoint of mathematical analysis, many of the tools required
to extend the basic ACSV results already exist. Problems for which mini-
mal points control asymptotics usually sidestep complicated topology, and the
Morse-theoretic intuition behind our results can often be ignored in such cases
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by casual users seeking to solve a specific problem. However, substantial topo-
logical difficulties can arise when dealing with contributing points that are not
necessarily minimal. We believe that to make further progress in this area, sub-
stantial work in the Morse-theoretic framework will be required.

This book is certainly not the last word on the subject, but rather an invita-
tion to the reader to join in further development of this research area, which
combines beauty, utility, and tractability, and which has given the current au-
thors considerable challenge and enjoyment over many years.

Notes

ACSV was the subject of an AMS-sponsored Mathematical Research Com-
munity in 2020-2022, and a 2022 workshop at the American Institute of Math-
ematics. Among the topics discussed at these events, which still have active
research collaborations, are characterizations of CPAI [Gil22], software for
ACSV [LMS22], rational embeddings of algebraic functions [Gre+22], and
work in progress by Drmota and Pak on multivariate characterizations of so-
called N-algebraic functions. The methodology for algebraic functions given
at the end of Section 13.5 is contemporaneous to this edition and appears in
the preprint [BJP23], along with a new formula for coefficient asymptotics in
terms of the defining algebraic function.

Proving minimality by conventional means in Exercise 13.3 (c) above is
quite challenging; it is the basis of Problem B5 on the 2020 Putnam examina-
tion. The approach of Exercise 13.4 was suggested by Brendan Rhoades, and
Example 13.2 is adapted from [Sta99, Section 6.3].

Additional exercises

Exercise 13.5. (binomial transition) Consider the binomial coefficient gener-
ating function (1 − x − y)−1, and compute first order asymptotics for the coef-
ficient ars where s/r → 0 as r, s → ∞. How many different cases are there in
the analysis?

Exercise 13.6. Let P(x, y) = (1 − x)y2 − x2 as in Example 13.6.

(a) Show that for sufficiently small ε > 0 there are two liftings by π−1 of the
centered circle of radius ε in C∗ to a contour in V∗ and that one of them
describes the positive square root y = x/

√
1 − x.

(b) Find all affine critical points ofV∗ in direction (1, 0).
(c) Find all critical points at infinity ofV∗ in direction (1, 0).
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(d) Which of these critical points are at finite height?
(e) Which is more of a problem for computation, the double zero of P or the

existence of a critical point at infinity?

Exercise 13.7. Find a general formula for detΓΨ in terms of the partial deriva-
tives of Q when Q vanishes to degree 3 and is locally the product of three
transversely intersecting smooth divisors.
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Appendix A

Integration on manifolds

Our first two appendices develop the theoretical background necessary to un-
derstand what it means to represent the series coefficients ar of an analytic
function F(z) by an integral

ar =
(

1
2πi

)d ∫
C

ω

defined up to homologous cycles C and cohomologous forms ω in the domain
of holomorphicityM of ω. To make sense of this statement we define differen-
tial forms and their integrals, state the multivariate Cauchy Integral Formula,
construct singular homology and cohomology over the domain M, and con-
nect the singular homology ofM to the integration of exact forms over cycles
inM.

We begin in this appendix by formally constructing the apparatus to integrate
differential forms on real and complex manifolds.

• In Section A.1 embedded and abstract manifolds are defined, an important
example of the latter being projective spaces.

• In Section A.2 vector fields and differential forms are introduced.
• In Section A.3 integration of forms over chains is defined, leading to Stokes’

Theorem (Theorem A.24).
• In Section A.4 complex holomorphic forms are defined and Cauchy’s inte-

gral formula in a polydisk and polyannulus (Propositions A.28 and A.29)
are stated.

A.1 Manifolds

The notion of a manifold may already be familiar to some readers, but there
are several different formalizations so we start with basic definitions. Except

457
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Figure A.1 Covering the sphere with two charts.

for projective spaces, the manifolds most relevant to us will be submanifolds
of Euclidean space, and we present this more concrete case first.

A.1.1 Embedded manifolds

An embedded real d-manifold is a subsetM ⊂ Rn such that every point p ∈ M
has a neighborhood in Rn whose intersection U withM is diffeomorphic to the
open unit ball in Rd. Here, diffeomorphic means there is a map ϕ : U → Rd

such that the coordinates of ϕ are smooth (that is, members of the class C∞ of
infinitely differentiable functions) and the rank of its Jacobian matrix at each
point is d (which implies that ϕ has a smooth inverse). If (U, ϕ) is a pair of such
a set and diffeomorphism then we call U a chart and ϕ a chart map.

Example A.1. The implicit function theorem implies that if Q is a smooth
function and w is a zero of Q where the gradient of Q does not vanish, then the
zero set of Q is locally diffeomorphically parametrized near w by any (d − 1)
coordinates xk1 , . . . , xkd−1 such that the span of the gradients ∇xk1 , . . . ,∇xkd−1 at
w does not contain (∇Q)(w). For instance, if S d = {x ∈ Rd+1 :

∑d
j=1 x2

j = 1} is
the unit d-sphere in Rd+1 then taking Q(x) =

∑d
j=1 x2

j − 1 establishes that S d =

{x ∈ Rd+1 : Q(x) = 0} is a manifold. The unit d-sphere can be parametrized
with as few as two charts, by projecting the points above and below certain zd

values; see Figure A.1. ◁

The definition of an embedded complex d-manifold is analogous to that of
an embedded real manifold, except we require the stricter condition that the
chart maps be holomorphic (or, equivalently, analytic) instead of smooth.

Remark A.2. Because Cd can be identified with R2d by writing z j = x j + iy j

for real coordinates (x1, y1, . . . , xd, yd), subsets of Cd can also be viewed as real
manifolds. This identification is crucial to many of our arguments.

The implicit function theorem directly implies the following result.
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Proposition A.3. Suppose Q is a holomorphic function of d complex variables
and let VQ be the affine holomorphic variety VQ = {z ∈ C

d : Q(z) = 0}. If
∇Q(z) is nonvanishing for every z ∈ VQ thenVQ is an embedded real (2d−2)-
manifold. □

Remarks. (i) Using the complex implicit function theorem, instead of map-
ping to R2d and using the real implicit function theorem, shows that VQ will
be a complex (d − 1)-manifold. We do not need this extra structure at present.
(ii) When Q is the product of distinct irreducible polynomials then this result
is sharp: if ∇Q vanishes at some z ∈ VQ then no neighborhood of z in Q is
diffeomorphic to Cd−1.

Exercise A.1. For which polynomials Q isVQ a manifold?

(1) Q(x, y) = x2+y2+ z2−c, where c is a constant. Does the value of c matter?
(2) Q(x, y) = y3 − x2

(3) Q(x, y) = z2 − (x + y)2

(4) Q(x, y) = 1 − x − y − xy

Example A.4. The unit torus in Cd is the set {z ∈ Cd : |z j| = 1 for all 1 ≤ j ≤
d}. Identifying Cd with R2d, this set is defined by x2

j + y2
j = 1 for all 1 ≤ j ≤ d,

and is thus always a real d-manifold. On the other hand, the unit torus is never
a complex manifold. When d is odd this follows immediately from the fact that
it has the wrong dimension to be a complex manifold (when d is even then the
concept of tangent spaces, described below, can be used to prove the unit torus
is not a complex manifold). See Exercise A.14 for another example of lack of
complex structure. ◁

A.1.2 Abstract manifolds and projective spaces

Instead of working directly with subsets of Rd or Cd, it is possible to define
abstract manifolds whose ground sets can be anything. Although the Whitney
embedding theorem states that an abstract d-manifold can be embedded in R2d,
in some cases it is more natural to consider a definition requiring only a lo-
cal embedding into some real or complex space. In particular, expanding to
abstract manifolds helps us discuss projective spaces, which arise in the for-
mulation of critical points at infinity and the singular integrals of Chapter 11.

LetM be a second-countable Hausdorff space. A chart of dimension d on
M is an open subset U ⊂ M and a homeomorphism ϕ from U onto an open
subset of Rd. We say that the chart (U, ϕ) contains p if p ∈ U. Two charts
(U, ϕ) and (V, ψ) are compatible if the transition maps

ϕ ◦ ψ−1 : ψ(U ∩ V)→ ϕ(U ∩ V) and ψ ◦ ϕ−1 : ϕ(U ∩ V)→ ψ(U ∩ V)
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are smooth as functions on Rd (this holds trivially when U ∩ V = ∅), and we
call M a real d-manifold if there exists a collection of pairwise-compatible
charts of dimension d that coverM. Any additional charts that are compatible
with the charts defining a manifold must also be compatible with each other, so
any collection of charts covering a manifold is contained in a uniquely defined
maximal set of compatible charts, known as an atlas. This makes some of the
notation easier by allowing us to assume that for any given p ∈ M there is a
chart map taking p to the origin in Rd, since we can always subtract a constant
from a chart map to obtain another chart map.

Example A.5 (real projective d-space). LetM =
(
Rd+1 \ 0

) /
(x 7→ λx) de-

note the set of nonzero vectors modulo nonzero scalar multiples, which can
be identified with the set of lines through the origin in Rd+1. It is conventional
to write an element of M as (x0 : x1 : x2 : · · · : xd), with the colons in
place of commas indicating that multiplying every coordinate by a nonzero
real number gives a different representation for the same element. For each
0 ≤ α ≤ d let Uα = {x ∈ M : xα , 0}, and define chart maps ϕα : Uα → R

d

by ϕα(x) := (x j/xα) j,α. This defines the manifold RPd of real projective d-
space. ◁

Recall from Section 8.2 that if Q is a polynomial in x1, . . . , xd of total de-
gree m then the homogenization of Q is the polynomial Q(x0, x1, . . . , xd) =
xm

0 Q(x1/x0, . . . , xd/x0) in x0, x1, . . . , xd. Because every monomial appearing in
Q has degree m by construction, Q(λx) = λmQ(x) and the zero set of Q in
Rd is closed under scalar multiples. Thus, Q defines a real projective variety
VQ = {x ∈ RP

d−1 : Q(x) = 0}.

Exercise A.2. Let Q(x) = 1 − x2 − y2. (1) What subset of R3 is the union
of equivalence classes making up the real projective variety VQ? (2) Is the
projective variety VQ a manifold? (3) Intuitively, what simple shape is VQ

equivalent to?

A complex d-manifold is defined analogously to a real d-manifold, except
that the chart maps go to Cd and the transition maps between charts need to
be holomorphic. Analytic functions from Cd to Cd are smooth when viewed as
maps from R2d to R2d, so all complex d-manifolds may be viewed as real (2d)-
manifolds. We also define the complex projective d-space CPd analogously to
real projective space and, overloading notation, useVQ to denote the complex
projective variety defined by a polynomial Q. When writingVQ, we make sure
it is understood whether we are referring to the real or complex projectiviza-
tion.
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Exercise A.3. Give a description of the complex projective variety VQ when
Q(x) = 1 − x2 − y2.

A real m-manifold is called an orientable manifold if it can be covered by
charts (Uα, ϕα) such that the real transition maps ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) →
ϕα(Uα ∩ Uβ) have Jacobian matrices with positive determinants. Such a cover
yields an orientation, which is the set of all chart maps consistent with the
chosen orientation (meaning that all transition maps still have positive Jacobian
determinants).

Exercise A.4. Show that the standard 2-sphere S 2 ⊆ R3 is orientable.

In fact, the notion of orientability is interesting only for real manifolds. The
following classical result follows from the results of Section A.4 below.

Proposition A.6. Every complex manifold is orientable when considered as a
real manifold.

A smooth map between two real manifoldsM andM′ of dimensions m and
n is a function f : M → M′ such that for any p ∈ M and any chart maps
ϕ on a chart of M containing p and ψ on a chart of M′ containing f (p), the
function ψ ◦ f ◦ ϕ−1 from a subset of Rm to Rn is smooth. Holomorphic maps
between complex manifolds are defined analogously, requiring ψ ◦ f ◦ ϕ−1 to
be holomorphic instead of smooth.

In this appendix we construct various objects associated with manifolds:
tangent bundles, differential forms, chain complexes, homology, etc. Without
introducing large amounts of category theory for its own sake, some categorical
terminology is useful because it guides us to what should be true and what
arguments are predictable symbol manipulation – so-called diagram chases
– that can be skipped. In particular, our constructions are functorial. In the
covariant case this means that, in addition to associating an object G(M) with
each manifold M, we associate a map G∗( f ) : G(M) → G(M′) with every
map f : M → M′ between manifolds, having the property that G∗(g ◦ f ) =
G∗(g) ◦ G∗( f ). The map G∗( f ) between the objects G(M) and G(M′) is said
to be the induced map associated to f . In the contravariant case, the induced
map G∗( f ) : G(M′) → G(M) goes in the other direction (as indicated by the
raised *) and G∗(g ◦ f ) = G∗( f ) ◦ G∗(g).

Exercise A.5. Let G(M) denote the space of smooth real valued functions on
M. Determine whether this should be viewed as a covariant or contravariant
functor, and define the map G∗ or G∗ as the case may be.

Given a manifoldM, an Rk-bundle E overM is a map of manifolds π : E →
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M such that E is locally a productM×Rk. More precisely, this means that there
is a collection of open sets U ⊆ M coveringM and maps ϕU : U × Rk → E
satisfying the following conditions.

1. Each ϕU is a diffeomorphism between U × Rk and π−1(U).
2. π(ϕU(p,v)) = p for all U and p ∈ U.
3. If U and V are two of the open sets covering M and p ∈ U ∩ V then

there is an invertible linear transformation g = gU,V,p : Rk → Rk such that
ϕU(p,v) = ϕV (p, g(v)). In other words, the vector space structure on each
fiber π−1(p) is well-defined.

The point p is said to be the basepoint of any element of π−1(p). A section of a
bundle E is a smooth map s :M→ E with s(p) ∈ π−1(p), which is equivalent
to the statement that π ◦ s is the identity onM.

Example A.7 (tangent bundle of S 2, intuitively). Before we define tangent
vectors formally, here is an example to help with intuition. LetM be the sphere
S 2 ⊆ R3. The tangent bundle ofM is the set of vectors tangent to S 2 beginning
at basepoints p ∈ S 2, with the projection operator π taking any such vector to
its basepoint. The Hairy Ball theorem, first proved by Poincaré in 1885 [Poi85],
states that this tangent bundle has no section that is everywhere nonzero. Thus,
although the tangent bundle is locally diffeomorphic to S 2×R2 there is no such
global diffeomorphism. ◁

We will see that the tangent bundle is functorial: a map f : M → M′

induces a map f∗ between tangent bundles. As you might expect, f∗ maps tan-
gent vectors over the basepoint p to those over f (p) and preserves the notion
of tangency to a curve. Conversely, we will see that the cotangent bundle of a
manifold is a contravariant functor: if f : M → M′ then the induced map f ∗

sends differential forms onM′ to differential forms onM. The formal defini-
tions of such objects are full of symbols, but building intuition on key examples
helps greatly with understanding why the constructions are necessary and use-
ful. The reader is encouraged to have a favorite running example that they use
to illustrate the definitions and constructions as they go through this appendix.

A.2 Vector fields and differential forms

In this section we construct the objects necessary to do calculus on manifolds,
including the tools to integrate functions and residues over contours that are
piecewise submanifolds of algebraic varieties. This involves the use of tangent
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and cotangent vectors, and the exterior algebra of differential forms, so that
integrals are well-defined independent of specific parametrizations.

The constructions in this section formalize the following intuitive notion:
integrating f (x, y, z) dx dy on a surface S involves projecting the surface ele-
ment onto the xy-direction, multiplying by f , and organizing the sum of the
infinitesimal contributions into a two-parameter integral. Describing the sur-
face element without natural coordinates requires the introduction of tangent
vectors, while describing the role of dx dy in projecting the surface element re-
quires the introduction of cotangent vectors. Together these concepts allow us
to define integrals along curves, with the framework of exterior algebra extend-
ing this to surface integrals of arbitrary dimension. We know how to integrate
in Rd, and within a chart we can map from an abstract manifold to Rd using
a chart map, so we can generalize standard definitions from Rd provided that
using different charts for the same object provides the same answer.

A.2.1 Tangent vectors and vector fields

In an embedded manifoldM ⊂ Rd the tangent space ofM at p is naturally de-
fined as the vector space containing vectors in Rd tangent toM at p. Although
thinking about tangent vectors in this manner is concrete, it can be messy to
naturally identify tangent vectors under different charts, and it can be difficult
to generalize certain concepts to abstract manifolds. For this reason, we rein-
terpret the tangent space as a collection of (directional) derivatives.

Let M be a real m-manifold. A smooth germ in M at p is an equiva-
lence class of smooth functions defined in neighborhoods of p such that two
functions f on U and g on V are equivalent if there is some neighborhood
W ⊆ U∩V of p for which f |W = g|W . Letting C∞p (M) denote the set of smooth
germs of real valued functions onM at p, we define a derivation onM at p to
be any linear map D : C∞p (M)→ R that satisfies the Leibniz property,

D( f g) = (D f )g(p) + f (p)(Dg).

The tangent space of M at p, denoted Tp(M), is the real vector space of
derivations on M at p. By analogy with embedded manifolds, we call each
element of Tp(M) a tangent vector.

Example A.8. If M = Rm then Tp(M) = Tp(Rm) is the vector space of
directional derivatives at p. Let x1, . . . , xm denote the usual coordinates of Rm

and let ∂
∂x1

∣∣∣∣
p
, . . . , ∂

∂xm

∣∣∣∣
p

be the maps that take a smooth function g(x) from Rm
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to R and return its partial derivatives evaluated at x = p. Then

Tp(Rm) =

 m∑
k=1

ck
∂

∂xk

∣∣∣∣∣
p

: ck ∈ R


and we can identify Tp(Rm) = Rm by the mapping

m∑
k=1

ck
∂

∂xk

∣∣∣∣∣
p

↔ c ∈ Rm.

◁

If f :M→M′ is a smooth map of manifolds then the differential of f at p
is the map f∗ : TpM → T f (p)M

′ that takes the tangent vector X ∈ TpM and
returns the tangent vector f∗X ∈ T f (p)M

′ such that

( f∗X)(g) = X(g ◦ f ) ∈ R for all smooth g :M′ → R at f (p).

Exercise A.6. Prove that f∗ is an isomorphism of vector spaces when f is a
diffeomorphism.

If (U, ϕ) is a chart ofM containing p then ϕ is a diffeomorphism from U to
Rm, so ϕ∗ is an isomorphism from TpM to Tϕ(p)R

m = Rm. This proves that the
dimension of the tangent space at any point of a manifold is the same as the
dimension of the manifold.

If x1, . . . , xm are the usual coordinates of Rm then, as seen in Example A.8,
the maps ∂

∂x1

∣∣∣∣
ϕ(p)

, . . . , ∂
∂xm

∣∣∣∣
ϕ(p)

form a natural basis for Tϕ(p)R
m. Thus, the tan-

gent vectors ∂1, . . . , ∂m defined by

∂k = ϕ
−1
∗

(
∂

∂xk

∣∣∣∣∣
ϕ(p)

)
form a basis for TpM. Because ϕ maps into Rm, we can write ϕ = (ϕ1, . . . , ϕm)
for smooth ϕk : U → R. To express the dependence of this basis on p and
ϕ, we write ∂k =

∂
∂ϕk

∣∣∣∣
p

and call ∂
∂ϕ1

∣∣∣∣
p
, . . . , ∂

∂ϕm

∣∣∣∣
p

the standard basis for TpM

with respect to the chart (U, ϕ). Explicitly, for any smooth function g ∈ C∞p (M)
we have g ◦ ϕ−1 : Rm → R and

∂

∂ϕk

∣∣∣∣∣
p

(g) =
∂

∂xk

(
g ◦ ϕ−1

)∣∣∣∣∣
x=ϕ(p)

∈ R.

To ease notation we sometimes suppress the basepoint p when it is understood,
writing the standard basis as ∂/∂ϕk, and also use the shorthand ∂

∂ϕk

∣∣∣∣
p

(g) =
∂g
∂ϕk

(p).
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Example A.9. LetM = S 1 = {(x, y) ∈ R2 : x2 + y2 = 1} be the 1-dimensional
circle in R2. Suppose U is the half-circle of points in S 1 with y > 0 and ϕ is the
chart map ϕ(x, y) = x with inverse ϕ−1(x) = (x,

√
1 − x2). If (a, b) ∈ U and g is

a smooth, real valued function on a neighborhood of S 1 in R2, then the chain
rule applied to g and ϕ−1 at (a, b) implies

∂g
∂ϕ

(a, b) =
d
dx

[
g
(
x,
√

1 − x2
)]∣∣∣∣∣

x=a

= gx

(
a,
√

1 − a2
)
−

a
√

1 − a2
gy

(
a,
√

1 − a2
)

= gx(a, b) −
a
b

gy(a, b).

◁

If f :M→M′ is a smooth map of manifolds then the differential of f has
an explicit representation using local coordinates. Let (U, ϕ) be a chart onM
containing p and (V, ψ) be a chart on M′ containing f (p). Working through
the definitions above shows that with respect to the bases ∂

∂ϕk

∣∣∣∣
p

and ∂
∂ψ j

∣∣∣∣
f (p)

the linear map f∗ : TpM → T f (p)M
′ given by the differential is represented

by the m × n Jacobian matrix

J( f ) = Jp,ϕ,ψ( f ) =
(
∂(ψ j ◦ f )
∂ϕi

(p)
)

i, j
.

Example A.10. If f : Rm → Rn and we take standard coordinates x =

(x1, . . . , xm) and y = (y1, . . . , yn) for Rm and Rn respectively, then we can write
f = ( f1(x), . . . , fn(x)) for functions fk : Rm → R. The Jacobian matrix has
entries ∂(yi◦ f )

∂x j
(p) = ∂ fi

∂x j
(p), so our definition of the Jacobian generalizes the

definition from a first calculus course. ◁

Proposition A.11 (tangent vectors map functorially). If f : M → M′ and
g :M′ →M′′ are smooth maps between manifolds then (g ◦ f )∗ = g∗ ◦ f∗.

Exercise A.7. Prove Proposition A.11 using the definitions above.

Having developed the necessary machinery for the tangent space at a point,
we now define the tangent bundle of a d-manifoldM whose ground set is the
disjoint union of the tangent spaces at each point,

TM =
⋃
p∈M

TpM ,

and whose projection map π : TM → M sends all of Tp(M) to p. For any
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open U ⊂ M we write TU =
⋃

p∈U TpM and, if (U, ϕ) is a chart on M, we
define fϕ,U : TU → R2d by

fϕ,U(v) =
(
(ϕ ◦ π)(v), ϕ∗(v)

)
∈ ϕ(U) × Tϕ(π(v))R

d ⊂ R2d .

It can be shown that as (U, ϕ) ranges over an atlas ofM then the collection of
(TU, fϕ,U) gives an atlas for TM as a smooth manifold (the main consideration
is proving compatibility of chart maps, which follows straightforwardly from
the definition of the differential using coordinates; see [Tu11, Ch. 12] for a
full derivation). If (U, ϕ) is a chart on M then under this structure the map
v 7→ (π(v), ϕ∗(v)) is a diffeomorphism from TU to U × Rd. The maps ϕ∗ are
vector space isomorphisms, so that TM is a bundle.

Example A.12. SupposeM = Rd, with the canonical global chart U = Rd and
chart map ϕ(x) = x. Unsurprisingly, if we let vp denote the tangent vector at p
that takes a smooth map g and returns the directional derivative d

dt

∣∣∣
t=0 g(p+ tv)

then fϕ,U(vp) = (p,v). Thus, TRd has a global product structure and (in this
trivial case) there is a canonical isomorphism between two different tangent
spaces Tp(Rd) and Tp′ (Rd). ◁

Example A.13. Let M = S 2. If TM had a global product structure, i.e., if
there existed an isomorphism f :M×R2 → TM, then the map s(p) = f (p, e1)
would define a smooth global nonzero section of TM, contradicting the Hairy
Ball Theorem (see Example A.7). Thus, the tangent bundle of the sphere S 2

does not admit a global product structure. ◁

A smooth vector field onM is a section of TM. In other words, a vector field
is a smooth map X that takes p ∈ M and returns a tangent vector Xp ∈ TpM. If
(U, ϕ) is a chart onM then for any p ∈ U the tangent vectors ∂

∂ϕ1

∣∣∣∣
p
, . . . , ∂

∂ϕm

∣∣∣∣
p

form a basis for TpM. Thus, for any map X : M→ TM with Xp ∈ TpM we
can write

Xp =

m∑
k=1

ck(p)
∂

∂ϕk

∣∣∣∣∣
p

for all p ∈ U,

which defines coefficient maps ck : U → R. The mapping X is a vector field
(i.e., is smooth) if and only if the coefficient maps ck constructed this way are
all smooth as (U, ϕ) ranges over the charts ofM.

A.2.2 Cotangent vectors and 1-forms

Having defined what we need for tangent vectors, we now define cotangent
vectors by dualizing everything. It can be difficult to build intuition as to why
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calculus on manifolds requires the extra complexity introduced by dualizing.
Roughly speaking, when there is no canonical parametrization for a manifold
then the infinitesimal elements such as dx, dA, and dV that arise in integra-
tion must be defined in a way that is independent of parametrization. Cotan-
gent vectors act functorially on tangent vectors, which in turn act functorially
on smooth functions, to produce numerical results invariant under changes of
parametrization. We recommend the reader work through the examples in the
section on integration below, when they come to it, to help understand how to
do computations.

Definition A.14 (Cotangent vectors). Let M be an m-manifold. The cotan-
gent space toM at p is the dual space TpM to TpM. In other words, TpM

is the space of linear maps from TpM to R. If (U, ϕ) is a chart of M con-
taining p then the standard basis for TpM with respect to (U, ϕ) is the basis
{dϕ1|p, . . . , dϕm|p} dual to the standard basis for TpM with respect to (U, ϕ).
In other words, the standard basis for the dual is defined by setting

(dϕi|p)

 ∂

∂ϕ j

∣∣∣∣∣∣
p

 =
1 if i = j

0 otherwise

and extending linearly. As we did for tangent vectors, we often drop the base-
point p from our notation when it is understood.

Analogous to our construction of the tangent bundle of a m-manifoldM, we
define the cotangent bundle T ∗Mwhose ground set is the disjoint union of the
cotangent spaces at each point,

T ∗M =
⋃
p∈M

TpM ,

and whose projection map π : TM → M sends all of Tp(M) to p. If (U, ϕ)
is a chart on M then any cotangent vector v with π(v) ∈ U is an R-linear
combination v =

∑
k ck(v)dϕk |π(v). Analogously to the tangent bundle TM, a

smooth structure can be put on T ∗M using maps of the form

v 7→
(
(ϕ ◦ π)(v), c1(v), . . . , cm(v)

)
∈ ϕ(U) × Rm ⊂ R2m ,

where v ranges over v ∈ T ∗M with π(v) ∈ U. Under this structure the map
v 7→ (π(v), c1(v), . . . , cm(v)) local diffeomorphism when restricted to the bun-
dle T ∗U over chart neighborhoods. Changing charts preserves the vector space
structure, so T ∗M is a bundle.

We can use the differential on tangent spaces to define a dual map on cotan-
gent spaces. LetM andM′ be manifolds with p ∈ M, let f : M → M′ be a
smooth map, and let ξ ∈ T f (p)M′ be a cotangent vector. Then ξ maps tangent
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vectors in T f (p)M
′ to R, so the composition f ∗(ξ) = ξ ◦ f∗ of ξ with the differ-

ential of f is a map from TpM to R, which is a cotangent vector in TpM. In
other words, we have constructed a contravariant map f ∗ : T f (p)M′ → TpM,
known as the pullback by f .

Exercise A.8. Let f : M → M′ and g : M′ → M′′ be smooth maps. Prove
that (g ◦ f )∗ = f ∗ ◦ g∗.

The pullback can be computed explicitly in local coordinates. Suppose (U, ϕ)
is a chart ofM containing p and let (V, ψ) be a chart onM′ containing f (p).
We have seen above that the differential of f∗ with respect to the standard
bases {∂/∂ϕi} and {∂/∂ψ j} of TpM and T f (p)M

′ in these charts is given by
left-multiplication of the Jacobian matrix J( f ). Plugging in the definition of
f ∗,

f ∗(dψi)
(
∂

∂ϕ j

)
= (dψi)

(
f∗

(
∂

∂ϕ j

))
= (dψi)

∑
k

∂(ψk ◦ f )
∂ϕ j

(p)
∂

∂ψk


=
∂(ψi ◦ f )
∂ϕ j

(p) .

In other words, with respect to the dual bases {dϕ j} and {dψi} the linear map
f ∗ is defined through right-multiplication by the Jacobian matrix.

If M is a manifold then a differential 1-form on M is a section on T ∗M.
In other words, a 1-form is a smooth map ω that takes p ∈ M and returns a
cotangent vector ω|p ∈ TpM. If f : M → R is a smooth function onM then
the differential of f is the 1-form d f :M→ T ∗M defined by

(d f |p)(Xp) = Xp( f ) for all p ∈ M and Xp ∈ TpM.

Remark A.15. When x is the standard coordinate on R and we take p ∈ M

and Xp ∈ TpM then

f∗(Xp) = (d f |p)(Xp)
d
dx

∣∣∣∣∣
f (p)

,

where f∗ : TpM → T f (p)R is the differential of f defined previously. Thus,
both of our definitions of the differential agree under the identification T f (p)R =

R given by the standard basis of the tangent space (see Example A.12).

If (U, ϕ) is a chart onM then for any p ∈ U the cotangent vectors dϕ1|p, . . . , dϕm|p

form a basis for TpM. Thus, for any map ω : M → T ∗M with ω|p ∈ TpM
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we can write

ω|p =

m∑
k=1

ck(p) dϕk |p for all p ∈ U,

which defines coefficient maps ck : U → R. The mapping ω is a 1-form (i.e.,
is smooth) if and only if the coefficient maps constructed in this way are all
smooth as (U, ϕ) ranges over the charts ofM.

A.2.3 Differential k-forms

The concept of a differential form will allow us to integrate on manifolds, how-
ever 1-forms will only allow us to integrate on one-dimensional manifolds (i.e.,
curves). To integrate on higher-dimensional surfaces, we need to generalize 1-
forms to higher-dimensional objects. The necessary algebra can be developed
for any vector space V , although we use it only in the case when V = TpM is
the cotangent space of a manifold.

Let V be a d-dimensional real vector space. A k-form on V is a multi-linear
map α : Vk → R which is antisymmetric: swapping any two arguments of
α negates the value of the map. Note that linearity and antisymmetry imply
that the only k-form when k > d is the zero map. The vector space of k-forms
over V is denoted Λk(V), and the direct sum Λ(V) =

⊕d
k=1 Λk(V) is called

the exterior algebra of V . To give Λ(V) a ring structure, we define the wedge
product of k 1-forms α1, . . . , αk ∈ Λ

1(V) to be the k-form α1∧· · ·∧αk : Vk → R

determined by

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = det
(
αi(v j)

)
for all v ∈ Vk.

If α1, . . . , αd are 1-forms and I ∈ {1, . . . , d}r then we write αI = αi1 ∧ · · · ∧ αir .
When α1, . . . , αd form a basis for Λ1(V) = V then the k-forms αI where I =
(i1, . . . , ik) with i1 < i2 < · · · < ik form a basis for Λk(V). Thus, the vector
space of k-forms has dimension

(
d
k

)
and ∧ defines a bilinear associative product

on Λ(V) which is anticommutative: if α is an a-form and β is a b-form then
α ∧ β = (−1)abβ ∧ α.

Example A.16. The space of d-forms has dimension one, and is thus generated
by the determinant. ◁

Example A.17. Let x and y be the usual coordinates onM = R2 and V = T 0M

be the cotangent space ofR2 at the origin. Since the differentials dx and dy span
V , any 1-form on V can be written a dx+ b dy for a, b ∈ R. The wedge product
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of two 1-forms is computed by

(a dx + b dy) ∧ (p dx + q dy) = ap(dx ∧ dx) + aq(dx ∧ dy)

+ bp(dy ∧ dx) + bq(dy ∧ dy)

= aq(dx ∧ dy) + bp(dy ∧ dx)

= (aq − bp)(dx ∧ dy),

where dx ∧ dx = dy ∧ dy = 0 by anticommutativity. ◁

Bringing our discussion back to differential geometry, let M be a smooth
m-manifold. For any 1 ≤ k ≤ m the exterior k-algebra bundle of M whose
ground set is the disjoint union

Λk(M) =
⋃
p∈M

Λk(Tp(M))

is defined by the projection map π that takes ν ∈ Λk(Tp(M)) and returns
π(ν) = p. If (U, ϕ) is a chart on M then for any p ∈ U the cotangent vec-
tors dϕ1|p, . . . , dϕm|p form a basis for Tp(M). Thus, the k-forms dϕI |p =

dϕi1 |p∧· · ·∧dϕik |p form a basis forΛk(Tp(M)) as I ranges over strictly increas-
ing tuples in {1, . . . ,m}k. For any map ω : M → Λk(M) with ω|p ∈ Tp(M)
this means we can write ω as a sum over dΦI as I ranges over subsets of [d] of
cardinality k,

ω|p =
∑
|I|=k

cI(p) dϕI |p for all p ∈ U .

As for the tangent and cotangent bundles, we can give Λk(M) a smooth struc-
ture using charts (U, ϕ) and the coefficient functions cI . A differential k-form
on M is a section of Λk(M) under this structure, and a mapping from M to
Λk(M) is a differential k-form if and only if the coefficient maps cI are all
smooth as (U, ϕ) ranges over the charts ofM. The set of differential k-forms is
denoted Ek(M) and the union of the Ek(M) over all k is denoted E∗(M). From
now on we restrict to this differential setting and use the terms k-form and dif-
ferential k-form interchangeably. A top level form on a manifold of dimension
m is any m-form.

Example A.18. Once again, let M = S 1 be the 1-dimensional circle in the
plane, let U be the halfcircle of points in S 1 with y > 0, and let ϕ be the chart
map ϕ(x, y) = x with inverse ϕ−1(x) = (x,

√
1 − x2). If ω is a 1-form on S 1

then for (a, b) ∈ U we can write ω|a,b = f (a, b)dϕ|a,b where f (x, y) is smooth
at (a, b). The criterion of smoothness means the real function ( f ◦ ϕ−1)(x) =
f (x,
√

1 − x2) is smooth at x = a. ◁



A.3 Integration of forms 471

Exercise A.9. Let (U, ϕ) be a chart onM and f1, . . . , fk : U → R. Show that
the wedge product of differentials satisfies

(d f1) ∧ · · · ∧ (d fk) =
∑
|I|=k

det JI(f, ϕ) dϕI

where JI(f, ϕ) is the Jacobian matrix JI(f, ϕ) =
(
∂ fa
∂ϕib

)
1≤a,b≤k

when I = (i1, . . . , ik)

with i1 < · · · < ik.

Let f : M → M′ be a smooth map of manifolds. If p ∈ M then we
saw above how to define the pullback f ∗ : T f (p)M′ → TpM of cotangent
vectors from M′ to M. Working pointwise, we can also define a pullback
f ∗ : Ek(M′) → Ek(M) on forms. Concretely, if ω is a k-form onM′ then the
pullback of ω by f is the k-form f ∗ω onM defined for each p ∈ M by

( f ∗ω)|p(X1, . . . , Xk) = ω| f (p)( f∗X1, . . . , f∗Xk) for all X1, . . . , Xk ∈ TpM.

We also define the pullback of a smooth function (which can be considered a
0-form) g :M′ → R by f ∗g = g ◦ f . Basic properties of the pullback include

• distributivity over addition: f ∗(ω + τ) = f ∗ω + f ∗τ,
• distributivity over wedge product: f ∗(ω ∧ τ) = ( f ∗ω) ∧ ( f ∗τ),
• commutativity with the differential: f ∗(dg) = d( f ∗g).

Example A.19. LetM = M′ = Rd with standard coordinates x1, . . . , xd and
let f : Rd → Rd be smooth, so f = ( f1, . . . , fd) with each f j : Rd → R smooth.
If ω is a top level form on Rd (i.e., a d-form) then ω = a(x) dx1 ∧ · · · ∧ dxd for
some smooth a : Rd → R. Since f ∗xk = xk ◦ f = fk, the pullback of ω under f
is given by the Jacobian determinant of f ,

f ∗ω = f ∗(a(x) dx1 ∧ · · · ∧ dxd) = a( f (x)) d( f ∗x1) ∧ · · · ∧ d( f ∗xd)

= a( f (x)) (d f1) ∧ · · · ∧ (d fd)

= a( f (x)) det
(
∂ f j

∂xi

)
(dx1 ∧ · · · ∧ dxd),

where the final equality follows from Exercise A.9. ◁

A.3 Integration of forms

The only thing remaining before defining integration on manifolds is to discuss
domains of integration. For each p ≥ 1, let ∆p denote the standard p-simplex
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in Rp defined by

∆p =

(x1, . . . , xp) ∈ Rp : xi ≥ 0 for all i and
p∑

i=1

xi ≤ 1

 .

By convention, if p = 0 then ∆p is defined to be a single point. Associated with
the standard simplices are p+2 ways of embedding ∆p as a face of ∆p+1. To be
explicit, for each 1 ≤ i ≤ p + 1 let κp

i : ∆p → ∆p+1 be the embedding obtained
by inserting a zero in the ith position,

κ
p
i (x1, . . . , xp) = (x1, . . . , xi−1, 0, xi+1, . . . , xp),

and let κp
0 : ∆p → ∆p+1 embed into the diagonal face,

κ
p
0 (x1, . . . , xp) =

1 − p∑
i=1

xi , x1, . . . , xp

 .
We now fix an m-manifold M in Rn. For each 0 ≤ p ≤ m, a smooth p-

simplex (or simply p-simplex) in M is defined to be a map σ : ∆p → M

which extends to a smooth map of a neighborhood of ∆p in Rp intoM. Define
the space Cp(M) of p-chains on M to be the space of finite formal linear
combinations

∑
ciσi of p-simplices in M with coefficients ci ∈ C. A chain∑

ciσi is said to be supported on a set X ⊆ M whenever all σi in the sum map
into X.

Definition A.20 (boundary operator). For any 1 ≤ p ≤ m, the boundary op-
erator on p-chains is the linear map ∂ : Cp → Cp−1 which takes a p-simplex
σ : ∆p →M and returns the (p − 1)-chain ∂σ : ∆p−1 →M defined by

∂σ :=
p∑

i=0

(−1)i σ ◦ κ
p−1
i . (A.3.1)

Figure A.2 illustrates the boundary operator on a singular 2-simplex.
A crucial property of the boundary operator is it gives the zero map that

when applied twice.

Proposition A.21. For any manifoldM and 1 ≤ p ≤ d the map ∂2 = 0.

Exercise A.10. Verify ∂2 = 0 by proving that κp+1
i ◦κ

p
j = κ

p+1
j+1 ◦κ

p
i for all p ≥ 0

and i ≤ j (where κb
a is identically zero if a or b are negative or a > p).

For a domain A ⊆ Rn with standard coordinates x1, . . . , xn, we define the
integral of a top level form ω = f (x)dx1 ∧ · · · ∧ dxn on A to be the usual
Riemann-Lebesgue integral∫

A
ω =

∫
A

f (x) dx1 ∧ · · · ∧ dxn =

∫
A

f (x) dV ,
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Figure A.2 A 2-simplex and its boundary.

where dV is Lebesgue measure in Rn.

Remark A.22. In order for this definition of integration to be consistent, we
must write the wedge product in increasing order. For instance, in two dimen-
sions dy ∧ dx = −dx ∧ dy, so∫

A
f (x, y)dy ∧ dx = −

∫
A

f (x, y)dx ∧ dy = −
∫

A
f (x, y)dxdy

even though ∫
A

f (x, y)dxdy =
∫

A
f (x, y)dydx

as Riemann integrals (since f is smooth).

IfM is an oriented manifold then for any p-simplex σ : ∆p →M, integra-
tion of a p-form ω over σ is defined by∫

σ

ω :=
∫
∆p
σ∗(ω),

where σ∗ is the pullback of ω by σ from a form onM to a form on ∆p ⊂ Rp. It
is important to note that we have defined integration not over a set (the range
of σ) but over a parametrization (σ itself). Integration over a chain is defined
by linearity, ∫

∑r
i=1 aiσi

ω :=
r∑

i=1

ai

∫
σi

ω .

Example A.23. IfM = Rd then we can write any d-simplex σ = (σ1, . . . , σd)
where each σi is a smooth map from ∆d to R. Example A.19 implies that for
any d-form ω = a(x)dx1 ∧ · · · ∧ dxd,∫

σ

ω =

∫
∆p
σ∗(ω) =

∫
∆p

a(σ(x))(det J)dx1 · · · dxd ,
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where J is the Jacobian matrix of σ : Rd → Rd and the final integral is the
Riemann integral of a smooth function on Rd. This mirrors the usual change of
variables formula seen in a first calculus course. ◁

We often want to integrate over manifolds, but our formal definition of inte-
gration holds over chains. Integration over a manifold can be defined by divid-
ing the manifold into a finite collection of chains, provided (i) how we divide
up the manifold does not affect the result, and (ii) we can orient the chains in
a consistent way so that the integral is uniquely determined up to a sign de-
pending on a global orientation. Recall from above that a manifoldM is called
oriented if for any charts (U, ϕ) and (V, ψ) onM with non-empty intersection
W = U ∩ V the smooth function ϕ ◦ ψ−1 from ψ(W) ⊂ Rm to ϕ(W) ⊂ Rm has
positive Jacobian determinant. We do not attempt to define integration over
non-orientable manifolds.

Assume that the p-manifoldM is orientable and fix one of its two orienta-
tions. We say that a p-simplex σ : ∆p → M is a positively oriented simplex
with respect to this orientation ofM if for any oriented chart (U, ϕ) ofM the
differential σ∗ : TpR

m → Tσ(p)M with respect to the bases ∂/∂xk and ∂/∂ϕk

of TpR
m and Tσ(p)M has positive determinant. If M is also compact then a

triangulation ofM is a finite set σ1, . . . , σr of positively oriented p-simplices
satisfying certain conditions set out at greater length in the definition of a sim-
plicial complex in Section B.1 of Appendix B. These conditions imply that
the simplices divideM into regions, meaning that each map is one-to-one on
the interior of ∆m, the images of the interiors is disjoint, and the union of the
images is all ofM. Triangulation representsM as an p-chain

∑r
j=1 σ j, so the

integral of an p-form ω overM is defined by linearity,∫
M

ω :=
r∑

j=1

∫
σ j

ω . (A.3.2)

The integral does not depend on which oriented triangulation we chose [War83,
Section 4.8], so (A.3.2) defines the integral of a p-form over an orientable p-
manifold (up to a sign that depends on the orientation chosen).

Exercise A.11. Give an explicit oriented triangulation of S 2 and use it to inte-
grate f (x, y) = xy2 on S 2.

Above we defined the differential map, which takes a smooth function on
a manifoldM – in other words, a 0-form f ∈ E0(M) – and returns a 1-form
d f ∈ E1(M). We now extend this map to the differential operator (or exterior
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derivative operator) d : E∗(M)→ E∗(M) defined locally in a chart (U, ϕ) by

d( f dϕI) :=
∑

1≤ j≤m

∂ f
∂ϕ j

dϕ j ∧ dϕI .

The differential maps a p-form to a (p + 1)-form, applying d twice gives the
zero map (this is usually written d2 = 0), and if ω ∈ Ep(M) and η ∈ Eq(M)
then

d(ω ∧ η) = d(ω) ∧ η + (−1)pω ∧ d(η) . (A.3.3)

The differential still commutes with pullbacks, meaning d(ψ∗(ω)) = ψ∗(dω)
for any smooth map ψ.

Exercise A.12. Prove that (A.3.3) holds.

We introduce the differential to state Stokes’ theorem, our last result on the
integration of forms.

Theorem A.24 (Stokes’ Theorem). Let p ≥ 1 and suppose that ω is a (p− 1)-
form on a manifoldM of dimension at least p. If C is a p-chain onM then∫

∂C

ω =

∫
C

dω .

Stokes’ Theorem follows from our definitions, integration by parts, and
some elementary computations; see [War83, Theorem 4.7] for details.

A.4 Complex manifolds and differential forms in Cn

Having reviewed the basics of differential geometry for real manifolds, we now
return to the complex case. As noted above, we may identify Cn with R2n by
mapping (x1 + iy1, . . . , xn + iyn) ∈ Cn to (x1, . . . , xn, y1, . . . yn) ∈ R2n so any
complex manifold is a real smooth manifold. However, this elides much of the
extra structure of a complex manifold. In particular, we want to understand
how complex analytic behavior and the multiplicative structure of the complex
numbers can be captured in a setting where complex numbers are represented
as real two-vectors. For the remainder of this section, points of R2n will be
referred to by (x1, . . . , xn, y1, . . . , yn) rather than (x1, . . . , x2n).
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For any smooth map u from Cn = R2n to C, define

∂u
∂z j

:=
1
2

(
∂u
∂x j
− i

∂u
∂y j

)
∂u
∂z j

:=
1
2

(
∂u
∂x j
+ i

∂u
∂y j

)
dz := dx + i dy dz := dx − i dy

∂u :=
d∑

j=1

∂u
∂z j

dz j ∂u :=
d∑

j=1

∂u
∂z j

dz j ,

and du := ∂u + ∂u. The function u is said to be a holomorphic function if
∂u = 0. Holomorphicity of u, under this definition, is equivalent to the vanish-
ing of each ∂u/∂z j, which in turn is equivalent to the Cauchy-Riemann equa-
tions holding in each variable. Since the Cauchy-Riemann equations hold pre-
cisely when u is complex analytic, holomorphicity is invariant under complex
analytic coordinate changes. In fact, the decomposition du = ∂u + ∂u is well-
defined when u is any smooth complex-valued function on a complex mani-
fold: such a manifold is defined by an atlas of chart maps whose transitions are
complex analytic and thus preserve holomorphicity. It also follows that for a
holomorphic function u, the above formal definition of the derivation ∂/∂z j in
terms of the tangent vectors ∂/∂x j and ∂/∂y j agrees with the limit definition

∂ f
∂z j

(z) = lim
t→0

u(z + te j) − u(z)
t

,

where e j is the elementary basis vector with a 1 in position j and 0 elsewhere.

Exercise A.13. Use the definition of d/dz above to compute (d/dz)u(z) when
u(z) = u(x, y) = (x+ iy)2 and verify that it is equal to the definition via calculus
over the complex numbers.

The computational apparatus representing complex numbers as real two-
vectors allows us to prove an important fact about complex manifolds.

Proposition A.25. Every complex manifold is orientable.

Proof By definition, overlapping chart maps are related by a complex ana-
lytic coordinate change f . It therefore suffices to prove that a bi-holomorphic
map f : U ⊆ Cm → Cm always has a positive Jacobian determinant when
viewed as a map on R2m. On the complex tangent space, f∗ is complex linear
represented by an m × m complex Jacobian matrix JC = J( f ), so that m∑

j=1

e jz j

 = m∑
j=1

(Jv) je j.
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Recalling that z is represented as [Re(z), Im(z)], the real 2m × 2m Jacobian
matrix is given by

JR =
[

A −B
B A

]
where A = Re(JC) and B = Im(JC). Positivity of det JR then follows from
nonvanishing of det JC and the identity

det
[

A −B
B A

]
= det

[
A + iB −B + iA

B A

]
= det

[
A + iB 0

B A − iB

]
= det(A + iB) · det(A − iB)

= | det(A + iB)|2 .

□

Next, we extend the definitions of ∂, ∂ and d from functions to differential
forms as follows. For any coordinate system t1, . . . , t2n and J ⊆ [2n], let dtJ

denote the wedge product of dt j for j ∈ J in increasing order. For a smooth
function u define d(u dtJ) = du∧dtJ and extend linearly to all forms. The form
ω is said to be a holomorphic form if it is the sum of terms uJdzJ with no dzi

terms and each uJ is holomorphic. The space of holomorphic functions form
a subring of C∞(R2n), while the space of holomorphic forms have a (noncom-
mutative) ring structure under wedge product and are generated over the ring
of holomorphic functions by {dz1, . . . , dzn}.

Remarks A.26. (i) Functoriality and the Cauchy-Riemann equations imply
that these definitions extend to functions on any complex manifoldM.

(ii) While the same symbol is used for the boundary operator ∂σ and the
holomorphic differential ∂u, it is always clear from context which we
refer to.

Tangent and cotangent bundles, differential forms, and integration on a com-
plex manifold of dimension m can all be defined via its structure as a real man-
ifold of dimension 2m. The operator d preserves holomorphicity: if ∂ω = 0
then dω = ∂ω which is evidently holomorphic. We also define the holomor-
phic volume form dz := dz1 ∧ · · · ∧ dzn in Cn.

Exercise A.14. Show that the conjugation function z is not holomorphic on
C by computing ∂z and ∂z. Find a continuous, piecewise smooth function fε :
C → C that agrees with z on the disk {|z| ≤ ε} and is holomorphic outside of
this disk.

The holomorphic volume form is an n-form inR2n, thus middle-dimensional,
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but is the highest dimensional holomorphic form in R2n. This leads to the fol-
lowing useful result.

Theorem A.27. If C is any (n + 1)-chain on a domain U ⊆ Cn and ω is any
holomorphic n-form on U then ∫

∂C

ω = 0 .

Proof The d operator preserves holomorphicity, so dω is holomorphic. There
are no holomorphic forms above rank n and ∂ω is a (n+1)-form, hence ∂ω = 0.
Stokes’ Theorem then gives ∫

∂C

ω =

∫
C

dω = 0 .

□

Exercise A.15. Let C be an n-chain supported on a complex submanifoldM of
Cn, where the dimension ofM is strictly less than n. Show that

∫
C
ω vanishes

for any holomorphic n-chain ω.

The polydisk with center w ∈ Cd and radius r ∈ Rd
>0 is the set {z ∈

Cd : |z j −w j| < r j for 1 ≤ j ≤ d}, while the torus with center w and radius r is
the set {z ∈ Cd : |z j−w j| = r j for 1 ≤ j ≤ d}. Our asymptotic arguments always
begin by representing the power series coefficients of an analytic function by
a complex integral over a polytorus, after which we apply the integration tech-
niques discussed in these appendices. We thus conclude this first appendix by
stating and proving the multivariate Cauchy Integral Formula, which is used to
derive such representations.

Proposition A.28 (multivariate Cauchy Integral Formula). Let U ⊂ Cd be an
open set and D,T ⊂ Cd be a polydisk and torus with radii r ∈ Rd

>0, centered
around the same point. If D ⊂ U and f is an analytic function on U then, for
all w ∈ D,

f (w) =
(

1
2πi

)d ∫
T

f (z)
(z1 − w1) · · · (zd − wd)

dz . (A.4.1)

□

Proof Without loss of generality, we may assume that D and T are cen-
tered at the origin. When d = 1 this is the usual (univariate) Cauchy Integral
Formula. The general case follows by induction. In particular, for any fixed
(a1, . . . , ad−1) ∈ Cd−1 with each |a j| ≤ r j we know from the univariate case that

f (a1, . . . , ad−1,wd) =
1

2πi

∫
|zd |=rd

f (a1, . . . , ad−1,wd)
zd − wd

dzd . (A.4.2)
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If the Cauchy Integral Formula holds in d − 1 variables then

f (w) =
(

1
2πi

)d−1 ∫
|z1 |=r1

· · ·

∫
|zd−1 |=rd−1

f (z1, . . . , zd−1,wd)
(z1 − w1) · · · (zd−1 − wd−1)

dz1 · · · dzd−1 ,

and substitution with (A.4.2) implies

f (w) =
(

1
2πi

)d ∫
T

f (z)
(z1 − w1) · · · (zd − wd)

dz ,

as desired. □

Given vectors a, b ∈ Rd
>0, the polyannulus with center w ∈ Cd, inner ra-

dius a and outer radius b is the set {z ∈ Cd : ak < |zk − wk | < bk for all k}.
Some of our arguments require a version of the Cauchy Integral Formula in a
polyannulus.

Proposition A.29 (Cauchy Integral Formula in a polyannulus). Let U ⊂ Cd

be an open set and let D ⊂ Cd be a polyannulus of inner radius a and outer
radius b. For η ∈ {a, b}d let Tη denote the torus with radius r where

ri =

ai if ηi = a

bi if ηi = b
,

and let sgn(η) = (−1)#{ j : η j=a}. If D ⊂ U and f is an analytic function on U,
then for all w ∈ D

f (w) =
(

1
2πi

)d ∑
η∈{a,b}d

sgn(η)
∫

Tη

f (z)
(z1 − w1) · · · (zd − wd)

dz . (A.4.3)

Proof When d = 1 the conclusion states that

f (w) =
1

2πi

[∫
|z|=b

f (z)
z − w

dz −
∫
|z|=a

f (z)
z − w

dz
]
,

which is the classical univariate Cauchy formula in an annulus [Hör90, Theo-
rem 1.2.1]. Induction now applies exactly as in the previous proposition, noting
that as chains ∑

η∈{a,b}d
sgn(η)Tη =

∑
η∈{a,b}d−1

sgn(η)Tη × (γb − γa) ,

where γc is the circle of radius c oriented counterclockwise. □
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Notes

The material in the first three sections of this chapter is standard graduate
level calculus, and our presentation of the material owes a dept to the texts
of Tu [Tu11] and Warner [War83]. Additional details on complex manifolds
can be found in Griffiths and Harris [GH94].

Additional exercises

Exercise A.16. Is there a difference between RP2 and CP1 as an abstract set?
As a topological space?

Exercise A.17. Let f : X → R be a smooth map on a d-manifold X for
which d f is everywhere nonvanishing. Let M be the zero set of f and let
ι : M → X denote the inclusion map. Prove that for any (d − 1)-form η the
equality ι∗(η) = 0 holds if and only if η ∧ d f vanishes onM. Repeat this for
k ≤ d functions f1, . . . , fk whose intersection defines a smooth surface M of
codimension k. Hint: Use the implicit function theorem to coordinatize X with
first coordinate f and use functoriality of ∧ to reduce to the case f = x1.

Exercise A.18. Do Exercise A.17 when X is a complex d-manifold and f :
X → C is analytic. Hint: You can copy the proof, only you need the complex
form of the implicit function theorem [Hör90, Theorem 2.1.2] in order to be
sure your coordinates are holomorphic.

Exercise A.19. Define a 2-form ω in R3 by ω = x dy∧dz+y dz∧dx+z dx∧dy
and define a 2-chain C representing the unit sphere. Compute

∫
C
ω directly

from the definitions, then figure out a shortcut to the same result using Stokes’
Theorem.
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Having established the necessary background for integration on real and com-
plex manifolds in Appendix A, we now move on to the topological results that
allow us to manipulate these integrals in order to derive asymptotics. A differ-
ential form ω is said to be a closed form if dω = 0 and an exact form if ω = dτ
for some form τ. Many of the forms we care about are closed, for instance if ω
is any holomorphic n-form in Cn then ∂ω vanishes by holomorphicity and ∂ω
vanishes because there are no holomorphic (n+ 1)-forms, hence ω is closed. A
chain C is called a cycle if ∂C = 0 and a boundary if C = ∂D for some chain
D. The boundaries form a subset (in fact, a sub-vector space) of the cycles
because ∂2 = 0.

By the same reasoning as our proof of Theorem A.27 in the last appendix,
the integral of any closed form over a boundary is zero. Thus, by linearity of
the integral, if C is a cycle, then

∫
C
ω depends only on the equivalence class

of C in the quotient space of cycles modulo boundaries. Homology theory
is the study of this quotient space, which may be thought of simultaneously
as a topological invariant and as classifying contours of integration for closed
forms. After studying various forms of homology, we dualize our constructions
and define cohomology of differential forms. Just as

∫
C
ω depends only on the

homology class of the chain C, it also depends only on the cohomology class
of the form ω.

B.1 Chain complexes and homology theory

Instead of working only with cycles of integration, we develop homology in a
more general setting. This approach better illustrates underlying structure, and
allows us to reuse results in different contexts. We therefore introduce the fol-
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lowing abstract definitions, which generalize some of the properties discussed
above.

(i) A chain complex is a collection C = {Cn : n = 0, 1, 2, . . .} of com-
plex vector spaces, not necessarily finite dimensional, together with a
boundary operator ∂ which for all n is a linear map ∂n from the space
of n-chains Cn to the space of (n − 1)-chains Cn−1 that satisfies ∂2 = 0
(meaning ∂n ◦ ∂n+1 = 0 for all n, so that ‘a boundary has no boundary’).
By definition, ∂ = 0 on C0.

(ii) The vector space of n-cycles Zn ⊆ Cn of a chain complex C is the kernel
of ∂n, and the group Bn ⊂ Cn of n-boundaries of C is the image of ∂n+1.

(iii) The nth homology group of C is the vector space quotient

Hn(C) := Zn/Bn .

The notation H∗(C) is used to refer collectively to Hn(C) for all n. Cycles in
the same equivalence class are called homologous.

Remark. Because we work with complex vector spaces, H∗(C) is sometimes
called homology with coefficients in C to distinguish it from the analogous
construction with integer coefficients. While the theory with integer coeffi-
cients is richer, taking coefficients in a field better suits the purposes of comput-
ing integrals. With integer coefficients, the spaces of chains, cycles and bound-
aries are Z-modules, and their quotients are abelian groups, hence “homology
group” rather than “homology vector space.”

To discuss the homology of a manifold, we must define an appropriate chain
complex. One natural candidate is the chain complex defined by smooth chains
together with the boundary map discussed in Section A.3 of Appendix A. For
many purposes, however, it is convenient to relax our smoothness condition.
IfM is any Hausdorff topological space then a singular n-simplex inM is a
continuous (not necessarily smooth) map σ : ∆n → M from the standard n-
simplex ∆n toM, and a singular n-chain inM is a complex linear combination
of singular n-simplices inM. Just as for smooth chains, we may use the natural
ordering of the faces of ∆n to define a canonical boundary map through (A.3.1),
taking a singular n-simplex to a singular (n−1)-simplex and extending linearly
to singular chains. It is a foundational result in homology theory that the ho-
mology of a manifold is unchanged whether one studies smooth or singular
chains.

Proposition B.1. LetM be a differentiable manifold, let C be the chain com-
plex whose chains are linear combinations of singular simplices on M, and
let C′ be the chain complex whose chains are linear combinations of smooth
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simplices onM. Then for any n ∈ N the homology groups Hn(C) and Hn(C′)
are isomorphic.

Proof See [Eil47]. □

We write C(M) for the chain complex defined by the singular n-chains in
M. The homology group Hn(C(M)) is written Hn(M) and called the nth sin-
gular homology group ofM. One can think of the rank of the homology group
Hn(M) — i.e., the minimum size of a generating set of the group — as indi-
cating how many unique cycles inM don’t bound anything.

Example B.2. The rank of H1(M) represents the number of nonequivalent
circles that can be drawn onM without bounding something inM. The rank
of H1(M) for a connected space M is thus zero if M is simply connected,
however the converse does not hold. Homology with coefficients in C cannot
detect the presence of a cycle γ such that γ does not bound anything but k times
γ does (homology with integer coefficients is more discerning but typically
more complicated to compute). ◁

Topological invariance of homology
The first crucial property of homology is that it is a topological invariant. A
topological map (or simply map) between two topological spaces is a continu-
ous function between them, while a chain map between two chain complexes
is a function between them that commutes with their boundary operators. More
precisely, if (A, ∂A) and (B, ∂B) are two chain complexes then a chain map be-
tween them can be considered to be a collection of functions f = ( f0, f1, . . . )
with fn : An → Bn mapping from the n-chains ofA to the n-chains of B, such
that ∂B

n ◦ fn = fn−1 ◦ ∂
A
n for all n.

A topological map from X to Y induces a chain map from the singular chain
complex of X to the singular chain complex of Y . A map f : A → B between
chain complexes in turn induces a homomorphism f∗ on homology groups
by applying the map to representatives for the equivalence classes of cycles
modulo boundaries. Both of these induced maps are functorial.

Proposition B.3. If the topological spaces X and Y are homeomorphic then
the singular homology groups Hn(X) and Hn(Y) are isomorphic for all n.

Proof A homeomorphism between topological spaces is a topological map
whose inverse is also a topological map. Hence, a homeomorphism between
two spaces induces an isomorphism between the homology groups of the spaces.

□
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Homology groups are preserved under more than just homeomorphism. If
X and Y are topological spaces then two maps f , g : X → Y are said to be
homotopic maps if there is a continuous map H : X × [0, 1] → Y , called a
homotopy, such that H(x, 0) = f (x) and H(x, 1) = g(x) for all x. A topological
map f : X → Y is called a homotopy equivalence if there is a topological map
g : Y → X such that f ◦ g is homotopic to the identity on Y and g ◦ f is
homotopic to the identity on X. If f : X → Y is a homotopy equivalence then
we say that X and Y are homotopic spaces.

We claim that homotopic maps induce equal maps on homology, hence
homotopy equivalent spaces have naturally identical homology. To see this
one proves, on the chain level, that a homotopy equivalence between topo-
logical spaces induces a chain homotopy equivalence between the singular
chain complexes, which in turn induces an isomorphism between the homol-
ogy groups.

Proposition B.4. If a topological map f : X → Y is a homotopy equivalence
then the singular homology groups Hn(X) and Hn(Y) are isomorphic for all n,
with f∗ inducing one such isomorphism.

Proof See Theorem 2.10 and Corollary 2.11 of [Hat02]. □

Exercise B.1. Explain why a homeomorphism is always a homotopy equiva-
lence.

Suppose H : X × [0, 1] → X is a homotopy with H(x, 0) = x for all X, and
Y ⊆ X is a subspace such that H(x, 1) ∈ Y for all x. If H(y, t) ∈ Y for all y and
t (so that X ends in Y and Y stays in Y) then we call H a weak deformation
retract and say Y is a weak deformation retract of X. If H(y, t) = y for all y and
t then we call H a strong deformation retract (or simply deformation retract)
and say that Y is a strong deformation retract of X.

Exercise B.2. Prove that if Y is a weak deformation retract of X then X and Y
are homotopy equivalent.

Remark. Imagine looking at a space X that starts deforming in a continuous
manner, with points allowed to collide and pass through each other, ultimately
ending up in a different space Y . The space Y can be smaller, even a single
point, but Exercise B.2 implies that as long as every point that starts in Y stays
in Y then the homology of X is isomorphic to the homology of Y .

Various homologies and their equivalence
Working with the homology of smooth chains is nice because they are what we
integrate over, but this approach has some disadvantages. Most prominently,
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the large amount of freedom involved means the collection of chains on a man-
ifold is huge (not having a countable basis) even though the homology groups
are finite dimensional. Because of this we introduce new types of spaces with
more structure.

• A cell complex or CW-complex X is a Hausdorff space defined using a spe-
cific inductive procedure. Let X0 be a discrete collection of points and for
any n ≥ 0 let Xn be the quotient space, with quotient topology, defined by the
disjoint union Xn−1 ⊔α ∆

n
α of Xn−1 with a collection of standard n-simplices

∆n
α where we identify each x ∈ ∂∆n

α with some ϕα(x) ∈ Xn−1 using gluing
maps ϕα : ∂∆n

α → Xn−1. The set Xn is the n-skeleton of X, and contains its
k-cells ∆k

α for k ≤ n. We consider finite dimensional cell complexes, mean-
ing X = Xn for some natural number n and the smallest such n is called the
dimension of the cell complex X. Each simplex ∆n

α corresponds to a map
σn
α : ∆n

α → X defined by embedding ∆n
α into Xn−1 ⊔α ∆

n
α and then taking the

quotient by the gluing maps.
• A ∆-complex is a cell complex X where the gluing map ϕα for any simplex
∆n
α maps each (n−1)-dimensional face F of ∆n

α homeomorphically to one of
the (n − 1)-simplices in X, preserving the ordering of vertices and agreeing
with the previously defined gluing map ϕF on ∂F. A ∆-complex X may be
viewed as a collection of maps σα : ∆nα → X such that the restriction of
σα to the interior of ∆nα is injective, each point of X lies in exactly one such
restriction, and the restriction of σα to a face of ∆nα is another one of the
maps σβ : ∆nα−1 → X in the collection defining X.

• A simplicial complex is a ∆-complex where each gluing map is injective
(so that distinct faces in the boundary of each simplex are glued to distinct
lower-dimensional simplices) and each n-simplex is uniquely determined by
its vertices. A simplicial complex X may be viewed as a set of simplices such
that every face of a simplex in X is also in X and the nonempty intersection
of any two simplices ∆1,∆2 ∈ X is a face of both ∆1 and ∆2.

We say that a space S is represented by a cell complex, ∆-complex, or
simplicial complex X if S and X are homeomorphic. The representation of a
space by a simplicial complex is called a triangulation of the space. Figure B.1
shows some examples representing a sphere and a circle.

The CW approximation theorem [Hat02, Proposition 4.13] states that any
Hausdorff space X can be approximated by a cell complex X̃ meaning, among
other things, that X and X̃ have the same singular homology groups. We are
most interested in algebraic varieties, or their complements, which are exam-
ples of semi-algebraic sets and can therefore be triangulated [BPR03, Theo-
rem 5.43].
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Figure B.1 Top left: The sphere S 2 can be represented as a cell complex with one
0-cell and one 2-cell whose boundary is mapped to the 0-cell, but this is not a
∆-complex. Top right: A representation of S 2 as a ∆-complex containing three 0-
cells, three 1-cells, and two 2-cells. Bottom left: The circle S 1 can be represented
as a ∆-complex with one 0-cell and one 1-cell whose boundary is identified with
the 0-cell, but this is not a triangulation. Bottom right: A triangulation of S 1 with
three 0-cells and three 1-cells.

The difficulties with singular homology for general topological spaces still
arise for ∆ and simplicial complexes. However, the additional structure present
allows us to define a more rigid notion of homology. If X is a simplicial com-
plex then the simplicial homology of X is the homology defined by the chain
complex C whose n-chains are complex linear combinations of the n-simplices
in X, with the boundary map again defined by (A.3.1). Simplicial homology is
crucial for calculation, due to the following result.

Proposition B.5. If X is a simplicial complex then the nth singular homol-
ogy group of X is isomorphic to the nth simplicial homology group of X. The
simplicial homology groups of X are algorithmically computable.

Proof See [Hat02, Theorem 2.27] for the statement on the equivalence of
the homologies, and [Mun84, Theorem 11.5] for an algorithm to determine
simplicial homology by representing the linear boundary maps of X as matrices
and computing their Smith normal forms. □

Among other corollaries, Proposition B.5 implies that a space which can
be represented by a ∆-complex with a finite number of simplices has finitely
generated homology groups. Although simplicial complexes have more struc-
ture than ∆-complexes, it can often be more efficient to represent a space as a
∆-complex compared to representing it as a simplicial complex.

Example B.6. We compute the homology of the circle S 1 by representing it
as the ∆-complex X with one point X0 = {p} and one line segment X1 = {ℓ}

with both endpoints of ℓ glued at p. The 0-chains in this representation are
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the complex multiples of p, while the 1-chains are the complex multiples of ℓ.
Any 0-chain is trivially a cycle, and the only boundary is ∂ℓ = p − p = 0, so
H0(S 1) = C. This computation also shows that every 1-chain is a cycle, and
there are no non-trivial boundaries because there are no 2-cycles, so H1(S 1) =
C while Hk(S 1) = 0 for k ≥ 2. ◁

Exercise B.3. Compute the homology of the circle by triangulating it, veri-
fying you get the same result as Example B.6. Compute the homology of the
sphere S 2 using similar techniques.

B.2 Tools for homology

Although we can compute the homology of a variety, or the complement of a
variety, by triangulating the space and computing simplicial homology, this can
be very expensive (such algorithms are generally considered efficient if they
run in single-exponential instead of doubly-exponential time; see [Bas08] for
a survey of complexity results in this area). Furthermore, instead of computing
the entire set of homology groups of a singular variety, we often only need
some partial information in our integral manipulations, for instance throwing
away topological information that does not affect dominant asymptotics.

Because of such considerations, it is useful to have additional tools to com-
pute homology. One of the most effective approaches is to work recursively,
studying a space X using a subspace A ⊂ X and the quotient space X/A. The
relationship between the homology groups of X, X/A, and A is explicit but
intricate, with the homologies fitting into a type of nesting structure. We thus
require some additional algebraic constructions to describe precisely what is
going on.

An exact sequence of abelian groups (and in particular, complex vector
spaces) is a sequence of maps

· · · → Xn+1
fn+1
−−−→ Xn

fn
−→ Xn−1 → · · ·

where the image of each map is equal to the kernel of the next. For instance, an
exact sequence of the form 0

ϵ
−→ A

α
−→ B says 0 = Image(ϵ) = Kernel(α), so α

is injective, while an exact sequence of the form A
α
−→ B

ϵ
−→ 0 says Image(α) =

Kernel(ϵ) = B, so α is surjective. A short exact sequence is an exact sequence
of the form

0→ X → Y → Z → 0 ,

meaning the map from X to Y is injective and the map from Y to Z is surjective.
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Remark B.7. When X,Y, and Z are finite dimensional complex vector spaces
of dimensions k, ℓ, and m, respectively, then a short exact sequence 0 → X →
Y → Z → 0 implies ℓ = k + m and Y = X ⊕ Z as a direct sum. However,
this splitting is not natural: X embeds naturally into Y but there is no canonical
choice of coset representatives for Y/Z.

A short exact sequence of chain complexes is a map of chain complexes
which is a short exact sequence on the n-chains for all n. One very useful fact
about short exact sequences of chain complexes is that they give rise to long
exact homology sequences.

Theorem B.8 (zig-zag lemma). Let 0 → A
α
−→ B

β
−→ C → 0 be a short exact

sequence of chain complexes. Then there is an exact sequence

· · · → Hn+1(C)
∂∗
−→ Hn(A)

α∗
−−→ Hn(B)

β∗
−→ Hn(C)

∂∗
−→ Hn−1(A)→ · · · (B.2.1)

where α∗ and β∗ are the homology maps induced by the chain maps α and β.

Proof See [Mun84, Lemma 24.1]. □

The exact sequence (B.2.1) in Theorem B.8 is known as the long exact se-
quence on homology. The homology map ∂∗ has a natural but unwieldy defi-
nition; instead of defining it in general we describe it explicitly in the situation
most relevant to us in Corollary B.11 below.

Relative homology and excision
Our goal is to apply Theorem B.8 to a short exact sequence of chain complexes
related to embedding a subspace A into a space X and then taking the quotient
to map into X/A. In fact, we consider a slightly more general setting which is
also useful for our asymptotic calculations.

A pair of spaces (X, A) is any pair of topological spaces with A a subspace
of X. A pair map f : (X, A) → (X′, A′) between pairs of spaces is any (topo-
logical) map f : X → X′ such that f (A) ⊂ A′. The inclusion A ↪→ X induces
an inclusion of chain complexes C(A) ↪→ C(X), and we let C(X, A) denote the
pair complex whose n-chains are the quotient group Cn(X)/Cn(A). The rela-
tive homology of the pair (X, A) is the homology H∗(X, A) = H∗(C(X, A)) of
the pair complex.

One may think of relative homology roughly as the homology of X if the
subspace A were to be shrunk to a point: Hn(X, A) contains relative cycles
γ ∈ Cn(X) with ∂γ ∈ Cn−1(A) modulo relative boundaries β = ∂ζ + α where
ζ ∈ Cn+1(X) and α ∈ Cn(A). We thus search for cycles that do not bound, but
are willing to count a chain as a cycle if its boundary is in A; see Figure B.2.
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X

Y

γ

Figure B.2 γ is a relative cycle in C(X,Y).

We often use relative homology to ‘ignore’ regions that do not contribute to
dominant asymptotics in our integral manipulations.

The concept of homotopy equivalence is defined for pairs of spaces simi-
larly to the definition for spaces, and homotopy equivalent pairs have the same
relative homology.

Example B.9. Let X be the unit ball in Rn and A be the unit sphere S n−1. To
compute the homology of the pair (X, A) we consider the unit n-simplex ∆n

and its boundary: topologically (∆n, ∂∆n) and (Bn, S n−1) are homeomorphic,
so their relative homologies are the same. The simplicial chain complex for ∆n

contains all faces of ∆n, hence it has simplices in dimensions 0 through n. The
complex of the pair is nontrivial only in dimension n because every face of
dimension less than n is supported on ∂∆n. Proposition B.5 (that simplicial and
singular homology coincide) extends to pairs composed of a simplicial com-
plex and a subcomplex. Therefore, the singular homology of the pair (Bn, S n−1)
is computed by this rather small chain complex, leading to Hk(Bn, S n−1) � C
when k = n and 0 otherwise. ◁

Exercise B.4. What is the relative homology of (S 2, S 2
−), where S 2 is the 2-

sphere and S 2
− is the closed southern hemisphere?

Relative homology is useful for approximating integrals due to the following
result.

Proposition B.10 (asymptotics depend only on relative homology class). Let
X be a manifold of dimension n with submanifold Y also of dimension n, and
let ϕ a smooth complex valued function on X satisfying ℜ{ϕ} ≤ β on Y for
some β ∈ R. Suppose that ω = ωλ = exp(λ ϕ(z)) η for some closed k-form η on
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X with k ≤ n. If C and C′ are k-chains on X with C ≡ C′ in Hk(X,Y) then, as
λ→ ∞, ∫

C

ωλ =

∫
C′
ωλ + O

(
eλβ

)
.

Proof By definition, the difference between C and C′ is a relative boundary
C − C′ = ∂D + C′′ with C′′ supported on Y . Using Stokes’ Theorem (Theo-
rem A.24), ∣∣∣∣∣∣

∫
C

ω −

∫
C′
ω

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
∂D

ω +

∫
C′′
ω

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
D

dω +
∫
C′′
ω

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
C′′
ω

∣∣∣∣∣∣ ≤
∫
C′′

eλβ|η| ≤ Keλc′ ,

where K =
∫
C′
|η| and the appearance of |η| in an integral means that when η is

pulled back to integrate, we integrate the modulus of the result. □

Let (X, A) be a pair for which A is a strong deformation retract of an open
neighborhood in X. It can be shown [Mun84, Ex. 39.2] that for all n ≥ 1
the relative homology group Hn(X, A) is isomorphic to the singular homol-
ogy group Hn(X/A) of the quotient X/A, obtained from X by shrinking A to a
point. This gives a way of computing the homology of a quotient X/A: apply-
ing Theorem B.8 to the short exact sequence of chain complexes 0→ C(A)→
C(X) → C(X, A) → 0 gives a long exact sequence computing H∗(X, A), and
hence H∗(X/A), from H∗(X), H∗(A) and some knowledge of the maps in the
long exact sequence.

Corollary B.11. Let A be a subspace of X. Then there is a long exact sequence
of the pair (X,Y),

· · · → Hn+1(X, A)
∂∗
−→ Hn(A)

i∗
−→ Hn(X)

j∗
−→ Hn(X, A)

∂∗
−→ Hn−1(A)→ · · · ,

where i∗ and j∗ are the maps induced by the inclusions of A into X, and X
into (X, A), respectively, and ∂∗ is the map induced by taking a relative cycle
γ ∈ Cn(X) to its boundary ∂γ ∈ Cn−1(A). When A is a deformation retract of
an open neighborhood in X then this long exact sequence holds with Hn(X, A)
replaced by H̃n(X/A), where the reduced homology group H̃n is the same Hn

when n > 0, and has dimension one less when n = 0.

Exercise B.5 (computing homology of S n−1). Let X = ∆n and let Y be the
subcomplex of cells with dimension strictly less than n. Use the long exact
sequence for the pair (X,Y) to determine Hn−1(Y).

One important feature of relative homology is the excision property.
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X

Y

γ

U

Figure B.3 (X \ U,Y \ U) ↪→ (X,Y) is a homology isomorphism.

Proposition B.12 (excision theorem). Given subspaces U ⊂ Y ⊂ X such that
U ⊂ int(Y), the inclusion (X \ U,Y \ U) ↪→ (X,Y) induces an isomorphism
H∗(X \ U,Y \ U) � H∗(X,Y).

Proof See [Hat02, Theorem 2.20]. □

Informally, Proposition B.12 says that the relative homology of (X,Y) can-
not see the interior of U; Figure B.3 gives an illustration. Relative homology
can also be used to define another important homology theory for cell com-
plexes. If X = Xn is a cell complex then the cellular chain complex of X is the
complex

· · · → Hn+1(Xn+1, Xn)
∂n+1
−−−→ Hn(Xn, Xn−1)

∂n
−→ Hn−1(Xn−1, Xn−2)→ · · · ,

where we define X−1 = ∅ and ∂n is the composition of the boundary opera-
tor mapping Hn(Xn, Xn−1) to Hn−1(Xn−1) with the inclusion of Hn−1(Xn−1) into
Hn−1(Xn−1, Xn−2). The homology groups of this cellular chain complex form
the cellular homology groups of X. Cellular homology is homology of (rela-
tive) homology, and can be surprisingly useful. Although its definition might
seem technical and contrived, Hn(Xn, Xn−1) can be interpreted easily as linear
combinations of the n-cells in X. The following result makes cellular homol-
ogy a tool for computation.

Proposition B.13. If X is a cell complex then the nth singular homology group
of X is isomorphic to the nth cellular homology group of X.

Among other things, Proposition B.13 implies that if X can be represented
by a cell complex with no n-cells then Hn(X) = 0. See [Hat02, Section 2.2] for
a full discussion of cellular homology, its implications, and a proof of Propo-
sition B.13.
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The homology of a union
Instead of decomposing a space X using a subspace and the corresponding
quotient space, we can instead represent X as a union X = A∪ B for subspaces
A, B ⊂ X such that X = int(A) ∪ int(B) and describe the homology of X in
terms of the homologies of A, B, and A ∩ B. In particular, there is a short
exact sequence of chain complexes defined by the short exact sequence in each
dimension,

0→ Cn(A ∩ B)
p
−→ Cn(A) ⊕Cn(B)

s
−→ Cn(A) +Cn(B)→ 0

where p(a) = (−a, a) and s(a, b) = a+b, with Cn(A)+Cn(B) ⊆ Cn(X) denoting
a sum inside the space of chains on X. The corresponding long exact sequence
is known as the Mayer-Vietoris sequence.

Theorem B.14 (Mayer-Vietoris sequence). Let A, B ⊂ X be such that X is
the union of the interiors of A and B. Then the inclusion of the chain complex
C∗(A) + C∗(B) ↪→ C∗(X) induces an isomorphism in homology. It follows that
there is a long exact homology sequence

· · · → Hk(A ∩ B)→ Hk(A) ⊕ Hk(B)→ Hk(X)→ Hk−1(A ∩ B)→ · · · .

Proof See [Hat02, Proposition 2.21] or [Mun84, Theorem 33.1]. □

Exercise B.6. Use the Mayer-Vietoris sequence to re-compute the homology
of S n by decomposing it as the union of two hemispheres, expanded a little so
their interiors cover S n. How does the result of this computation relate to a geo-
metric understanding of two balls glued along their boundary? Try visualizing
in dimensions one and two for greatest intuition.

Attachments and the homology of a product
Relative homology is useful for our asymptotic computations because it allows
us to ‘ignore’ points that are asymptotically negligible. In practice, to study
complex integrals whose domains of integration are allowed to vary in some set
Mwe describeM by attaching different spaces together as needed. In essence,
we expressM on-the-fly as a cell complex until we have enough information
to perform the necessary asymptotic computations (much more information on
this approach is given in the next appendix on Morse theory). This section, our
final on the basics of homology, describes product complexes, attachments,
and products of pairs.

Let C′ and C′′ be chain complexes with boundary maps ∂′ and ∂′′. The
tensor product complex (or simply product complex) of C′ and C′′ is the chain
complex C = C′ ⊗ C′′ whose n-chains Cn are defined by the direct sum Cn =⊕n

k=0 C′k ⊗ C′′n−k, where a basis for the tensor product C′k ⊗ C′′n−k is given by
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elements σk⊗τn−k as σk ranges over a basis for C′k and τn−k ranges over a basis
for C′′n−k. The boundary operator ∂ of C is defined by ∂(σk ⊗ τn−k) = (∂′σk) ⊗
τn−k + (−1)kσk ⊗ (∂′′τn−k). The product Z = X ×Y of two simplicial complexes
X and Y is naturally a cell complex, and this definition is constructed so that
the product chain complex C(X)⊗C(Y) is isomorphic [Mun84, Theorem 57.1]
to the cellular chain complex of Z.

Example B.15. Consider C = ∆1 as a cell complex with two 0-cells {[0], [1]}
and one 1-cell σ1 = [0, 1] oriented from 0 to 1, meaning that ∂σ1 = [1] −
[0]. Then C × C has four 0-cells {(0, 0), (1, 0), (0, 1), (1, 1)}, four 1-cells {σ1 ×

[0], σ1 × [1], [0] × σ1, [1] × σ1}, and one 2-cell σ1 × σ1. ◁

Exercise B.7. Write the circle S 1 as a cell complex, then describe the product
cell complex S 1×S 1. Compute the homology of S 1×S 1 from this cell complex.

The homology of a product is given by the Künneth formula. Because we
study homology with complex coefficients, the formula is relatively simple.

Theorem B.16 (Künneth product formula). IfC′ andC′′ are the singular chain
complexes for two cell complexes then there is a natural isomorphism⊕

p+q=n

Hp(C′) ⊗ Hq(C′′)→ Hn(C′ ⊗ C′′) .

Proof See [Mun84, Theorem 58.5]. □

Exercise B.8. Use the Künneth formula to compute the homology of S 1 × S 1

and verify it is the same as you computed in Exercise B.7.

Generalizing the attaching maps for cell complexes, the attachment of a
space Y to a space X along a closed subset Y0 ⊆ Y by the map ϕ : Y0 → X is
the topological quotient (X ⊔ Y)/ϕ obtained from the disjoint union of X and
Y by identifying each y ∈ Y0 with ϕ(y) ∈ X. The triple (Y,Y0, ϕ) is known as
attachment data.

Remark. When ϕ is one-to-one, attachments are more or less the same as
unions; that is, both X and Y naturally embed in the attachment and their union
covers the attachment. In general, an attachment can be thought of as a union of
a space X with a quotient Y/ϕ, where points y1, y2 ∈ Y0 are identified if ϕ(y1) =
ϕ(y2). While the two spaces in a union play symmetric roles, the attachment
of a space Y to a space X is described asymmetrically. This coincides with the
framework of filtered spaces built up by successive attachments, described in
the next appendix. Thus attachments, while not entirely new, provide a useful
way to build up a space.
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Finally, we define a product on pairs by

(X′,Y ′) × (X′′,Y ′′) =
(
X′ × X′′, X′ × Y ′′ ∪ Y ′ × X′′

)
.

One nice property of this definition is that the singular chain complex C(X,Y)
for a pair (X,Y) = (X′,Y ′) × (X′′,Y ′′) turns out to be isomorphic to a tensor
product of the singular chain complexes for the pairs (X′,Y ′) and (X′′,Y ′′). The
Künneth product formula for chain complexes results in a homology formula
for products of pairs.

Corollary B.17 (Künneth formula for pairs). For pairs (X′, X′′) and (Y ′,Y ′′),

Hn(X′ × X′′, X′ × Y ′′ ∪ Y ′ × X′′) = Hn((X′,Y ′) × (X′′,Y ′′))

�
⊕
p+q=n

Hp(X′,Y ′) ⊗ Hq(X′′,Y ′′) .

B.3 Cohomology

Given a chain complex

· · · → Cn+1
∂n+1
−−−→ Cn

∂n
−→ Cn−1 → · · ·

we may replace each vector space Cn by its dual Cn consisting of linear maps
from Cn to C. As for homology, we consider cohomology with complex co-
efficients. The elements of Cn are called n-cochains and the boundary map
∂n : Cn → Cn−1 on n-chains induces a dual map δn : Cn−1 → Cn on n-cochains:
if f ∈ Cn−1 is a linear map from Cn−1 to C then δn( f ) ∈ Cn is the linear map
f ◦ ∂n from Cn to C. It can be verified that δn ◦ δn−1 = 0 for all n, so we have a
cochain complex

· · · ← Cn+1 δn

←− Cn δn−1

←−−− Cn−1 ← · · · .

The quotient of the kernel of δn (the n-cocycles) by the image of δn−1 (the n-
coboundaries) is called the nth cohomology group of C and is denoted Hn(C).
The value of an n-cocycle ν evaluated at an n-cycle σ depends only on the
cohomology class [ν] of ν and the homology class [σ] of σ, so this evaluation
defines a product ⟨ω, η⟩ for ω ∈ Hn(C) and η ∈ Hn(C). If C = C(X) is the
singular chain complex (or smooth chain complex) of a topological space X,
then we use the notation Cn(X) = Cn for the singular n-cochains of X and
Hn(X) = Hn(C) for the nth singular cohomology group of X. If X is a cell
complex then Hn(X) is the dual space of Hn(X).
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The functor taking a topological space to its singular or smooth chain com-
plex is covariant, as is the functor from a chain complex to its homology
groups. Hence, as noted above, any map f : X → Y of topological spaces
induces maps f∗ : C(X) → C(Y) and f∗ : H∗(X) → H∗(Y). Conversely, the
singular or smooth cochain complex of a space is a contravariant functor, so a
map f : X → Y induces a map f ∗ : H∗(Y)→ H∗(X).

On a manifold we may identify a p-form ω with the smooth p-cochain de-
fined by α 7→

∫
α
ω. Using the definition of the coboundary δ and Stokes’ The-

orem,

δω(C) = ω(∂C) =
∫
∂C

ω =

∫
C

dω = dω(C) .

In other words, δω = dω, so cocycles correspond to closed forms and we have
the following.

Theorem B.18 (integral depends only on homology class). Let ω be a closed
p-form holomorphic on an embedded complex manifoldM ⊆ Cn (if p = n then
ω is always closed). Let C be a singular p-cycle on M. Then

∫
C
ω depends

on C only via the homology class [C] of C in Hp(M) and on ω only via the
cohomology class [ω] of ω in Hp(M). □

This theorem is one reason for our detour into topology. Another is the de
Rham theorem. Let ι be the map that takes the smooth p-form ω and maps it
to the p-cochain C 7→

∫
C
ω as C varies over p-chains. This map is in general

not a bijection: there may be linear maps on chains that are not represented by
integrals of smooth forms. Nevertheless, the induced map ι∗ will be an isomor-
phism from the singular cohomology ofM with coefficients in R or C to the
cohomology H∗DR of the de Rham complex of smooth p-forms with cobound-
ary given by the differential operator d.

Theorem B.19 (de Rham Theorem). Let X be a real manifold. The identifica-
tion of p-forms with cochains induces an isomorphism H∗DR(X) � H∗(X) .

Proof See [Lee03, Theorem 18.7]. □

Remark. A product called the cup product may be defined on cochains, sat-
isfying a product rule with respect to the d operator. The cup product endows
cohomology with the structure of a graded C-algebra, and the isomorphism
in the de Rham Theorem is in fact a ring isomorphism, mapping the wedge
product to the cup product.
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B.4 Topology of complex manifolds

For us, complex manifolds usually arise as (subsets of) varieties or the comple-
ments of varieties in Cd

∗ , with ACSV requiring the integration of holomorphic
forms over chains of real dimension p contained in complex p-manifolds. This
final section shows how the complex structure of a complex p-manifold makes
it behave in several ways like a real p-manifold, even though it actually has
real dimension 2p.

Proposition B.20 (Andreotti-Frankel Theorem). If X is a complex p-manifold
embedded in Cn for some n ≥ p then X is homotopy equivalent to a CW
complex of dimension at most p. It follows that the singular homology groups
Hk(X) and singular cohomology groups Hk(X) vanish for all k > p.

Proof Andreotti and Frankel [AF59] proved this for smooth algebraic (and
analytic) varieties using Morse theory. A sketch is given at the end of Ap-
pendix C. □

Remark B.21. The complex projective space CPk is a complex manifold hav-
ing nonvanishing homology in all even dimensions up to 2k. Therefore it vi-
olates the conclusions of the Andreotti-Frankel theorem, and cannot be em-
bedded in Cn for any n. This contrasts to the real case, where the Whitney
embedding theorem states that any real k-manifold can be embedded into R2k.

In fact, we can compute homology by considering only holomorphic forms.
If M is a complex p-manifold then the operator ω 7→ dω preserves holo-
morphicity, so the holomorphic forms on M define a sub-cochain complex
Cn,holo of the de Rham complex Cn, called the holomorphic de Rham com-
plex. The inclusion Cn,holo ↪→ Cn does not, in general, induce an isomorphism
on cohomology, but once again this difficulty can be overcome by restricting
to manifolds embedded in complex space.

Proposition B.22 (holomorphic de Rham cohomology). LetM be a complex
p-manifold embedded in Cn. Then the inclusions Cn,holo(M) ↪→ Cn(M) induce
an isomorphism of cohomology rings. In particular, Hholo,k(M) � Hk(M) for
all k ≥ 0. □

Proof See Voisin [Voi02] and the notes at the end of this appendix. □

We finish this appendix by observing a corollary of Proposition B.10 in the
complex setting.

Corollary B.23 (asymptotics depend only on relative homology class). Let X
be a complex manifold of dimension n with submanifold Y also of dimension
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n, and define ω = ωλ = exp(λ ϕ(z)) η for some holomorphic n-form η and
holomorphic function ϕ on X. When C ≡ C′ in Hn(X,Y) with Re{ϕ} ≤ β on Y
then, as λ→ ∞, ∫

C

ωλ =

∫
C′
ωλ + O

(
eλβ

)
.

Proof This follows immediately from Proposition B.10, because dω = 0 for
a holomorphic n-form on a complex n-manifold. □

Notes

From their origins near the end of the nineteenth century, homology and co-
homology have become crucial tools in many areas of mathematics. Much of
our presentation of the material in this appendix follows Hatcher [Hat02] and
Munkres [Mun84], and further details can be found in those sources.

The Andreotti-Frankel Theorem is true in much greater generality than Propo-
sition B.20: for instance, it holds for all algebraic varieties in complex affine
space, regardless of whether they are smooth or singular. This was first proved
in [Kar79] via stratified Morse theory. The complement of a varietyVQ is bi-
holomorphically equivalent to the variety V1−zd+1Q in one greater dimension,
hence complements of d-dimensional affine algebraic varieties are also homo-
topy equivalent to d-dimensional cell complexes.

Voisin [Voi02] proves Proposition B.22 by showing that holomorphic de
Rham hypercohomology (cohomology with coefficients in a sheaf resolution)
is the same as the ordinary de Rham cohomology, hence the same as smooth
cohomology and singular cohomology. For Stein spaces, such as embedded
complex manifolds, this resolution is flat and holomorphic de Rham hyperco-
homology boils down to the cohomology of the holomorphic de Rham com-
plex itself. Special cases were known earlier; for example, if A is a complex
hyperplane arrangement then Brieskorn [Bri73] showed that the forms d f / f as
f varies over annihilators of hyperplanes in A generate the cohomology ring
of the complementM ofA.

Additional exercises

Exercise B.9. Define the Möbius strip as the quotient of the cell complex
representing the unit square as ∆1 × ∆1 via the three identifications (0, 0) ∼
(1, 1), (0, 1) ∼ (1, 0) and (0) × ∆1 ∼ −(1) × ∆1.

(1) What is the dimension of this cell complex?
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(2) Give a basis for each space Z0, B0,Z1, B1,Z2 and B2.
(3) Compute the homology of the Möbius strip with coefficients in C from this

cell complex.
(4) What changes, if anything, if you use coefficients in Z instead of coeffi-

cients in C?

Exercise B.10. Let X = C∗ = C \ {0} be the punctured plane, the simplest case
of the complement of a hyperplane arrangement. To establish the complex de
Rham theorem for H1(X) we need to show that holomorphic 1-forms ω and θ
map to the same element of the dual of H1(X) if and only if they differ by a
coboundary d f .

(1) Use Theorem B.18 to prove the forward implication.
(2) Compute the homology of X by verifying that the embedding of S 1 into X

is a homotopy equivalence.
(3) Let ω be any holomorphic 1-form on X. Use Stokes’ theorem to show that∫

C
ω = 0 for any C homologous to zero in H1(X).

(4) Let γ be the unit circle oriented, say, counterclockwise, and let η = ω −

cdz/z where c = (2πi)−1
∫
γ
ω. Show that

∫
C
η = 0 for every C ∈ Z1(X).

Hint: Use part 2.
(5) Show that

∫
γ
ω =

∫
γ
θ impliesω−θ = d f for some holomorphic function f .

Hint: You can construct f by integrating from an arbitrary fixed basepoint.

Exercise B.11. Let X be the complex curve {(x, y) ∈ C2 : x2 + y2 = 1}. By
the Andreotti-Frankel Theorem, it is homotopy equivalent to a cell complex
of (real) dimension 1. Demonstrate this by finding a deformation retract of X
onto a one-dimensional manifold.



Appendix C

Residue forms and classical Morse theory

In our first two appendices, we developed the mathematics needed to prove
that the Cauchy integral representation

ar =
(

1
2πi

)s ∫
C

F(z) z−r−1dz

for the coefficients of a convergent Laurent series F(z) = P(z)/Q(z) =
∑

r arz
r

depends only on the singular homology class of the chain C and the de Rham
cohomology class of the form F(z) z−r−1dz in the domain of holomorphicity

M =

z ∈ Cd : Q(z)
d∏

j=1

z j , 0


of the integrand.

In this appendix, we begin to discuss how such a representation allows us
to manipulate Cauchy integrals into a form where we can derive asymptotic
information. First, we discuss intersection classes and residue forms, which
illustrate how to convert the Cauchy integral into an integral lying ‘on’ the
singular set V ⊂ Cd of F. After introducing these concepts, we discuss how
to use Morse theory to manipulate integrals over chains in V into representa-
tions that will ultimately allow us to use saddle point approximations. Morse
theory is a large subject, and our treatment is restricted to the core topics we
need: height functions, attachments, homology groups, and homotopy type. In
this appendix we focus on the case where V∗ := V ∩ Cd

∗ is a complex mani-
fold. Appendix D, our final appendix, describes extensions of this material to
general algebraic sets (and their complements) using stratified Morse theory.

499
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C.1 Intersection classes

Before describing how to generalize residues from the classical univariate set-
ting to several variables, we first need to describe the domains of integration
over which we can take multidimensional residues of differential forms with
singularities onV. These domains of integration will be intersection classes.

The intuition behind intersection classes is captured in Figure C.1. A torus T
on one side ofV expands to a torus T ′ on the other side ofV. Mathematically,
this expansion could be obtained by expanding each coordinate at a constant
rate, or by a more complicated deformation, or perhaps not by a deformation
at all but through a cobordism, meaning some (d + 1)-chain whose boundary
is T ′ − T . In getting from T to T ′ this expansion crosses V; if the crossing is
transverse, as it will be generically, it sweeps out a (d − 1)-chain γ ⊆ V. For
the intersection class to be well defined for our purposes, the homology class
of γ in Hd−1(V∗) should depend only on the homology classes of T and T ′ in
M.

Figure C.1 The intersection class of a cobordism from α to β.

The concepts involved in defining an intersection class are analytic in nature,
so we work with analytic functions instead of restricting ourselves to polyno-
mials. Let V = VQ be the complex manifold in Cd defined by the vanishing
of an analytic function Q(z) on Cd whose gradient does not vanish onV. Our
first step in constructing the intersection class is to derive a diffeomorphism be-
tween a neighborhood ofV in Cd and a product A× B, where A is a connected
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open set inV and B is a neighborhood of the origin in C. This is accomplished
by considering the embedded complex manifold V in its ambient space Cd.
The tangent bundle of V may be identified with a sub-bundle of the tangent
space to Cd by sending v to e∗(v), where e : V → Cd is the embedding of V
into Cd.

Recall from Appendix A that for any w ∈ Cd there is a natural identification
ϕ of the tangent space TwC

d with Cd using the standard basis ∂/∂z1, . . . , ∂/∂zd

for the holomorphic tangent space. Intuitively, we decompose Cd near w by
taking the tangent plane to V at w and its orthogonal complement. Formally,
the embedded tangent space and the embedded normal space ofV at w are the
subsets Sw := {w+ϕ(e∗(X)) : X ∈ TwV} and S ′w := {w+v : v ∈ NwV} ofCd,
respectively, where NwV ⊆ C

d is the orthogonal complement to ϕ(e∗(TwV)).
Under our assumptions, NwV is the one-dimensional complex vector space

(or two-dimensional real vector space) described in local coordinates as the
span of the vector (∇Q)(w). The total space of the normal bundle toV is the
set {(w,v) ∈ V × Cd : v ∈ NwV} pairing elements ofV and normal vectors.

Lemma C.1 (Collar Lemma). Under our running assumption that the gradi-
ent of Q is non-vanishing on V, there is an open neighborhood of V in Cd

that is diffeomorphic to the total space of the normal bundle to V under a
diffeomorphism that maps w ∈ V to the vector (w, 0).

Proof Because ∇Q is nonvanishing on V, the gradient ∇Q is nonzero in
a neighborhood of V and thus defines a complex line bundle whose integral
surfaces have real dimension two. If U is any sufficiently small neighborhood
of V, we let a : U → V be the map sending z ∈ U to the unique point of V
on whose integral curve it lies; see Figure C.2. The map ψ sending z ∈ U to
ψ(z) = (a(z), ρ(z)) is the desired diffeomorphism, where ρ(z) is the projection
of z−a(z) onto the affine set S ′a(z), because ρ(z) ∈ Na(z)V by construction and
the kernels of da and dρ are transverse onV (they are orthogonal subspaces),
hence also transverse in a sufficiently small neighborhood ofV. □

Lemma C.1 implies that for any k-chain γ inV we can define a (k+1)-chain
oγ, which we call a tube around γ, by taking the union of small circles in the
fibers of the normal bundle with centers in γ. The radii of these disks should
be positive and small enough to fit into the domain of the collar map, but can
(continuously) vary with the point on the base. Different choices of the radii of
these circles lead to homologous tubes. Similarly, we let •γ denote the union of
solid disks in the fibers of the normal bundle with centers in γ. The elementary
rules for boundaries of products imply

∂(oγ) = o(∂γ) and ∂(•γ) = oγ ∪ •(∂γ) .
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Figure C.2 Integral curves (dotted) making up the normal bundle, and a decom-
position of z into (a(z), ρ(z)).

Because o commutes with ∂, cycles map to cycles, boundaries map to bound-
aries, and the map o on the singular chain complex of V induces a map from
Hk−1(V∗) to Hk(M), whereM = Cd

∗ \V. To simplify notation, we also denote
this map on homology by o.

We are now ready to define intersection classes after recalling a few con-
structions from differential geometry. Two submanifolds A, B ⊂ Cd are said to
intersect transversely if for all w ∈ A ∩ B the tangent spaces of A and B at
w jointly span Cd. Two classic results of differential geometry state that if A
and B intersect transversely then A∩ B is a manifold, and that if B is fixed and
A is any manifold then A can be slightly perturbed into a manifold A′ that in-
tersects B transversely (i.e., transversality is a generic property) – see [Hir76,
Chapter 3], for instance.

Theorem C.2 (intersection classes). Define o : Hd−1(V)→ Hd(M) as above.
Under our running assumption thatV is a manifold,

(i) ◦ is injective and its image is the kernel of the map ι∗ induced by the
inclusionM

ι
−→Cd

∗ .
(ii) Given α ∈ ker(ι∗) one may compute the inverse I(α) = o−1(α) by inter-

secting V∗ with any (d + 1)-chain in Cd+1
∗ whose boundary is α and for

which the intersection withV∗ is transverse.

When α = C − C′ in Theorem C.2, where C and C′ are two d-cycles inM
homologous in Cd

∗ , we call INT[C,C′;V] = I(C − C′) the intersection class
of C and C′. We usually use the intersection class when C = T and C′ = T ′ are
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tori and T ′ can be deformed to points where the Cauchy integral representing
a multivariate sequence is asymptotically negligible.

Proof of Theorem C.2 The Thom-Gysin long exact sequence implies exact-
ness of a sequence

0→ Hd−1(V∗)
o
→ Hd(M)→ Hd(Cd

∗). (C.1.1)

This may be found in [Gor75, page 127] (where, in the notation of that source,
W = Cd

∗) though in the particular situation at hand it goes back to Leray [Ler59].
Injectivity of o follows from exactness at Hd−1(V∗) while the rest of part (i)
follows from exactness at Hd(M).

For part (ii), we begin by showing that the map I which takes a subset S of
Cd
∗ transverse toV∗ and returns I(S ) = S∩V∗ induces a well defined map from

ker(ι∗) to Hd−1(V∗). Because transversality is generic, given any α ∈ ker(ι∗)
there exist (d + 1)-chains intersectingV∗ transversely whose boundary is α. If
D is such a chain and C = I(D) then C is a cycle, since

∂C = ∂(D∩V∗) = (∂D) ∩V∗ = α ∩V∗ = ∅ .

Let D1 and D2 be two such chains, and define C j = D j ∩ V∗. Observe that
D1−D2 is null homologous because there is no (d+1)-homology in Cd

∗ . Thus,
D1 −D2 = ∂H for some (d + 1)-chain H in Cd

∗ . Choosing H transverse toV∗,

C1 − C2 = I(D1 −D2) = ∂(H∩V∗)

is a boundary inV∗. Thus, the class [I(D)] in Hd−1(V∗) is the same for anyD
with ∂D = α. If α = o(γ) then taking D = •(γ) gives I(D) = γ, showing that
I does in fact invert o and thus computes I. □

Remark C.3. BecauseC∗ is topologically a circle, the homology group Hd(Cd
∗)

is cyclic and generated by a product of small circles about the coordinate axes,
and Hk(Cd

∗) vanishes for k > d. The kernel of ι∗ consists of the classes that
don’t link the origin in Cd

∗ , i.e., the classes σ for which the integer invariant
ℓ(σ) = (2πi)−d

∫
σ

dz1/z1 ∧ · · · ∧ dzd/zd vanishes. This holds, for example, if
σ = T − T ′ where T and T ′ are standard oriented tori around the origin, since
ℓ(T ) = ℓ(T ′) = 1.

There is a version of the intersection class in relative homology as well.
This will be useful to us when we integrate over a difference of tori, one being
the starting domain of integration in the Cauchy integral and the other being
a ‘large’ torus, because it helps us ignore whether we have chosen a large
enough torus to avoidV∗ at points that are asymptotically negligible. We omit
the proof of this construction, which is similar to the proof of Theorem C.2.
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Corollary C.4. Let Y be a closed subspace of Cd
∗ and let α and β be relative

cycles in the pair (M,M∩ Y) that are homologous in (Cd
∗ ,Y). There is a well

defined intersection class INT[α, β;V]Y ∈ Hd−1(V∗,Y) such that if H is any
(d + 1)-chain in Cd

∗ with ∂H = α′ − β′ + γ where [α′] = [α] and [β′] = [β] in
Hd(M,M∩ Y) and γ ∈ Y, and if H intersectsV transversely, then H ∩V is
a relative cycle in the class INT[α, β;V]Y . □

By the excision property of homology, the pair (M,M ∩ Y) is homotopy
equivalent to the pair (M \ Y◦, ∂Y). This allows us to extend Corollary C.4 to
the case where α and β can intersectV, but only in the interior of Y .

Corollary C.5. Let Y be a closed subspace of Cd
∗ and let α and β be relative

cycles homologous in (Cd,Y) intersectingV only in the interior of Y. There is a
well defined intersection class INT[α, β;V]Y ∈ Hd−1(V∗,V∗ ∩ Y), depending
only on the class of α − β in Hd(M,M∩ Y), such that if H is a (d + 1)-chain
in Cd

∗ with ∂H = α − β + γ where γ is supported on the interior of Y, and if
the intersection of H with V is transverse away from the interior of Y, then
H ∩V is a relative cycle representing the class INT[α, β;V]Y . □

In the special case of Corollary C.5 where β = 0 and Y is the set of points at
height c or less we denote the relative intersection class by INT[α;V]≤c .

C.2 Residue forms and the residue integral theorem

Integrating a differential form over a difference of chains can often be reduced
to integrating a residue form over an intersection cycle. Because residues de-
pend on local behavior, we work with subsets of Cd that are locally defined
by analytic functions. An analytic hypersurface (or simply hypersurface) is
a set V ⊂ Cd such that for any w ∈ V and any sufficiently small neigh-
borhood D of w in Cd there is an analytic function QD on V ∩ D such that
V ∩ D = {z ∈ D : QD(z) = 0}. If the function QD can be chosen to have
non-vanishing gradient onV ∩D then we sayV is a smooth analytic hyper-
surface at w, and we callV a smooth analytic hypersurface if it is a smooth
analytic hypersurface at every point.

Although the theory of multivariate residues is much more involved than its
univariate counterpart, we require it only for differential forms whose singu-
larities lie on unions of smooth analytic hypersurfaces. We build our results in
four degrees of generality, starting with forms having smooth simple poles,
then forms with smooth higher order poles, followed by forms with trans-
versely intersecting smooth sheets of simple poles, and concluding with forms
having transversely intersecting smooth sheets with higher order poles.
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C.2.1 Residue forms for smooth simple poles

Fix a smooth analytic hypersurfaceV defined locally by analytic functions QD
as above, and recall our notationM = Cd

∗ \V and dz = dz1∧ · · ·∧dzd. We say
that a d-form ω ∈ Ed(M) has smooth poles of order k onV if for any a ∈ V

there is a sufficiently small neighborhood D of a in Cd
∗ such that QD(z)kω

extends to a holomorphic form on D but QD(z) jω does not extend to such a
holomorphic form for any 0 ≤ j < k. A form with smooth poles of order one
is said to have simple poles.

Proposition C.6. Let ω be a holomorphic d-form with smooth simple poles
on V, represented as a quotient ω = P(z)/Q(z) dz of analytic functions on
M∩D for some domain D ⊂ Cd where the gradient of Q does not vanish. If
W = V ∩ D and ι : W ↪→ D is the inclusion ofW into Cd then there is a
(d − 1)-form θ on D solving dQ ∧ θ = P dz and any such solution restricts to
a unique (d − 1)-form Res(ω) = ι∗θ onW called the residue of ω onW.

Remark C.7. Our definition of the residue is both natural, meaning it does
not depend on the particular polynomials P and Q used to represent ω =
P(z)/Q(z) dz onD, and functorial, meaning Res( f ∗ω) = f ∗ Res(ω) for smooth
functions f . Because the residue is natural, we can define Res(ω) on all of V
by defining it locally over the elements of a cover of V by sufficiently small
domains using Proposition C.6.

Proof We must show both that dQ ∧ θ = P dz always has a holomorphic so-
lution, and that the restriction of any such solution toV is unique. Uniqueness
follows from Exercise A.18 at the end of Appendix A: if θ1 and θ2 are two
solutions then dQ∧ (θ1− θ2) = 0, hence Exercise A.18 implies ι∗θ1 = ι

∗θ2. The
existence of a solution follows from the following proposition, which expresses
the residue explicitly in local coordinates in sufficiently small neighborhoods,
by combining residues in local neighborhoods as discussed in Remark C.7. □

Proposition C.8. Under the hypotheses of Proposition C.6, if the partial deriva-
tive ∂Q/∂zk is nonvanishing onD for some fixed k ≤ d and r ∈ Zd then

Res
(
z−rω

)
= (−1)k−1 z

−rP(z)
Qzk (z)

dzk̂ , (C.2.1)

where dzk̂ = dz1 ∧ · · · ∧ dzk−1 ∧ dzk+1 ∧ · · · ∧ dzd.

Proof If k = 1 and θ is the right-hand side of (C.2.1), then

dQ ∧ θ =

 d∑
j=1

Qz j (z)dz j

 ∧ (
z−rP
Qz1 (z)

dz2 ∧ · · · ∧ dzd

)
= z−rP dz ,
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as desired. In the general case, the sign (−1)k−1 comes from the position of dzk

in the wedge product. □

Exercise C.1. Let ω = 1/Q(x, y) dxdy where Q(x, y) = 1 − x − xy + y2. Find
a formula for Res(ω) onV = VQ in terms of dx only, and another in terms of
dy only. Prove that the restrictions of these forms toV are equal.

Theorem C.9 (residue integral theorem). Suppose V = VQ = {z ∈ C
d :

Q(z) = 0} is defined globally by a function Q that is analytic on a neighbor-
hood ofV and has non-vanishing gradient onV, and let ω be a holomorphic
d-form on M with smooth simple poles on V. If α and β are d-cycles in M
whose projections to Hd(Cd

∗) are equal then∫
α

ω −

∫
β

ω = 2πi
∫

INT[α,β;V]
Res(ω) .

Proof Vanishing of [α − β] in Hd(Cd
∗) by definition implies the existence of a

(d + 1)-chain H on Cd
∗ with boundary α − β. Perturbing slightly if necessary,

we can assume without loss of generality that H intersects V transversely.
Letting N denote the intersection of H with a small neighborhood of V and
Θ = H −N, the vanishing of holomorphic integrals of d-forms over boundaries
(Theorem A.27) implies that the integral of the holomorphic d-form ω over ∂Θ
vanishes. In other words, ∫

α

ω −

∫
β

ω =

∫
∂N
ω .

The Collar Lemma (Lemma C.1) implies that N is homotopic to a product
σ× Bε where σ = H ∩V. Thus ∂N is homotopic to ∂(σ× Bε), which is equal
to σ × ∂Bε because σ is a cycle, giving∫

σ×∂Bε
ω =

∫
σ

(∫
∂Bε

ω

)
.

Using functoriality of the residue, we may change coordinates so thatV is the
complex hyperplane defined by z1 = 0. Thus we need only prove our claim
in the case where Q(z) = z1. Writing ω = (P/z1)dz1 ∧ (dz2 ∧ · · · ∧ dzd), the
iterated integral is ∫

σ

[∫
∂Bε

P(z)
z1

dz1

]
dz2 ∧ · · · ∧ dzd .

By standard univariate complex analysis, the inner integral at a point (z2, . . . , zd)
is the residue with respect to t of the meromorphic function P(t, z2, . . . , zd)/t at
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the pole (0, z2, . . . , zd). This is equal to

(2πi)
∫
σ

P(0, z2, . . . , zd) ,

which in this special case is precisely
∫
σ

Res(ω). □

There is also a relative version of this result.

Theorem C.10 (relative residue integral theorem). LetV and ω be as in The-
orem C.9. If Y is any closed subspace of Cd

∗ such that Hd(Cd
∗ ,Y) vanishes, and

if α is a d-cycle inM, then∫
α

ω = 2πi
∫

INT[α,0;V]
Res(ω) +

∫
C′
ω (C.2.2)

for some chain C′ supported on the interior of Y. In particular, if ω = z−rη

for some holomorphic form η onM and if Y is the set where the real part of
hr̂ = −r̂ · log z is at most c then, as λ→ ∞,∫

α

ω = 2πi
∫

INT[α,0;V]
Res(ω) + O

(
eλc′

)
(C.2.3)

for any c′ > c.

Proof By the vanishing of Hd(Cd
∗ ,Y) there is a (d + 1)-chain H with ∂H =

α + γ and γ supported on the interior of Y . Let N denote the intersection of H
with a neighborhood ofV. As before,∫

α

ω =

∫
γ

ω +

∫
∂N
ω .

Letting σ = H ∩ V, we recall that ∂N is homotopic to σ × Bε plus a piece
γ′ in the interior of Y . Taking C′ = γ + γ′, the rest of the proof of (C.2.3)
is the same as that of Theorem C.9. The asymptotic estimate follows because∣∣∣∣∫C′ ω∣∣∣∣ ≤ eλc

∫
C′
|η|, as in the proof of Proposition B.10. □

C.2.2 Residue forms on smooth higher order poles

Let ω and ω′ be holomorphic d-forms onM with simple poles on the smooth
variety V = VQ. If ω and ω′ are cohomologous in Hd(M) then [Res(ω)] =
[Res(ω′)] in Hd−1(V∗), and the study of residue classes of forms with smooth
higher order poles can be reduced to those with smooth simple poles using this
property.
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Lemma C.11 (Gelfand-Shilov reduction). If ω is a holomorphic d-form on
M with smooth poles of order k ≥ 2 on V and the representation ω =

P(z)/Q(z)k dz holds on a domainD then

ω =
dQ
Qk ∧ ψ +

θ

Qk−1

= d
(

−ψ

(k − 1)Qk−1

)
+

θ1

Qk−1

for some holomorphic forms ψ and θ, where θ1 = θ + dψ/(k − 1). Thus, any
d-form onM with smooth poles of order k is cohomologous to a d-form onM
with smooth poles of order k − 1.

Proof See [AY83, Lemma 17.1]. □

If ω is any d-form on M with smooth poles then Lemma C.11 implies ω
is cohomologous to a d-form ω′ on M with smooth simple poles, and we
define the residue class [Res(ω)] of ω to be the class [Res(ω′)] ∈ Hd−1(V∗).
To simplify notation we usually write Res(ω) for the class [Res(ω)]. As our
integrals of residues depend only on their cohomology classes, there is no harm
in this abuse of notation. This inductive definition gives the following corollary
of Theorem C.9.

Corollary C.12. Suppose the assumptions of Theorem C.9 hold, except that ω
can have smooth poles of any order onV. If α and β are d-cycles inM whose
projections to Hd(Cd

∗) are equal then the identity∫
α

ω −

∫
β

ω = 2πi
∫

INT[α,β;V]
Res(ω)

still holds.

Just as for smooth poles, there is an explicit formula for the residue of a
form with higher order poles. We state the following theorem for the types of
integrands that arise in our asymptotic analyses.

Lemma C.13. Let dzk̂ denote the (d− 1)-form dz1 ∧ · · · ∧ dzk−1 ∧ dzk+1 ∧ · · · ∧

dzd. Wherever the functions P(z)z−r and Q(z) are analytic and the partial
derivative Qzk (z) does not vanish,

Res
(
z−r

P(z)
Q(z)ℓ

dz
)
= z−rΦrk (z) (C.2.4)

for a polynomial

Φrk (z) =
[
(−1)k−1

(
−rk

ℓ − 1

)
z−(ℓ−1)

k
P(z)

Qzk (z)ℓ
+ O

(
rℓ−2

k

)]
dzk̂
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in rk of degree ℓ − 1 whose coefficients are analytic functions of z explicitly
given in terms of derivatives of P and Q.

Proof We induct on ℓ, with the case ℓ = 1 handled by Proposition C.8. As-
sume for an induction that the lemma holds for ℓ − 1. Because the residue of
an exact form is zero, we let

η = (−1)k−1z−r
P(z)

(ℓ − 1)Q(z)ℓ−1Qzk (z)
dzk̂

and examine

0 = Res(dη)

= Res
z−r Pzk (z)

(ℓ − 1)Q(z)ℓ−1Qzk (z)
dz + z−r

−rkP(z)z−1
k

(ℓ − 1)Q(z)ℓ−1Qzk (z)
dz

−z−r
P(z)
Q(z)ℓ

dz − z−r
P(z)Qzk ,zk (z)

(ℓ − 1)Q(z)ℓ−1Qzk (z)
dz

]
.

Isolating the third term on the right yields

Res
(
z−r

P(z)
Q(z)ℓ

dz
)
= Res

z−r −rkP(z)z−1
k

(ℓ − 1)Q(z)ℓ−1Qzk (z)
dz


+ Res

(
z−r

A(z)
Q(z)ℓ−1 dz

)
,

(C.2.5)

for an analytic function A independent of rk. Applying the induction hypothesis
to the first residue on the right-hand side of (C.2.5) shows that it equals

(−1)k−1
 −rk

ℓ − 1

(
−rk − 1
ℓ − 2

)
z−rz−(ℓ−2)

k

P(z)z−1
k /Qzk (z)

Qzk (z)ℓ−1 + O
(
rℓ−3

k

) dzk̂ ,

while applying the induction hypothesis to the second residue on the right-
hand side of (C.2.5) proves that it is O

(
rℓ−2

k

)
. Combining powers of Qzk (z) and

powers of zk, and simplifying
−rk

ℓ − 1

(
−rk − 1
ℓ − 2

)
=

(
−rk

ℓ − 1

)
, then gives the stated

result. □

C.2.3 Iterated residue forms for simple poles on transverse sheets

In this section we summarize a generalization of residue forms to the case
whereV is the union of a finite number of smooth analytic hypersurfaces that
intersect transversely. A full treatment of residues for forms with transverse
poles can be found in [AY83, Section 16.5].
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Definition C.14. If V ⊂ Cd is an analytic hypersurface then we call w ∈ V
a transverse multiple point of V if there exists a neighborhood D of w in Cd

such thatD∩V = D∩ (VQ1 ∪ · · · ∪ VQk ) for smooth analytic hypersurfaces
{VQ j : 1 ≤ j ≤ k} defined by analytic functions Q j(z) whose gradients at
z = w are linearly independent. When this collection of analytic functions is
understood and m ∈ Nk then we write Q(z)m = Q1(z)m1 · · ·Qk(z)mk . If every
point ofV is a transverse multiple point then we callV a transverse analytic
hypersurface.

Example C.15. Every smooth analytic hypersurface is a transverse analytic
hypersurface. ◁

Fix a transverse analytic hypersurface V and let ω be a d-form on M =

Cd \ V. We say that ω has a transverse pole (or transverse multiple point) of
order m ∈ Nk at w ∈ V if

• there exists a neighborhoodD of w in Cd and analytic functions Q1, . . . ,Qk

onD such thatD∩V = D∩ (VQ1 ∪ · · · ∪VQk ) and the gradients of the Qi

are linearly independent at w (in particular, they are all non-zero),
• there exists an analytic function P on D such that ω = P(z)/Q(z)mdz

when z ∈ D ∩M, and
• there is no possible choice of Q and P such that these properties hold with

any coordinate of m decreased.

A transverse multiple point of order 1 is called a transverse simple pole (or
transverse simple point). The final item in this definition implies that the nu-
merator P and denominator factors Qk in the local representation of ω are co-
prime in the ring of germs of analytic functions, ensuring that m is the correct
notion of order (no unwanted cancellation can occur).

Let p be a transverse simple pole of the d-form ω, with the local represen-
tation

ω =
P(z)

Q1(z) · · ·Qk(z)
dz

in some neighborhood of p. To simplify notation we write Vi = VQi and let
S =

⋂k
i=1Vi be the stratum of V containing p. Because the gradients of the

Qi are linearly independent at p, there exist coordinates π = {π1, . . . , πd−k}

that locally analytically parametrize S near p. In particular, writing zπ =

(zπ1 , . . . , zπd−k ) there exists a neighborhood D of p in Cd and analytic func-
tions ζi(zπ) onD for i < π such that z ∈ D lies in S if and only if zi = ζi(zπ)
for all i < π.

As detailed later in these appendices, if D is sufficiently small thenM∩D
has a local product structure Ñ × S. Because p is a transverse multiple point
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with k sheets, the factor Ñ is homotopy equivalent to a k-torus and we can
represent the homology of Ñ using a product of k circles around p. To make
this explicit, we note that the map Ψ : D → Cd defined by

Ψ(z) =
(
Q1(z), . . . ,Qk(z), zπ1 − pπ1 , . . . , zπd−k − pπd−k

)
(C.2.6)

is a bi-analytic change of coordinates taking D ∩ S to a neighborhood of the
origin in {0} × Cd−k. Let Tε ⊆ Ck × {0} denote the product of circles of radius
ε in each of the first k coordinates. If ε is sufficiently small then Tε ⊂ Ψ(D)
and the cycle T = Ψ−1(Tε) will be a generator for Hk(Ñ). We give D the local
product structure that Ψ−1 induces from the product structure on Cd.

Definition C.16. If f is a differentiable function then the logarithmic gradient
of f at z is

(∇log f )(z) :=
(
z1 fz1 (z), . . . , zd fzd (z)

)
.

For each z ∈ S, augmented lognormal matrix is the d × d matrix

ΓΨ(z) =



(∇log Q1)(z)
...

(∇log Qk)(z)
zπ1eπ1

...

zπd−keπd−k


,

where e j denotes the jth elementary basis vector. Equivalently, ΓΨ = JΨD
where D is the diagonal matrix with entries z1, . . . , zd and JΨ is the Jacobian
matrix of the map Ψ.

Remark. The definition of ΓΨ depends on the choice of factorization, each
factor being determined only up to a complex multiple. Suitable normalizations
are assumed later in the definition of the torus T following (10.3) and the
determination of the orientation in the proof of Theorem 10.25.

Theorem C.17 (iterated residues). Under the setup discussed above, let ω be
the holomorphic d-form ω = P(z)∏k

j=1 Q j(z)
dz onM∩D and write SD = S∩D =

V1 ∩ · · · ∩ Vk ∩D.

(i) Iterated residue is well defined. The restriction to SD of any d-form θ

onD satisfying

dQ1 ∧ · · · ∧ dQk ∧ θ = P dz (C.2.7)

is independent of the particular solution θ.
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(ii) Formula for the iterated residue. Denoting the iterated residue defined
by this restriction by Res(ω;SD), there is a formula

Res

 P(z)∏k
j=1 Q j(z)

dz ; SD

 = P(z)
det JΨ(z)

∣∣∣∣∣
zi=ζi(zπ) : i<π

dzπ1∧· · ·∧dzπd−k .

(C.2.8)
(iii) Residue integral identity. Let σ be any (d − k)-chain in SD and T =
Ψ−1(Tε) be as above. Then

1
(2πi)k

∫
T×σ

P(z) dz∏k
j=1 Q j(z)

=

∫
σ

Res

 P(z)∏k
j=1 Q j(z)

; SD

 . (C.2.9)

(iv) Formula for Cauchy integral. In particular,

1
(2πi)k

∫
T×σ

z−r−1P(z)∏k
j=1 Q j(z)

dz =

∫
σ

z−rP(z)
detΓΨ(z)

∣∣∣∣∣
zi=ζi(zπ) : i<π

dzπ1∧· · ·∧dzπd−k .

(C.2.10)

Proof We first prove all four parts under the assumption that Q j(z) = z j for
all 1 ≤ j ≤ k. Setting πi = k + i for all 1 ≤ i ≤ d − k, the form θ = P(z) dzk+1 ∧

· · ·∧dzd satisfies (C.2.7). As in the proof of Proposition C.6 above, the result of
Exercise A.17 implies that ι∗θ is well-defined, yielding (i). The formula (C.2.8)
is also evident in this case: JΨ is the identity matrix, hence (C.2.8) agrees with
our choice of θ after setting zi = 0 for 1 ≤ i ≤ k, proving (ii). For (iii), we write
the left-hand side as an iterated integral

1
(2πi)k

∫
σ

∫
γ1

· · ·

∫
γk

P(z) dz∏k
j=1 Q j(z)

,

where γ j is the circle of radius ε about the origin in the jth coordinate. Apply-
ing the univariate residue theorem to each of the inner k integrals leaves∫

σ

P(z) dzk+1 ∧ · · · ∧ dzd ,

proving (iii). Finally, (iv) follows from (iii) by replacing P(z) with z−r−1P(z)
in (C.2.8) and absorbing one factor of each z j in the denominator when going
from det JΨ to detΓΨ.

For the general case, map by Ψ and use functoriality. The fact that Res is
well-defined and functorial follows from the same argument as in the proof
of Proposition C.6. Applying the case already proved to the image space and
pulling back by Ψ−1, it remains only to observe that dzk+1∧· · ·∧dzd pulls back
to 1

det JΨ(z)

∣∣∣∣
zi=ζi(zπ) : i<π

dzπ1∧· · ·∧dzπd−k , and P(0) pulls back to P(z)|zi=ζi(zπ) : i<π .
□
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Remark. The residue depends on Q j only via its gradient. The sign of the
residue form depends on the order of the factors in the denominator, and we
account for this when using residue forms to determine asymptotics.

When the stratum S is a single point (meaning k = d) the residue at p is just
a number, simplifying the conclusions of Theorem C.17 as follows.

Corollary C.18. Suppose the hypotheses of Theorem C.17 hold in the special
case where k = d, so that the residue of ω at p is a number θ0. Then

(i) P(p) dz = θ0 (dQ1 ∧ · · · ∧ dQd) (p),

(ii) Res

 P(z)∏d
j=1 Q j(z)

dz ; p

 = P(p)
det JΨ(p)

,

(iii)
1

(2πi)d

∫
Ψ−1(Tε)

P(z) dz∏d
j=1 Q j(z)

= Res

 P(z)∏d
j=1 Q j(z)

; p

 ,

(iv)
1

(2πi)d

∫
Ψ−1(Tε)

z−r−1P(z)∏s
j=1 Q j(z)

dz =
p−r−1P(p)
det JΨ(p)

=
p−rP(p)
detΓΨ(p)

.

Example C.19 (two lines in C2). Let

Q(x, y) =
(
1 −

1
3

x −
2
3

y
) (

1 −
2
3

x −
1
3

y
)

so that VQ has a transverse multiple point at (x, y) = (1, 1). The gradients of
the factors of Q are (1/3, 2/3) and (2/3, 1/3), which are also their logarithmic
gradients when x = y = 1. The determinant of ΓΨ is therefore one of ±1/3, the
sign choice depending on the order in which we choose the factors. Up to sign,
the iterated residue of Q(x, y)−1dx ∧ dy at (1, 1) is thus the number 3. ◁

Example C.20 (dimension three with two factors). Consider the generating
function

F(x, y, z) =
16

(4 − 2x − y − z)(4 − x − 2y − z)
,

whose singular set consists of two planes meeting at the complex line S =
{(1, 1, 1) + λ(−1,−1, 3) : λ ∈ C}. In this case we can parametrize S globally
by any of its three coordinates (i.e., we can take D = C3). Choosing the third
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coordinate, making π1 = 3, we obtain

JΨ(x, y, z) =


−2 −1 −1
−1 −2 −1
0 0 1

 ,
whence detΓΨ = 3 and

Res(F(x, y, z) dx ∧ dy ∧ dz;S) =
16
3

dz .

Choosing one of the first two coordinates leads to an equivalent answer: the
first two rows of JΨ are unchanged while the third row becomes either (1, 0, 0)
or (0, 1, 0), ultimately giving the representations −16dx and 16dy. These are
all equal, up to sign, as 1-forms on S. ◁

C.2.4 Iterated residue forms for higher order poles on transverse
divisors

In Section C.2.2 above we used Gelfand-Shilov reduction (Lemma C.11) to de-
fine a residue for higher order smooth poles in terms of the residue for smooth
simple poles. A version of Gelfand-Shilov reduction also works for iterated
residues leading, through a computation analogous to the ones used to estab-
lish Theorem C.17, except messier, to the following result.

Proposition C.21. Let S be a smooth codimension k variety in Cd
∗ defined

by the vanishing of k analytic functions Q1, . . . ,Qk, let U denote the module
over holomorphic functions of all meromorphic forms that can be written as
ψ/

∏k
j=1 Qn j

j where ψ is holomorphic in a neighborhood of S in Cd, and let
R = U/E where E is generated by the forms {Res(dη) : η ∈ R}. Then every
class in R has a representative in which each power n j is equal to 1. □

The rest of this section is devoted to the statement and proof of Theo-
rem C.24, an explicit formula for the residue in the specific case we use in
this text. We begin with a lemma indicating what form the answer will take.

Lemma C.22. Let f , f1, . . . , fd be smooth functions of u ∈ Ck. Then(
∂

∂u

)n
f (u) f1(u)r1 · · · fd(u)rd = f (u) f1(u)r1 · · · fd(u)rdΦ(r,u)

where Φ is a polynomial in r of degree |n| = n1 + · · ·+ nk. The leading term of
Φ is K(r,u)n =

∏k
j=1K j(r,u)n j where

K j(r,u) =
d∑

i=1

ri
∂ log fi
∂u j

.
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Proof We show by induction that(
∂

∂u

)n
f (u) f1(u)r1 · · · fd(u)rd = f (u) f1(u)r1 · · · fd(u)rd

[
K(r,u)n + Q(r,u)

]
(C.2.11)

for all n, where Q is a polynomial in r of degree less than |n|. When n = 0
this holds with Q = 0. Assuming this holds for n, taking the logarithm and
differentiating with respect to u j gives, after some algebraic simplification, that(
∂
∂u

)n+δ j
f (u) f1(u)r1 · · · fd(u)rd equals the right-hand side of (C.2.11) when

K(r,u)n + Q(r,u) is replaced by

∂ log f
∂u j

+K j · (Kn + Q) +
∂

∂u j
(Kn + Q) .

The terms in this expression other than K j · K
n = Kn+δ j are polynomials in r

of degree at most |n|, completing the induction. □

We now specialize to our context.

Corollary C.23. LetΨ be the parametrization defined in (C.2.6) with Jacobian
matrix JΨ(z). If we parametrize z = z(u) for variables u ∈ Ck and m is a
vector of positive integers then(
∂

∂u

)m−1
 z(u)−rP

(
Ψ−1(u)

)
∏d

j=1 z j(u) det JΨ
(
Ψ−1(u)

)  = z(u)−rP
(
Ψ−1(u)

)
∏d

j=1 z j(u) det JΨ
(
Ψ−1(u)

) P(r,u) ,

(C.2.12)
where

P(r,u) =

 k∏
j=1

 d∑
i=1

ri
∂ log zi(u)

∂u j


m j−1

+ R(r,u)

 (C.2.13)

for some polynomial R in r of degree less than |m| − k.

Theorem C.24. Under our running assumptions, the iterated residue has a
computable expression

Res

z−r−1 P(z)∏k
j=1 Q j(z)m j

dz ; SD

 = z−r
P(r, z)∏

j∈π z j

∣∣∣∣∣∣
zi=ζi(zπ) : i<π

dzπ ,

(C.2.14)
where P(r, z) is a polynomial in r of degree |m| − k. The leading term of
P(r, z) is

P(r, z) ∼
(−1)|m−1|

(m − 1)!
P(z)

detΓΨ(z)
(rΓ−1

Ψ )m−1 , (C.2.15)

where ΓΨ is the matrix from Definition C.16, the notation (rΓ−1
Ψ

)m−1 stands
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for
∏k

i=1(rΓ−1
Ψ

)mi−1
i , and (m − 1)! =

∏k
i=1(mi − 1)!. When k = d, the for-

mula (C.2.14) simplifies slightly to

Res

z−r−1 P(z)∏d
j=1 Q j(z)m j

dz ; p

 = p−rP(r,p) . (C.2.16)

Remark. Recall that the factors {Qi : 1 ≤ i ≤ k} are defined only up
to transformations multiplying each Qi by a complex number λi, satisfying∏k

i=1 λ
m1
i = 1. This multiplies detΓΨ by

∏k
i=1 λi and divides (rΓ−1

Ψ
)m−1 by∏k

i−1 λ
mi−1
i , thus leaving the ratio (rΓ−1

Ψ
)m−1/ detΓΨ which appears in (C.2.15)

invariant. Later, when we need to compute orientations, it will be convenient
to normalize each Qi to have constant term 1, simultaneously normalizing P to
have constant term a0.

Example C.25. Let a and b be positive integers and consider the function

F(x, y, z) =
16

(4 − 2x − y − z)a (4 − x − 2y − z)b ,

generalizing the function in Example C.20. Choosing to parametrize the line
S defined by the common zero sets of the denominator factors of F by the
coordinate z, we have the matrix

ΓΨ(x, y, z) =


−2x −y −z
−x −2y −z
0 0 1

 ,
whence detΓΨ = 3xy and, writing r = (r, s, t),

rΓ−1
Ψ =

(
sx − 2ry

3xy
,

ry − 2sx
3xy

,
3txy − ryz − sxz

3xy

)
.

Since we can parametrize x = y = g(z) on S where g(z) = (4 − z)/3, we have

detΓΨ|x=y=g(z) =
(4 − z)2

3

and

(rΓ−1
Ψ )m−1

∣∣∣
x=y=g(z) =

(
2r − s
z − 4

)a−1 (
2s − r
z − 4

)b−1

,

where m = (a, b). Thus

Res
[
z−r−1F(z) dz;S

]
= x−ry−sz−t−1

[
P0(z) + O

(
(r + s)a+b−3

)]
dz , (C.2.17)

where, taking into account (−1)|m−1| = (−1)(a−1)+(b−1) to change factors of z−4
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into 4 − z, we see

P0(z) =
48

(4 − z)2 (a − 1)! (b − 1)!

(
2r − s
4 − z

)a−1 (
2s − r
4 − z

)b−1

.

◁

Proof of Theorem C.24. Fix any index t with 1 ≤ t ≤ k and let η be the
(k − 1)-form defined by

η =
P̃(u)
um−δt

dut̂ ,

where dut̂ denotes the form du1 ∧ · · · ∧ dut−1 ∧ dut+1 ∧ · · · ∧ duk and P̃ is an
analytic function to be chosen later. Direct computation shows

dη =
(∂/∂ut)P̃(u)

um−δ jt
du −

(mt − 1)P̃(u)
um

du ,

and the fact that Res[dη] = 0 implies

Res
[

P̃(u)
um

du
]
=

1
mt − 1

Res
[
(∂/∂ut)P̃(u)

um−δ jt
du

]
(all residues with respect to forms in u are taken around the origin, which
we suppress for readability). Applying this maneuver mt − 1 times for each
1 ≤ t ≤ k then yields

Res
[

P̃(u)
um

du
]
=

1
(m − 1)!

Res
[
(∂/∂u)m−1P̃(u)

u1 · · · uk
du

]
, (C.2.18)

and using Theorem C.17 on the right-hand side of (C.2.18) implies

Res
[

P̃(u)
um

du
]
=

1
(m − 1)!

(
∂

∂u

)m−1

P̃(u) . (C.2.19)

By the definition of the map Ψ we can parametrize z on SD by z(u) =
Ψ−1(0,u) for u in a neighborhood of the origin in Cd−k. To simplify notation
we write Ψ−1(0,u) as Ψ−1(u), understanding the first k coordinates are implic-
itly zero. We now select

P̃(u) =
z(u)−r−1P(Ψ−1(u))

JΨ(Ψ−1(u))
,

which is chosen so that

Ψ∗
(

P̃(u)
um

du
)
= z−r−1 P(z)

Q(z)m
dz .
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Functoriality of the residue, combined with (C.2.19), now implies

Res
[
z−r−1 P(z)

Q(z)m
dz;SD

]
=

1
(m − 1)!

(
∂

∂u

)m−1 (
z(u)−r−1P(Ψ−1(u))

JΨ(Ψ−1(u))

)∣∣∣∣∣∣
(0,u)=Ψ(z)

dzπ . (C.2.20)

Applying Corollary C.23 to the right-hand side of (C.2.20) and noting that

ΓΨ =

(
∂ui

∂ log z j(u)

)
implies

∂ log zi(u)
∂u j

=
(
Γ−1
Ψ

)
i j

we obtain an expression(
∂

∂u

)m−1  z(u)−rP(Ψ−1(u))∏d
j=1 z j(u)JΨ(Ψ−1(u)


∣∣∣∣∣∣∣
(0,u)=Ψ(z)

= z−r
P(z)

detΓΨ(z)
P̃(r, z)∏

j∈π z j

whose leading term is as stated. □

Remarks. The leading term (C.2.15) depends on the divisors Q j only through
their gradients. When the stratum S is a single point (k = d), the residue at p
is a 0-form – i.e., a polynomial P(r) in r.

C.3 Classical Morse theory

After using residues to replace our starting Cauchy integral with a residue in-
tegral over an intersection class σ inV, we need to understand how to deform
σ inV. The possible deformations we can make, and which deformations will
allow us to compute asymptotic behavior, depend on the topological proper-
ties of V. Morse Theory attempts to describe the topology of a space X by
means of the geometry of X near critical points of a smooth, proper function
h : X → R.

Our destination in this appendix is Theorems C.38 and C.39, which state that
we may find a basis for each homology group Hk(X) consisting of quasi-local
cycles at the critical points of h: for each critical point p there will be a cycle
with height bounded by h(p)−ε except in an arbitrarily small neighborhood of
p. We establish this result by studying the sublevel sets X≤a := {x ∈ X : h(x) ≤
a} as a increases and showing that the homotopy type of X does not change
(the Morse Lemma C.27) except at critical points, where a cell is attached
(Theorem C.28). Along the way, a description of X as a cell complex is given in
Theorem C.32. A description of the attachments in terms of relative homology
is also given in the last section.
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Our material here covers classical (smooth) Morse Theory, which assumes
that the space X under consideration is a manifold. More general spaces are
handled in Appendix D.

Homotopy equivalence except at critical points

Let X be a smooth manifold and let h : X → R be a smooth function; we think
of h as giving the points on X a height (see Figure C.4 below). The critical
points of the height function h are the points p ∈ X for which the differen-
tial dh|p is zero on the tangent space Tp(X). The values h(p) of h at its criti-
cal points p are called the critical values of the height function h. A critical
point p is a nondegenerate critical point for h if the quadratic form given by
the quadratic terms in the Taylor approximation for h at p has no zero eigen-
values. In coordinates, this means that the determinant of the Hessian matrix[
∂2h
∂xi∂x j

(p)
]

is nonzero when X is locally coordinatized by x1, . . . , xd near p.

While the Hessian matrix itself depends on the coordinates, its (non)singularity
does not; see [Mil63, Section 2.1]. While it is traditional to require Morse func-
tions to be proper and have distinct critical values, we will not require this.

Definition C.26 (Morse function). A smooth function h : X → R is called a
Morse function if the critical points of h are nondegenerate. If h is a proper
map (meaning the inverse image of any closed and bounded interval is com-
pact) then we call h a proper Morse function. If the critical values of h are
distinct, then h is a Morse function with distinct critical values.

Exercise C.2. In which of the following cases is h a proper Morse function on
X?

(1) X is the surface of a doughnut lying on a table and h is height.
(2) X is the infinite cylinder {(x, y, z) : x2 + y2 = 1} and h is the z coordinate.
(3) X is the unit sphere and h is the distance to the point (−2, 0, 0).

Let X be a smooth manifold with proper Morse function h. If a is a real
number, we let X≤a denote the topological subspace {x ∈ X : h(x) ≤ a}. The
fundamental Morse Lemma states that the topology of X≤a changes only when
a is a critical value of h.

Lemma C.27 (Morse Lemma). Let a < b be real numbers, suppose that the
interval [a, b] contains no critical values of h, and assume that h−1([a, b]) is
compact. Then the inclusion X≤a ↪→ X≤b is a homotopy equivalence.
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Proof The Morse lemma is proven in [Mil63, Theorem 3.1] by constructing
a homotopy on X≤b that follows the orthogonal trajectories of the level-sets
h = c for constants c ∈ [a, b]. This is accomplished using a downward gradient
flow constructed locally using the gradient of h(x) (which never vanishes when
h(x) ∈ [a, b] due to the absence of critical points). □

Exercise C.3. Let X be the torus embedded in R3 and let f be the distance
from points on X to a fixed point not on X. Use the Morse lemma to prove that
f has a critical point on X that is either degenerate or is neither a maximum
nor a minimum.

Attachment at critical points

Suppose now that there is precisely one critical point p with h(p) ∈ [a, b]. The
Hessian of h at p is a real symmetric matrix and therefore has real eigenvalues.
We define the Morse index of h at p to be the number of negative eigenvalues
of the Hessian. The Morse index can range from 0 at a local minimum to
the dimension d of X at a local maximum. We now describe the topology of
X≤b as an attachment of a space Y to X≤a, where Y and the attaching map
depend on the Morse index of h at p. Following standard terminology in Morse
theory, a k-cell (more properly a topological k-cell) is a ball of dimension k (in
Appendix A we used this term for k-simplices, but topologically a k-ball and
k-simplex are equivalent).

Theorem C.28. Suppose that h−1([a, b]) is compact and contains precisely
one critical point p, with critical value h(p) strictly between a and b. Then
the space X≤b has the homotopy type of X≤a with a λ-cell attached along its
boundary, where λ is the Morse index of the critical point p (a 0-cell is a point
with empty boundary).

Proof See [Mil63, Theorem 3.2]. □

Example C.29. Suppose X is the unit sphere in R3 and consider the height
function h(x, y, z) = z (when working in R3, we often set h(x, y, z) = z so
that the ‘height’ function measures actual height). There are only two critical
points of h, namely its minimum (0, 0,−1) at height −1 and maximum (0, 0, 1)
at height 1.

Let us follow X≤a as a increases from −∞ to +∞. For a < −1, the set X≤a

is empty. As a passes −1, Theorem C.28 states that a 0-cell is added with no
identification, making X≤a, homotopically, a point. Geometrically, X≤a with
a ∈ (−1, 1) is a small dish, which is contractible to a point. The only other
attachment occurs at the top of the sphere. For a < 1 ≤ b, the set X≤b \ X≤a
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Figure C.3 Sublevel sets of a sphere, which form a contractible subset of the
sphere until reaching its maximum, when a cap is attached to complete the sphere.

is a polar cap. Thus, geometrically as well as homotopically, a 2-cell is at-
tached along its bounding circle. All spaces resulting from attaching a k-cell
to a contractible space are homotopy equivalent to attaching a k-cell to a point.
In the present case k = 2 and the resulting space is homotopy equivalent to a
2-sphere, recovering the homotopy class of X; see Figure C.3. We remark that
analysing the attachments recovers only the homotopy type, not the homeo-
morphism class. ◁

Example C.30. Let X be the torus in R3 obtained by rotating the circle (x −
5)2 + (y − 5)2 = 1 about the y-axis and let h(x, y, z) = z. The function h has
four critical points, all on the z-axis: a maximum (Morse index 2) at (0, 0, 6),
a minimum (Morse index 0) at (0, 0,−6) and saddle points (Morse index 1) at
(0, 0, 4) and (0, 0,−4); see Figure C.4.

p
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c 1

2
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1
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p

Figure C.4 The critical points on a torus for the standard height function.

For −6 ≤ a < −4 we see that, as in Example C.29, X≤a is homotopic to a
point (geometrically, it is a dish). As a passes −4, the theorem tells us to add
a 1-cell along its boundary. The only way of attaching a 1-cell to a point is to
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map both endpoints to the point, leaving a circle. Geometrically, if −4 < a < 4
then the set X≤a is a patch in the shape of a 2-cell with two disjoint segments
of its boundary attached to two disjoint segments of the geometric boundary of
X≤a; see Figure C.5.

Figure C.5 Crossing the critical value c2.

The critical point at height 4 adds another 1-cell modulo its boundary, mak-
ing the homotopy type of X≤a for 4 ≤ a < 6 the union of two circles touching
at a point. Finally, crossing the top of the sphere a 2-cell B is added modulo
its boundary. There is more than one choice for the homotopy type of the at-
tachment, and keeping track only of the homotopy type throughout the process
of attaching cannot resolve this choice – one must look at the geometry of the
attachment. In this case, because the attachment is to a topological circle (the
6−ε level set) and results in a nonintersecting surface in R3, there are only two
possibilities for the attaching map in homology: ∂B is mapped to the circle in
one of two orientations. Either choice results in a torus.

We remark that knowing the mapping of the last attachment in homology
is not sufficient to compute the homotopy type of the space. For example, at-
taching a 2-cell to two circles joined at a point by mapping the boundary of the
2-cell to the common point produces a sphere with two circular handles, which
is not homotopy equivalent to a torus. ◁

Although Theorem C.28 specifies the attachment pair when the topology of
X changes, Example C.30 shows that the computation of the attaching map is
not automatic. It will help to have some results that narrow down this compu-
tation to certain constructions local to the critical point: the homotopy in the
Morse Lemma may be improved so that outside of a neighborhood of p, every
point is pushed down at least to a level c − ε.

Let p be a critical point with height c = h(p) and suppose a < c < b are
such that p is the only critical point with height in [a, b]. Given ε > 0, let
Bε(p) denote the ε-neighborhood of p. We will see a formal version of the
local Morse Lemma, in a more general context, in Appendix D. For now, we
note that the local Morse Lemma implies that the homotopy type of X≤b is the
same as the homotopy type of X≤c−ε ∪ Bε(p) for sufficiently small ε.
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Definition C.31. Let Xc+ := X≤c−ε ∪ Bε(p) for any sufficiently small ε > 0,
and let Xp,loc denote the pair (Xc+ , X≤c−ε) depicted in Figure C.6.

c − ε
cpcp
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Figure C.6 The space Xc+ with points of height c represented by a dotted line.

The discussion above implies that the attachment pair (X≤b, X≤a) is homo-
topy equivalent to Xp,loc. Suppose now that h is a Morse function whose critical
values need not be distinct. If [a, b] contains the unique critical value c ∈ (a, b)
then the homotopy pushes points down to X≤c−ε except in a neighborhood of
the set of critical points whose value is p. Since this set of critical points is
discrete under our assumptions,

(X≤b, X≤a) ≃
⊕̃

p:h(p)=c

Xp,loc (C.3.1)

for sufficiently small ε > 0, where the tilde sum denotes the wedge of spaces,
meaning a disjoint union with the second space in each pair identified. This
equivalence states that (X≤b, X≤a) is homotopy equivalent to the wedge of the
local pairs at all critical points p with value c. The reduced homology of a
wedge is the direct sum of the reduced homologies of the individual spaces.

Exercise C.4. Intuitively, why is (C.3.1) a (reduced) direct sum? That is, ex-
plain why cycles in different summands cannot cancel each other.

The last step for this section is to put all this information together to produce
a global topological picture of X. At the level of homotopy type, the result is
that X has the topology of a cell complex, about which certain information is
known.

Theorem C.32. Let X be a manifold and h : X → R be a differentiable
function with no degenerate critical points. Suppose each sublevel set X≤a is
compact. Then X has the homotopy type of a cell complex with one cell of
dimension λ for each critical point of Morse index λ in X≤a.

Proof A full proof of Theorem C.32 can be found in [Mil63, Theorem 3.5],
but we give a sketch here. The proof for the case of finitely many critical points
with distinct critical values involves showing inductively that for any critical
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value c the homotopy equivalence between X≤c−ε and a cell complex may be
extended, via the attachment of a cell, to a homotopy equivalence between
X≤c+ε and a cell complex with one more cell. The restriction on distinct critical
values is then removed by homotopically perturbing h so as to satisfy the con-
ditions, and a limiting argument removes the assumption of a finite number of
critical points. □

Example C.33. The 2-sphere from Example C.29 is a cell complex with one
2-cell and one 0-cell; as noted above, up to homotopy equivalence, there is
only one choice for the attachment map. The 2-torus from Example C.30 is
a cell complex with one 0-cell, two 1-cells and one 2-cell. Up to homotopy
equivalence, the one skeleton must be the wedge of two circles. There are a
number of ways to attach a 2-cell to a wedge of two circles, and the right
attaching map can be worked out by knowing what the boundary (i.e., the level
set ε below the maximum height) looks like. ◁

Remark C.34. Let X be a complex d-manifold in Cn and, for p ∈ Cn, let
hp denote the function mapping z ∈ Cn to the complex distance ||z − p|| =

(
∑n

j=1 |z j − p j|
2)1/2. Andreotti and Frankel’s original proof of Proposition B.20

from Appendix B proved that p can be chosen to make hp a Morse function by
establishing that the set of p for which it is not a Morse function has positive
codimension, then showing that the Morse index of any critical point on X for
hp is at most d.

C.4 Description at the level of homology

For our purposes it is useful to consider the successive attachments from the
last section on the level of homology. Suppose that c is a critical value and
(B, A) is any pair with the same homotopy type of the attachment (X≤c+ε, X≤c−ε).
The long exact sequence has a portion

Hn+1(B, A)
∂n+1
−−−→ Hn(A)

ι∗
−→ Hn(B)

π∗
−→ Hn(B, A)

∂n
−→ Hn−1(A),

which implies

Hn(A)
Image(∂n+1)

=
Hn(A)
ker(ι∗)

� Image(ι∗) = ker(π∗).

In particular, there is a short exact sequence

0→
Hn(A)

Image(∂n+1)
→ Hn(B)→ ker(∂n)→ 0
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and, by Remark B.7, Hn(B) decomposes as a direct sum of the kernel of ∂n and
the cokernel of ∂n+1.

This decomposition allows us to construct a basis for the homology groups
Hn(B) from knowledge of the homology of A and the boundary map ∂∗: starting
with a basis for Hn(A) we identify basis elements differing by elements in the
image of ∂n+1 and then add new basis elements indexed by a basis for the kernel
of ∂n. These new basis elements have an explicit geometric description. The
group Hn(B, A) consists of equivalence classes of chains in B whose boundaries
lie in A. If C is a chain in the kernel of ∂n then the image ∂∗([C]) is the class
of ∂C ∈ Hn−1(A), which bounds some n-chain D in A. The inverse image of
the class [C] by π∗ is the class of the chain C − D, which is a cycle because
∂C = ∂D. Heuristically, we write

π−1
∗ ([C]) = C − ∂−1

A (∂C) (C.4.1)

and view π−1
∗ ([C]) as the relative cycle C in Zn(B, A), completed to an actual

cycle in a way that stays within A.

Remark C.35. The choice of D in this construction is not natural (see Re-
mark B.7). A particular composition of a space B as a subspace A attached to
C = B \ A comes with an explicit inclusion map from ∂C to A, and this induces
the ∂∗ operator. There may, however, be more than one way to reassemble A,C,
and ∂∗ into B, giving homotopy equivalent spaces with different homology
bases.

One further remark on notation: when attaching a space Y along Y0, the pair
(Y,Y0) is commonly referred to as the attachment data or, in the case of Morse
theory, the Morse data for the attachment. This data should really include the
homotopy type of the attachment map, or else the homotopy type of X and
the attachment data do not determine the homotopy type of the new space. On
the level of homology what we need to know is the relative homology of the
pair (Y,Y0), which is the homology of the new space relative to the old space,
together with the ∂∗ map.

Filtered spaces

A filtered space Xn is the end of a nested sequence X0 ⊆ X1 ⊆ · · · ⊆ Xn of
topological spaces. We use the terminology of filtered spaces to describe how
homology changes among sublevel sets X j = X≤a j , and our first result concerns
the homology of a chain that is successively pushed toward lower heights.

Lemma C.36 (Pushing Down Lemma). Let X0 ⊆ · · · ⊆ Xn be a filtered space
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and let C be a nonzero homology class in Hk(Xn, X0) for some k. Then there is
a unique positive j ≤ n such that for some C∗ ∈ Hk(X j, X j−1),

ι(C∗) = π(C) , 0 in Hk(Xn, X j−1), (C.4.2)

where ι is the map induced by the inclusion of pairs (X j, X j−1) → (Xn, X j−1)
and π is map induced by the projection of pairs (Xn, X0) → (Xn, X j−1). If ι is
an injection then C∗ is unique.

Proof To prove uniqueness of j, suppose that (C.4.2) is satisfied for some
minimal j with a chain C∗, and let j < r ≤ n. The composition of the two maps

(X j, X j−1)→ (Xn, X j−1)→ (Xn, Xr−1)

induces the zero mapping on homology because any class in the image of
the first map has a cycle representative in X j. Letting π′ denote projection of
(Xn, X0) to (Xn, Xr−1), we have π′(C) = π′(π(C)) = π′(ι(C∗)) = 0 and there-
fore (C.4.2) cannot hold for r > j.

For existence we argue by induction on n. The case n = 1 is trivial because
then j = 1 and C∗ = C. Assume the result for n−1 and let C be a nonzero class
in Hk(Xn, X0). If the image of C under the projection of (Xn, X0) to (Xn, Xn−1) is
nonzero then we may take C∗ to be this image and j to be n. Assume therefore
that C projects to zero. The short exact sequence of chain complexes for the
pairs

0→ (Xn−1, X0)→ (Xn, X0)→ (Xn, Xn−1)→ 0

induces the exact sequence

Hk(Xn−1, X0)→ Hk(Xn, X0)→ Hk(Xn, Xn−1) .

By assumption C is in the kernel of the second map, hence is the image under
the first map of some nonzero class C′. Applying the inductive hypothesis to
C′ yields some j ≤ n − 1 and a cycle C∗ ∈ Hk(X j, X j−1) satisfying (C.4.2) with
C′ in place of C. The commuting diagram

C∗ ∈ (X j, X j−1) -
ι1 (Xn−1, X j−1) -

ι2 (Xn, X j−1)

C′ ∈ (Xn−1, X0) -
ι3

?
π1

C ∈ (Xn, X0)

?
π
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allows us to conclude π(C) = π(ι3(C′)) = ι2(π1(C′)) = ι2(ι1(C∗)) = ι(C∗),
verifying (C.4.2). □

Building up by successive attachments

If we understand the topology of each pair (Xk+1, Xk) of consecutive elements
in a filtration X0 ⊆ · · · ⊆ Xn and we understand the homology groups of X0

then, using the argument above and induction, we understand the homology
groups of all Xk. Furthermore, if X is a smooth manifold with a proper height
function h then the Morse Lemma implies that the topology of the continuum
of spaces {X≤t} is captured by a filtration of sets described by the critical values
c0 < c1 < · · · < cn−1 of h. The Morse filtration of X with respect to h is the
filtration defined by X j = X≤c j−ε for 0 ≤ j ≤ n − 1 and Xn = X≤cn−1+ε, where ε
is any sufficiently small positive number.

When h has distinct critical values the pairs (Xi+1, Xi) are homotopy equiv-
alent to Xpi,loc, where pi are the critical points listed in order of increasing

height. In general, the successive pairs are homotopy equivalent to
⊕̃

h(p)=c j

Xp,loc

as c j increases through all critical values. We could describe how to keep track
of generators and relations for the homologies of X j inductively on j in the gen-
eral case, however what we will need is both more specialized (our spaces are
complex algebraic or analytic varieties) and more general (our spaces may not
be manifolds). Accordingly, we restrict the discussion here to one illustration,
continuing our example of the torus to show what can happen.

Example C.37. In Example C.30 we examined a height function on the torus
X with four critical points: one of Morse index 0, two of Morse index 1, and one
of Morse index 2. All ∂∗ maps vanish so the homology groups H0(X),H1(X),
and H2(X) are cyclic groups of rank 1, 2, and 1, respectively. The filtration con-
sists of X0 = ∅ , X1 which is contractible to a point, X2 which is homeomorphic
to a cylinder, X3 which is homeomorphic to a punctured torus, and X4 which is
the whole torus.

As an illustration of the non-naturality of the homology basis in (C.4.1),
consider the second 1-cell to be added. Let α be the homology class in H1(X2)
of the first 1-cell. Then the second 1-cell, which is a well defined relative ho-
mology class β in H1(X3, X2), may be completed to an absolute class in H1(X3)
in many different ways, resulting in cycles differing by multiples of α. Geomet-
rically, one may for example complete β to the circle defined by x2 + z2 = 1,
or instead wrap around the torus any integer number of times. ◁
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Figure C.7 A cycle on a torus.

Exercise C.5. Let γ be the cycle pictured in Figure C.7, going around the torus
between the critical points p4 and p3. Applying the Pushing Down Lemma with
respect to the Morse filtration for the pictured height function, what is j and
what cycle represents ι(C∗) = π(C)?

Assume now that X ⊆ Cd
∗ is a smooth algebraic hypersurface (a real mani-

fold of dimension 2d − 2) and that the specific height function h(z) = hr(z) =
−r1 log |z1| − · · · − rd log |zd | is a proper Morse function on X. The purpose
of introducing critical points at infinity in Chapter 7 is to remove the strong
assumption that h is proper, however, to see how everything works, we now
derive the results of Chapter 7 in this setting. The height function h is the real
part of (a branch of) a holomorphic function −r · log z, and is thus harmonic,
so all critical points for h on X have middle Morse index d − 1. Let p( j) for
enumerate the critical points 1 ≤ j ≤ m, ordered so that the critical values
c j = h(p j) are nondecreasing.

By the Morse Lemma, any cycle supported on X<c1 can be deformed via
gradient flow to a cycle in X≤t for t arbitrarily small, therefore integrals of
z−rF(z)dz over such cycles decay faster than any exponential. For this reason,
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it suffices to describe the homology of (X,−∞), where −∞ stands for X≤t for
any t < c1. The final set of results in this appendix describes this homology.

Theorem C.38. Suppose h = hr is a proper Morse function on a smooth
algebraic hypersurface X in Cd

∗ . Then Hk(X,−∞) vanishes in dimensions k ,
d − 1. The (d − 1)-homology is given by Hd−1(X,−∞) � Cm, where m is the
number of critical points. A basis {γp} may be chosen, indexed by the critical
points p of h on X, with the property that h is maximized on γp at p. By the
isomorphism of smooth homology and singular homology, each γp may be
chosen to be smooth.

Proof First assume distinct critical values c1 < · · · < cm with corresponding
critical points p(1), . . . ,p(m), and let X j denote the space X≤c j+ε. Inducting on j,
we show that the conclusion of the theorem holds for X j in place of X. First,
we note that each pair (X j, X j−1) is homotopy equivalent to a (d − 1)-ball Bd−1

modulo its boundary, whose homology has rank 1 in dimension d − 1 and zero
in every other dimension. For the base step j = 1, where we take X0 = X≤t for
any t < c1, the conclusion is immediate.

Now assume the conclusion holds with X = X j for some j < m, and consider
the short exact sequence of chain complexes of pairs

0→ C∗(X j,−∞)→ C∗(X j+1,−∞)→ C∗(X j+1, X j)→ 0 .

None of these pairs has any homology in dimensions higher than d − 1, there-
fore the long exact sequence is as follows, with an arrow from the rightmost
element of each row other than the bottom row to the left most element of the
next row down.

0 → Hd−1(X j,−∞) → Hd−1(X j+1,−∞) → Hd−1(X j+1, X j)
Hd−2(X j,−∞) → Hd−2(X j+1,−∞) → Hd−2(X j+1, X j)
Hd−3(X j,−∞) → Hd−3(X j+1,−∞) → Hd−3(X j+1, X j)

...
...

...

H0(X j,−∞) → H0(X j+1,−∞) → H0(X j+1, X j)→ 0

Identifying each Hk(X j+1, X j) as C if k = d − 1 and 0 otherwise, and using the
induction hypothesis, fills in most of this sequence:

0 → C j → Hd−1(X j+1,−∞) → C

0 → Hd−2(X j+1,−∞) → 0
0 → Hd−3(X j+1,−∞) → 0
...

...
...

0 → H0(X j+1,−∞) → 0 ,
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from which we deduce that Hk(X j+1,−∞) has rank one more than that of
Hk(X j,−∞) when k = d − 1 and rank zero otherwise. The extra generator
comes from the attachment of Bd−1 modulo its boundary, for which the gen-
erator γ j+1 may be chosen to maximize h at p( j) (see Exercise C.10), thereby
completing the induction. Finally, the assumption of distinct critical values
may be removed via (C.3.1). □

Exercise C.6. Let X be a smooth complex algebraic variety of complex di-
mension d in Cm

∗ for m > d and let h be a Morse function on X which is the
real part of a complex analytic function. Suppose X has five critical points.
Can you determine the homotopy type of the pair (X≤b, X≤a) when a → −∞
and b→ +∞?

We now have the tools to state a result analogous to what Theorem C.38 tells
us about X forM = Cd

∗ \ X. Recall the tube operator o : Hd−1(V∗) → Hd(M)
from Theorem C.2 – this in not only an injection, but (as we will see in the
next appendix) is an isomorphism on (X j+1, X j). An induction then gives the
following result.

Theorem C.39. Suppose the height function hr is a proper Morse function on
a smooth complex algebraic hypersurface X in Cd

∗ and letM = Cd
∗ \ X. Then

there is a basis for Hd(M,−∞) consisting of a single generator γp for each
critical point p of hr, which is tube around a cycle reaching maximum height
at p and is homotopy equivalent to S 1 × (Bd−1, ∂Bd−1). □

We cover Theorem C.39, and generalizations, in Appendix D.

Notes

Detailed treatments of multivariate residues are given in [Pha11; AY83], while
the classic text on Morse theory, which we have based our presentation around,
is [Mil63].

Additional exercises

Exercise C.7 (univariate residues via Stokes’s Theorem). Let f be a meromor-
phic function inside and on a closed contour γ such that f has no singularities
on γ. The familiar residue theorem in one variable states that

1
2πi

∫
γ

f =
∑

a

Res( f ; a)
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where the sum is over the poles a of f inside γ. Derive this from Theorem C.9.
What are α, β, ω,V and INT[α, β;V]?

Exercise C.8. Let P be a polynomial in two complex variables such that P(0, y)
has only simple, nonzero roots. Let α be a small torus of polyradius (ε, ε) and
let β be a torus of polyradius (ε,M) where M is much larger than any root of
P(0, y). Compute the intersection class INT[α, β;V]. Hint: Use the obvious
homotopy and parametrizeV∗ as y = f j(x) near each root y j of P(0, y).

Exercise C.9 (lumpy sphere). Let X be a sphere with a lump, that is, a patch
on the northern hemisphere where the surface is raised to produce a local,
but not global, maximum of the height function. List the critical points of the
lumpy sphere and determine the homotopy types of the attachments. This gives
a description of the lumpy sphere as a cell complex different from the complex
with just two cells. Use this to compute the homology and verify it is the same
as for the non-lumpy sphere.

Exercise C.10. Let M be a manifold with Morse function h having distinct
critical values and let x be a critical point of Morse index k. Let P be any sub-
manifold ofM diffeomorphic to an open k-ball about x such that h is strictly
maximized on P at x. Prove that P is a homology generator for the local ho-
mology group Hk(Mh(x)+ε,Mh(x)−ε). Hint: This is true of any embedded k-disk
through x inMh(x) that intersects the ascending (n − k)-disk transversely.

Exercise C.11. Let ιd : CPd−1 ↪→ CPd denote the embedding ιd(z0 : · · · : zd) =
(z0 : · · · : zd : 0).

(i) Show that CPd \ Image(ι) is homeomorphic to a (2d)-ball.
(ii) Describe CPd as CPd−1 with a (2d)-cell attached. What is the attachment

map on homology?
(iii) Use induction on d to compute the homology of CPd.



Appendix D

Stratification and stratified Morse theory

In this final appendix we extend the Morse-theoretic decompositions of Ap-
pendix C to handle general algebraic varieties and their complements. More
specifically, we cover results from stratified Morse theory [GM88] that char-
acterize the topology of a stratified space X through changes in topology in
the sublevel sets X≤c as c passes through critical values (in a stratified sense)
of a height function. We develop from scratch the notion of a Whitney strat-
ified space, Morse functions, and stratified critical points. We discuss non-
proper extensions of this material and then summarize a number of basic re-
sults of [GM88], including specific properties enjoyed by complex algebraic
varieties.

D.1 Whitney stratified spaces

Ideally one would use the apparatus of manifolds, developed in the previous
appendices, to do calculus on complex algebraic varieties, however many vari-
eties that appear in interesting combinatorial problems are not manifolds. The
right generalization for our purposes is the notion of a stratified space, which
can contain non-manifold points whose neighborhoods in the variety are not
diffeomorphic to any Euclidean space Rd. One well-known example of such
spaces are manifolds with boundary, and we begin with a recap of these ob-
jects. The following material on manifolds with boundary can be skipped if
desired, as it is subsumed by our discussion of stratified spaces, however we
include it because it is likely familiar to many readers.

A d-manifold with boundary is a subset M ⊂ Rn such that every point
x ∈ M has a neighborhood in Rn whose intersection N with M is either
diffeomorphic to Rd or diffeomorphic to the closed halfspace Rd−1 × [0,∞). In

532
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the former case x is called a manifold point or interior point ofM, while in
the latter case x is called a boundary point ofM.

Example D.1. A closed ball in any dimension d is a manifold with boundary,
while a cube [0, 1]d and a simplex {x ∈ Rd : x j ≥ 0 for all j and

∑d
j=1 x j = 1}

are not. ◁

Example D.2. If H = {(x, y) ∈ R2 : y ≥ 0} is the upper half-plane then H is
a manifold with boundary, the boundary points being the x-axis. Now let K =
{(x, y) ∈ R2 : x, y ≥ 0} denote the positive quarter plane. The map ϕ(x, y) =
(x2 − y2, 2xy) from K to H, constructed by taking the real and imaginary parts
of (x + iy)2, is analytic and one to one, so it may seem that K is diffeomorphic
to H and thus a manifold with boundary. However, ϕ−1 is not differentiable at
the origin, and in fact no neighborhood of the origin in K is diffeomorphic to
a neighborhood of the origin in a half-plane. Thus, K is not a manifold with
boundary. ◁

Exercise D.1. Give an example of a manifoldM ⊆ Rd with closureM whose
boundaryM\M is also a manifold, such thatM is not a manifold with bound-
ary.

A generalization of manifolds with boundary is the notion of a d-manifold
with corners, where every point has a neighborhood diffeomorphic to some or-
thant Rd−k×Rk

≥0 for some k ≤ d; see Figure D.1. Cubes and simplices are mani-
folds with corners, however complex algebraic varieties that are not smooth are
also typically not manifolds with corners. This difficulty is why we introduce
the generality of stratified spaces.

Figure D.1 The closed quadrantM is a manifold with corners, but not a manifold
with boundary.
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Stratifications

As a first attempt to perform calculus on an algebraic variety V, one might
partition V into a finite disjoint union of smooth sets and then work on each
piece of the partition. Although such smooth partitions can be easily under-
stood, and easily computed using standard algebro-geometric techniques, they
are not sufficient for our (and many other) purposes. The problem is that the
pieces in an arbitrary smooth partition may not fit together nicely; among other
difficulties, this means the local behavior ofV near points in the same piece of
the partition can be very different.

The issue of determining the ‘right’ type of smooth partition to use for topo-
logical arguments was taken up by Whitney [Whi65b], who introduced what
we now call (Whitney) stratifications. An I-decomposition of a space X ⊆ Rn

is a finite disjoint union
⋃
α∈I

Sα of smooth manifolds of various dimensions,

indexed by a partially ordered set I, such that for every α, β ∈ I,

S α ∩ S β , ∅ ⇐⇒ S α ⊂ S β ⇐⇒ α ≤ β. (D.1.1)

Definition D.3 (Whitney stratification). Let Z be a closed subset of Rn. A
Whitney stratification of Z is an I-decomposition of Z with the additional
property that whenever

• α < β, and
• the sequences {xi ∈ S β} and {yi ∈ S α} both converge to some y ∈ S α, and
• the lines ℓi = xi yi converge to a line ℓ, and
• the tangent planes Txi (S β) converge to a plane T ,

then ℓ ⊆ T . We call Z a Whitney stratified space.

Remark. In the original definition, in addition to ℓ ⊆ T (the so-called second
Whitney condition), it was required that Ty(Sα) ⊆ T (the so-called first Whit-
ney condition). The second condition turns out to imply the first, so the first
condition is usually omitted.

This definition is well crafted: the conditions are easy to fulfill – for ex-
ample, every algebraic variety admits a Whitney stratification, see [Whi65b,
Theorem 18.11] or [Hir73, Theorem 4.8] – and the conditions have strong con-
sequences (for instance, they are strong enough for stratified Morse theorems
to hold). Stratifications of algebraic varieties are also effectively computable.
A classic approach to algorithmic stratification through quantifier elimination
and real algebraic geometry, relying on cylindrical algebraic decomposition, is
discussed in [Ran98; MR91]. Recently, [DJ21] and [HN22] have given more
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practical algorithms1 for the stratification of algebraic varieties using Gröbner
basis computations.

Proposition D.4. Every algebraic variety in Rd or Cd admits a Whitney strat-
ification. □

In examples arising from combinatorial applications, it is often possible to
deduce a stratification directly from the form of the polynomials under consid-
eration.

Example D.5. A smooth manifold is a stratified space with a single stratum.
◁

Example D.6. If X is a finite union of affine subspaces of Rn then a Whitney
stratification of X is obtained by taking the set A of all intersections of the
affine subspaces, and choosing the elements of {A \ B : A, B ∈ A with A ⊋ B}
as strata. ◁

Example D.7. Let Z be a real algebraic curve {(x, y) ∈ R2 : f (x, y) = 0} with f
irreducible and let Y = {(x, y) : ∇ f (x, y) = 0} be the finite set of singular points
of Z. Taking Z \Y to be one stratum and each singleton {(x, y)} for (x, y) ∈ Y to
be another produces a Whitney stratification of Z. The following figure shows
two examples of this, the first curve x2 − y3 having a cusp at the origin and the
second curve 19− 20x− 20y+ 5x2 + 14xy+ 5y2 − 2x2y− 2xy2 + x2y2 having a
self-intersection at (1, 1). ◁

Figure D.2 Two curves, each stratified by taking one stratum consisting of a sin-
gular point and another stratum consisting of the rest of the curve.

Let V be any complex variety. As discussed in Chapter 8, it is possible to
decompose V into smooth sets by determining algebraic equations for the set

1 Helmer and Nanda [HN22] give an implementation of both of these algorithms in Macaulay2,
available at http://martin-helmer.com/Software/WhitStrat/.

http://martin-helmer.com/Software/WhitStrat/
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Σ0 of its singular points, letting S0 = V \ Σ0 encode the smooth points of
V, then recursively computing the sets Σn+1 and Sn+1 of smooth and singular
points of Σn until arriving at some ΣN = ∅. From the previous two examples,
one might get the idea that this decomposition is always a Whitney stratifi-
cation, but Exercise D.6 below shows this need not to be the case. It is true,
however, that any stratification must be at least this coarse.

Example D.8. Let Z be a complex algebraic hypersurface in C3 defined by
f (x, y, z) = 0 and suppose ∇ f vanishes along an algebraic curve γ. It is pos-
sible that {γ,Z \ γ} is a Whitney stratification for Z. On the other hand, if γ is
not smooth then a Whitney stratification of Z will have at least three strata, one
containing singularities of γ, one containing the rest of γ, and one containing
Z \ γ. ◁

Exercise D.2. Compute a Whitney stratification of the real varietyVQ where
Q(x, y, z) = z2 − x2 − y2.

The following exercise implies, with a little more work, that any manifold
with corners (including any manifold with boundary) is a Whitney stratified
space, with strata {S j : 0 ≤ j ≤ d} defined by the union of the open j-
dimensional faces.

Exercise D.3. Let H = Rd
≥0 be the positive orthant, let F be a (open) face of

H and let x be point of F. Prove directly that the interior S β = H◦ and face
S α = F satisfy the Whitney condition (Definition D.3) at x.

One fundamental result of stratified spaces concerns their local product struc-
ture, implying that the local behavior of a stratified space “looks the same” in
neighborhoods of different points on the same stratum. The proof of this fact
is long and difficult, but we sketch some of it in the next section.

Theorem D.9 (local product structure). Let p be a point in a k-dimensional
stratum S of a stratified space Z. There is a topological space N, called the
normal slice, depending only on S and not the choice of p ∈ S, such that
some neighborhood of p in Z is homeomorphic to Bk × N, where Bk is a k-
dimensional ball. □

We end this section with the following concept.

Definition D.10 (stratification of a pair). If Y ⊆ X are closed subsets of real
space then a stratification of the pair (X,Y) is defined to be a stratification
of X such that intersecting each stratum with Y gives a stratification of Y and
intersecting each stratum with X \ Y gives a stratification of X \ Y .
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A result of Whitney implies that if (X \ Y,Y) is a decomposition of X into
two smooth manifolds satisfying (D.1.1) then some Whitney stratification of
X refines this, and is a stratification of the pair (X,Y); see, for instance, [LT10,
Proposition 2.1]. Proposition D.4 extends to the following.

Proposition D.11. If V∗ is a complex algebraic variety in Cd
∗ with stratifica-

tion {Sα : α ∈ I} then adding the stratumM = Cd
∗\V∗ produces a stratification

of the pair (C∗d,V∗). □

D.2 Critical points and the fundamental lemma

We now extend the geometric concepts discussed in previous appendices to
stratified spaces.

Critical points for stratified spaces

Fix a Whitney stratification {S α : α ∈ I} of a closed subset X of a smooth
manifold M ⊆ Rn and let f = h|X be the restriction to X of a smooth function
h : M → R.

Definition D.12 (stratified critical points and Morse functions). Any point p ∈
X is contained in a unique stratum S = S (p), and we say that p is a critical
point of the height function h on the stratified space X if p is a critical point
of h|S (p) (in other words, if the restriction of the differential of h to the tangent
space TpS (p) is zero). We call h a Morse function if

(1) the restriction h|S α
is a Morse function for each α ∈ I, meaning that its

critical points are nondegenerate (i.e., its Hessian is nonsingular at each
critical point), and

(2) whenever p ∈ S α is a critical point of h|S α
and T is a limit of tangent planes

Tpi (S β) as pi → p in a stratum S β with β > α, then either T = Tp(S α) or
T contains a tangent vector on which dh(p) does not vanish.

This generalization of Morse functions to stratified spaces appears in [Pig79,
Section 3]; see also [Laz73]. In many contexts it is assumed that Morse func-
tions have distinct critical values – in which case we say we have a Morse
function with distinct critical values – or are proper – in which case we say
we have a proper Morse function. Figure D.3 shows two height functions, one
failing condition (2) in Definition D.12 and one satisfying it: on the left, the
limit of tangent lines at the cusp is horizontal, and is therefore annihilated by
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h h

Figure D.3 A non-Morse function (left) and a Morse function (right).

dh. A standard perturbation argument shows that coinciding critical values do
not affect topology.

The stratified version of the Fundamental Morse Lemma (Lemma C.27) is
the following.

Theorem D.13 (Stratified Morse Lemma [GM88, Theorem SMT part A]). Let
X ⊆ Cd

∗ be a stratified space with proper Morse function h and let a < b be
real numbers such that the interval [a, b] contains no critical values of h. If
h−1([a, b]) is compact, then the inclusion X≤a ↪→ X≤b is a homotopy equiva-
lence.

□

Tangent vector fields

The argument behind Theorem D.13 is worth understanding for readers who
have made it this far into the appendices. Both Theorem D.13 and Theorem D.9
will be derived from Thom’s isotopy lemma, stated as Lemma D.16 below. For
non-experts, the geometric intuition behind Theorem D.13 is not apparent, and
it can be instructive to pursue a line of reasoning that sometimes fails but more
closely parallels classical Morse theory.

Proposition D.14. In the following cases, the local product structure in Theo-
rem D.9 is induced by a diffeomorphism.

1. When Z is a smooth algebraic hypersurface.
2. When Z is the simplex or the complexification of a simplex.
3. When Z is a hyperplane arrangement.
4. When Z is the product of two spaces on which the local product is induced

by a diffeomorphism.

Proof In Cases 2 and 3, diffeomorphisms can be explicit constructed. Case 1
follows from the smooth implicit function theorem, while Case 4 follows from
taking a product diffeomorphism. □
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Proof sketch of Theorem D.13 (assuming diffeomorphic product structure)
Step 1: Each stratum S is a smooth manifold. The nonvanishing of the gradient
of h|S implies the existence of a nonvanishing downward gradient vector field
vS parallel to S. More specifically, there is a smooth nonvanishing section of
the tangent bundle (i.e., a map vS : S → TS) such that dh(vS) < 0.

Step 2: By assumption of diffeomorphic local product structure, for each
point p in each k-dimensional stratum S of X there is a Cd-neighborhood N
of p and a smooth change of coordinates in N under which S ∩ N = {z ∈
N : z j = 0 for j > k} and X ∩ N = {z ∈ N : (z j+1, . . . , zd) ∈ N′} where
N′ is the normal slice consisting of all (d − j)-tuples (z j+1, . . . , zd) such that
(0, . . . , 0, z j+1, . . . , zd) ∈ X. Strata in this neighborhood are the products of
strata of N′ in the first k coordinates with Rd−k. Vectors v tangent to S in
this neighborhood have v j = 0 for j > k and are therefore tangent to all strata
in the neighborhood.

The within-stratum downward gradient flows vS can be stitched together
via a partition of unity to form a single gradient-like flow v with Lipschitz
constant 1. More specifically, each point p in a stratum has a neighborhood
Up in Cd that intersects only strata whose closure contains S(p), the stratum
containing p, and on which dh(vS(p)) < 0. If {ψUp

: p ∈ E} is a partition of
unity subordinate to a finite subcover of h−1[a, b] by these neighborhoods, then

v =
∑
p∈E

ψUp
vS(p) (D.2.1)

defines the required flow. It is gradient-like because dh(v) is a convex combi-
nation of values dh(vS(p)), which are all negative. It is tangent to each stratum
because v(p′) is a convex combination of vectors v(S(p)) tangent to strata
S(p) whose tangent spaces are contained in the tangent space to p′. Choosing
Up small enough that some constant multiple of each vS(p) can be chosen to
have Lipschitz constant 1 on Up, convexity implies that v globally has Lips-
chitz constant 1.

Figure D.4 shows a picture of this. The left-hand picture shows that the
vector field w(p) = vS(p)(p) is gradient-like but not continuous. It changes
direction sharply when approaching a substratum, because S(p) changes dis-
continuously from one stratum to a substratum. The right-hand picture shows
these blended by a partition of unity, so as to become smooth while remaining
gradient-like.

Step 3: Let c > 0 be the infimum value of |dh(v)| on X, and let Ψ :
X × [0,∞] → X be the flow defined by (d/dt)Ψ(x, t) = v(Ψ(x, t)), stopped
when it hits h−1(c). Such a flow exists and is unique because v is Lipschitz,
being a convex combination of locally constant vector fields (in the natural
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Figure D.4 Left: A flow in a 2D stratum that turns sharply when reaching a bound-
ary. Right: A partition of unity blends the flow smoothly between strata (note that
the flow smoothly becomes zero in a neighborhood of the zero-dimensional stra-
tum).

identification of tangent spaces with subspaces of the tangent space to the am-
bient space Rd). Fixing any T ≥ (b−a)/c the time T map defines a deformation
retract of X≤b onto X≤a, proving homotopy equivalence. □

The problem with this sketched proof is that, in general, the local product
structure is not witnessed by a diffeomorphism. This is shown by Whitney’s
counterexample [Whi65a], reproduced in Goresky’s introduction [Gor12] to
Mather’s cleaned up notes [Mat12] as motivation for the work that follows.
Figure D.5 shows three planes and a ruled surface in R3, whose common inter-
section is the x-axis. Intersecting with a plane parallel to the yz-plane moving
down the x-axis results in a configuration of four lines, the first three constant
and the fourth becoming more sloped. Any coordinate system in which the first
three lines remain fixed as the slice moves down the x-axis also fixes the slope
at the origin of the fourth line, and therefore cannot represent the figure as a
product of the x-axis with a four-line configuration.

Figure D.5 Whitney’s counterexample to smooth isotopy.

The trouble is that the category in which one most naturally deals with
stratified spaces is smooth within strata and continuous across strata. Whit-
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ney’s conditions do not guarantee the existence of a differential structure that
is smooth across strata, even for algebraic hypersurfaces in Euclidean space.
Nevertheless, it is true, that there is an continuous isotopy moving the yz-plane
to the right while continuously deforming a sector so that the line of inter-
section with the ruled surface in each slice remains identified. Working in the
smooth within strata continuous across strata category, one can obtain a vector
field but it will generally not be Lipschitz. The flow in Step 3 will not neces-
sarily exist, and the argument falls apart.

Remark D.15. In the neighborhood of a hyperbolic point of a complex alge-
braic hypersurface, a Lipschitz vector field can be constructed explicitly from a
lower-semicontinuously varying family of cones. This is carried out in [BP11]
(see Lemma 5.1 there) and is based on the lengthier development in [ABG70];
the construction is summarized in Section 11.2 of this book. Thus, the three
steps above prove Theorem D.13 when X is a complex algebraic hypersur-
face with all critical points hyperbolic, even though Proposition D.14 will not
necessarily hold.

Isotopy
To repair the stratified gradient flow argument, one needs a statement of Thom’s
isotopy lemma strong enough to imply the deformation retract in Step 3 di-
rectly, as well as implying Theorem D.9. This lemma is proved by giving up
on the idea that the desired vector field can be continuous, providing instead a
controlled vector field satisfying a set of axioms allowing one to infer that the
vector field defines a continuous flow with the desired properties. We will not
go into the theory of controlled vector fields, being content to quote where they
are used and referring the reader to [Mat12, Proposition 11.1] for the proof of
the following results and full details of controlled vector fields for stratified
spaces.

Lemma D.16 (Thom’s Isotopy Theorem). Let Z be a Whitney stratified space
Z that is a closed subset of some smooth manifold M, and suppose that π :
M → P is a smooth proper mapping to a connected manifold P such that
the restriction π|S of π to each stratum S of Z is a submersion (surjective
on tangent spaces). Then any smooth vector field V on P has a lift Ṽ to a
controlled vector field on Z. By a lift, we mean that V is a (not necessarily
continuous) section of the tangent bundle of each stratum of Z such that π∗◦Ṽ =
V ◦ π. Although Ṽ is not necessarily continuous, it has a continuous flow Ψ̃
that projects under π to the flow Ψ defined by V on P. The fact that there is a
continuous flow lifting the flow of V implies that π|Z : Z → P is a locally trivial
fiber bundle. □
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Proof of Theorem D.13 Apply Thom’s isotopy lemma with manifolds P =
R and M = C∗d, stratified space Z = X ∩ h−1(a − ε, b + ε), and mapping
π = h. If h : X → R has no critical values in [a, b] then it has no critical
values in [a − ε, b + ε], hence h is a submersion on each stratum of X. The
conclusion of the lemma is that the level surfaces of h are fibers of a local
product bundle, hence the flow Ṽ witnesses a strong deformation retraction of
X≤b onto X≤a. □

To conclude this section, we show how Thom’s isotopy lemma can be used
to derive the local product topological structure of stratified spaces.

Proof of Theorem D.9 Let Z be a stratified space in Rd and let S a stratum of
dimension k, with •S denoting a closed tubular neighborhood of S in Rd and
π : •S → S denoting the projection map. Then •S is a manifold with boundary
oS and an interior which we denote (•S)◦. If the tubular neighborhood was
chosen sufficiently small, then X = Z ∩ •S is naturally stratified with strata
of the form W ∩ (•S)◦ and W ∩ oS, where W runs over strata whose closure
contains S.

The mapping π on X satisfies the conditions of Thom’s isotopy lemma. Con-
sequently, its normal slice N = π−1(p) ∩ Z is stratified by its intersection with
the strata of X. Taking Up to be a small ball around p in the stratum S that con-
tains p, there is a stratum preserving homeomorphism, smooth in each stratum,
given by π−1(Up)∩Z � Up×N. Since π−1(Up) is a neighborhood of p in Z, we
have shown that each stratum has a neighborhood that is locally a topological
product of a k-ball Up with the normal slice. □

D.3 Description of the attachments

Let V∗ denote the intersection V ∩ Cd
∗ of an affine algebraic hypersurface V

with Cd
∗ , and let M = Cd

∗ \ V. We return to our plan to use Morse Theory
to find generators for Hd(M). Because we may want to describe eitherM or
V∗, depending on the situation, results in the literature are often stated in two
parts, so as to cover both cases, and we continue to adhere to this. For what
follows we fix a Whitney stratification {Sα : α ∈ I} of the pair (Cd

∗ ,V∗) as
in Proposition D.11, so that M will be the unique stratum of dimension 2d.
The function h = hr̂ is assumed to be a Morse function and the space X may
denote either V∗ orM. The point p denotes a stratified critical point for h in
the stratum S, and we let N = Np(V) denote the complex normal space toV∗
at p.
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The tangential Morse data is defined in terms of p and S, regardless of
whether X = V∗ or X =M.

Definition D.17 (tangential Morse data). The tangential Morse data at p is
the homotopy type of the pair (Bλ, ∂Bλ), where λ is the Morse index of h|S at
p and Bλ denotes the ball of dimension λ. By Theorem C.28, this is the Morse
data at p for the height function h|S on the smooth manifold S .

The normal Morse data is defined in terms of the intersection of X with a
slice normal to the stratum S, localized to the point p. If D is an arbitrarily
small disk in Np(V) centered at p then the normal slice at p is N(X) := X ∩D.
To visualize this, it sometimes helps to picture the normal link L(X) at p, de-
fined by L(X) := X ∩ ∂D. When X = V∗ the normal slice N(X) is homeomor-
phic to a cone over L(X) from the point p. In particular, N(X) is contractible.
When X =M the point p is absent from the normal slice, which then retracts
onto L(X), hence N(X) ≃ L(X).

Example D.18. LetV be the union of two complex planes in complex 3-space
meeting at the line S and let p be a point on S. This line is the stratum con-
taining p, and the tangent space at p or any other point on S is the translation
of S to the origin. The normal space Np(V) at p (or any other point on S) is
the complex two-space orthogonal to S.

First consider the case X = V∗. The intersection of X with a normal plane
to S at p is two complex lines meeting at p. The normal slice N(X) is the inter-
section of this with a ball around p, and thus is two disks joined by identifying
their centers. The link L(X) = X ∩ ∂D is the union of two disjoint circles, each
on one of the complex lines, and the normal slice N(X) is the cone over these
circles.

Alternatively, if X =M then L(X) = X ∩ ∂D is the complement of two in-
tersecting lines in a small bi-disk, which is the product of two punctured disks.
Each punctured disk retracts to its boundary, so the 4-dimensional space N(X)
retracts to the 3-dimensional space L(X), which retracts to a 2-dimensional
torus S 1 × S 1. ◁

Definition D.19 (normal Morse data). Let X beV∗ orM. The normal Morse
data for X at p is defined to be the homotopy type of the pair(

N(X) ∩ h−1([c − ε, c + ε]), N(X) ∩ h−1(c + ε)
)
, (D.3.1)

where the disk D in the definition of N(X) is sufficiently small, and ε is a suf-
ficiently smaller positive number. It is proved in [GM88] that these homotopy
types are the same for all D and ε sufficiently small.
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Example D.20. Suppose thatV∗ is a smooth algebraic hypersurface near one
of its points p.

(1) If X = V then N(X) is the single point p. Formally, the homotopy type is
that of ({p}, ∅).

(2) If X =M then N(X) has the homotopy type of (D\0, q) where D is a small
disk and q is a point on the boundary of D. This is the reduced homotopy
type of a circle, cyclic in dimension 1 and null in every other dimension. ◁

The following theorem is stated for the case X = V∗ in [GM88, Theo-
rem SMT B on page 8] and for the case X =M in [GM88, unnamed theorem
on page 12]; the equivalent characterizations of the homotopy type are stated
in [GM88, pages 7, 66–67, 120–122].

Theorem D.21 (attachments are determined by Morse data). Let X be either
V∗ orM with a Whitney stratification as above, and let p be a critical point
for h in a stratum S with critical value c = h(p).

1. The homotopy type of the attachment at p is the product, in the category of
pairs, of the normal and tangential Morse data as given in Definitions D.19
and D.17.

2. The tangential data for a stratum of codimension k is always the reduced
homology of a (d − k)-sphere: rank 1 in dimension (d − k) and vanishing
otherwise.

3. The normal data has the following characterizations.

(i) When X = V∗, the normal data is homotopy equivalent to the pair
(Cone(ℓ−), ℓ−) where Cone(Y) is the topological quotient Y×[0, 1] /Y×
{1} and ℓ− is the lower halflink defined as the level set of N(X) at height
c − ε for sufficiently small ε > 0.

(ii) When X = M, the normal data is homotopy equivalent to the pair
(L+(X), ∂L+(X)) where L+(X) is the part of L(X) at height at least c.

(iii) When X =M, the normal data is also homotopy equivalent to the pair
(L+(X),L0(X)) where L0(X) is the intersection of L(X) with the level
set {z ∈ X : h(z) = c}.

□

Remark. Goresky and MacPherson have this to say [GM88, page 9]: “Theo-
rem SMT Part B, although very natural and geometrically evident in examples,
takes 100 pages to prove rigorously in this book.”

Example D.22 (complement of S 2 in R3). Let X be the complement of the unit
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Figure D.6 The complement of the unit sphere up to height +1/2.

sphere S ⊆ R3. The function h(x, y, z) = z extends to a proper height function
on R3, which is Morse with respect to the stratification {S , X}.

There are no critical points in X but there are two in S : the South pole and
the North pole. In each case the normal slice is an interval minus a point, so the
normal data is homotopy equivalent to (S 0, S 0

−), where S 0 is two points, one
higher than the other, and S 0

− is the lower of the two points. For the South pole,
which has Morse index 0, the tangential data is a point, so the attachment is
(S 0, S 0

−), which is the addition of a disconnected point. Figure D.6 illustrates
that for −1 < a < 1, the space X≤a is in fact the union of two contractible
components. The North pole has Morse index 2, so the tangential data at the
North pole is (D2, ∂D2), a polar cap modulo its boundary. Taking the product
with the normal data gives two polar caps modulo all of the lower one and
the boundary of the upper one. This is the upper polar cap sewn down along
its boundary, the boundary being a point in one of the components. Thus, one
component becomes a sphere and the other remains contractible. ◁

Suppose we have a closed space Y ⊂ Rd whose complement X we view as
a stratified space with Morse function h. If p is a critical point for h in some
stratum S then there is a local coordinatization of Y as S × Bp, where Bp is a
small ball of dimension d − k and k is the dimension of S . The set Bp \ Y is
this ball minus the origin, so it is a cone over L(p) with vertex p. Any chain in
Bp \ Y may be brought arbitrarily close to p.
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D.4 Stratified Morse theory for complex manifolds

If X is a complex variety then the Morse data has an alternate description obey-
ing the complex structure of X. Let S be a stratum containing a critical point p,
let N(p) be a small ball in the normal space to S at p, and define the complex
link L(S ) to be the intersection of a X with a generic hyperplane A ⊆ N(p)
that comes sufficiently close to p but does not contain it. It is shown in [GM88,
page 16] that the normal Morse data at p ∈ X is given in terms of L(S ) by the
pair

(Cone R(L(S )),L(S )) , (D.4.1)

where Cone R(L(S )) denotes the real cone over L(S ). In other words, the nor-
mal link has the homotopy type of the pair (L(S )× [0, 1] / L(S )×{1} , L(S )×
{0}) where the real cone (the first space of this pair) is defined as a quotient.

Suppose that X has dimension d, the stratum S has dimension k, and the
ambient space has dimension n (all dimensions are complex). Then N(p) is a
complex space of dimension n − k, its intersection with a generic hyperplane
has dimension n − k − 1, and thus

dimCL(S ) = d − k − 1 .

In fact the homeomorphism type of the complex link depends on X and S but
not on the individual choice of p ∈ S , nor the ambient space, nor the choice of
proper Morse function h on the stratified space X (see [GM88, Section II:2.3]).

Suppose next that X is the complement of a d-dimensional variety in Cd+1. A
formula for the Morse data at a point p < X in a stratum S is given on [GM88,
page 18] by

(L(S ), ∂L(S )) × (B1, ∂B1) , (D.4.2)

where B1 is a real interval (which can be interpreted as a 1-ball).

Theorem D.23. (i) If X is a complex analytic variety of dimension d then X
has the homotopy type of a cell complex of dimension at most d. (ii) If X is the
complement in a domain of Cn of a complex variety of dimension d then X has
the homotopy type of a cell complex of dimension at most 2n − d − 1.

Remark. The proof of this result in [GM88] is somewhat difficult, mostly
due to the necessity of establishing the invariance properties of the complex
link. The result, however, is very useful. For example, suppose that X is the
complement of the zero set of a polynomial in n variables. Then d = n − 1
and the homotopy dimension of X is at most n. Note that X may have strata
of any complex dimension j ≤ d, and that the complement of a j-dimensional
complex space in Cn has homotopy dimension 2n − 2 j. The theorem asserts
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that the complex structure prevents the dimensions of contributions at strata
of dimensions j < d from exceeding the dimension of the contributions from
d-dimensional strata.

Proof sketch (i) Assume that the variety is embedded inCn and that the height
function h has been chosen to be the square of the distance from a generic
point. We examine the homotopy type of the attachment at a point p in a stra-
tum of dimension k. It suffices, as in the proof of Theorem C.39, to show that
each attachment has the homotopy type of a cell complex of dimension at most
d.

First, if k = d (p is a smooth point) then, as was observed prior to stating
Theorem C.39, the Morse index of h is at most d. The attachment is (Bi, ∂Bi)
where i is the Morse index of h, so in this case the homotopy type of the
attachment is at most d.

When k < d, we proceed by induction on d. The tangential Morse data has
the homotopy type of a cell complex of dimension at most k. The spaceL(S ) is
a complex analytic space, with complex dimension one less than the dimension
of the normal slice, meaning it has dimension d−k−1. The induction hypothesis
shows that the homotopy dimension of L(S ) is at most d − k − 1. Taking the
cone brings the dimension to at most d − k and adding the dimension of the
tangential data brings this up to at most d, completing the induction.

(ii) When X is the complement of a variety V, still assuming h to be the
square of the distance to a generic point, all critical points with respect to
the pair (X,V) are contained in V, not in X. Again it suffices to show that
the attachments all have homotopy dimension at most 2n − d − 1, and again
we start with the case k = d. Here p is a smooth point of V, so the normal
data is the same as for the complement of a point in Cn−d, which is S 2(n−d)−1.
The tangential data has homotopy dimension at most d, so the attachment has
dimension at most 2n − d − 1.

When k < d, we again proceed by induction on d. The link L(S ) is the
complement ofV∩A in a generic hyperplane A. We have directly dimC N(p) =
n − k and dimC(A) = n − k − 1, and dimC(V ∩ A) = d − k − 1 because V has
codimension n − d, intersects A generically, and k ≤ d − 1. The induction
hypothesis applied to the complement of V ∩ A in A shows that L(S ) has the
homotopy type of a cell complex of dimension at most 2(n − k − 1) − (d − k −
1) − 1 = 2n − d − k − 2. The normal Morse data is the product of this with a
1-complex, hence it has homotopy dimension at most 2n−d−k−1, and taking
the product with the tangential Morse data brings the dimension up to at most
2n − d − 1, completing the induction. □

It is useful for the main part of this book to summarize the results from this
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section for complements of manifolds, applying the Künneth formula to obtain
a description of the attachments in terms of specific relative cycles.

Definition D.24 (quasi-local cycles). A (relative or absolute) local cycle at a
point p is a cycle which may be deformed so as to be in an arbitrarily small
neighborhood of p. Given a stratified space with Morse function h, a quasi-
local cycle at a critical point p of the stratification is a cycle C⊥ × C∥ where C∥
is a disk in S on which h is strictly maximized at p, Bp is a small ball around
p in the normal slice, C⊥ is a local cycle in (Bp \ Y, (Bp \ Y)≤h(p)−ε), and the
product is taken in any local coordinatization of a neighborhood of p by Bp×S .

Theorem D.25. Let X be the complement of a complex variety of dimension d
in Cd+1. Then X may be built by attaching spaces that are homotopy equivalent
to cell complexes of dimension at most d + 1. Consequently, Hd(X) has a basis
of quasi-local cycles which may be described as B = {σp,i}p,i, where p ranges
over critical points in different strata, and each σp,i ∈ Xc,p. For each fixed p,
the projection π∗ : Xc,p → (Xc,p, X≤c−ε) = Xp,loc maps the set {σp,i} to a basis
for the relative homology group Hd(Xp,loc). □

Notes

The idea to use Morse theory to evaluate integrals was not one of the orig-
inal purposes of Morse theory. Nevertheless, the utility of Morse theory for
this purpose has been known for over fifty years. Much of the history appears
difficult to trace: the present authors learned it from Yuliy Baryshnikov, who
related it as mathematical folklore from Arnold’s seminar. The smooth Morse
theory in this chapter (and some of the pictures) is borrowed from Milnor’s
classic text [Mil63]. Stratified Morse theory is a relatively new field, in which
the seminal text is [GM88]; most of our understanding came from this text.

The result usually quoted as the description of the attachment in the strati-
fied case (a stratified version of Theorem C.28) is an unnumbered result named
“Theorem” in [GM88, Section 3.12]. This computes the change in topology of
a stratified space X on which the function h is proper. When h is a continuous
function on Cd

∗ , this requires the subset X to be closed. We are chiefly inter-
ested in the space X = Vc which is not closed. Dealing with nonproper height
functions requires two extra developmental steps. The first is to develop a sys-
tem for keeping track of the change in topology of the complement of a closed
space up to a varying height cutoff. This computation is similar to the one for
the space itself. Goresky and MacPherson state the two results together in a
later version of the “Main Theorem” of [GM88], and we have followed their
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example, stating the results together in Theorem D.21. The second way h can
fail to be proper occurs at infinity. The results of [GM88] across the height
interval [a, b] can be extended to unbounded spaces when there are no critical
points at infinity with heights in [a, b]. This was the motivation for the results
on CPAI derived in [BMP22], which we use in Chapter 7.

Additional exercises

Exercise D.4 (Whitney umbrella). Let f (x, y, z) = x2 + y2z be the polynomial
whose real variety V f forms the Whitney Umbrella. Decompose V f into the
union of smooth sets by computing algebraic equations for its singularities, the
singularities of its singularities, and so on until no singularities remain. Either
prove that this decomposition is a Whitney stratification ofV f , or prove that it
is not and find a refinement that is.

Exercise D.5. Let X be the complement in C2 of the smooth curve x2+y2 = 1.
Define a Morse function and use it to compute the homology of X.

Figure D.7 The real variety in Exercise D.6.

Exercise D.6. Let Q = x2 − y3 − z2y2 and let VQ denote the corresponding
real affine variety shown in Figure D.7. Compute the set S of singularities of
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VQ, and then determine whether {VQ \S , S } is a Whitney stratification ofVQ.
Hint: Consider points xn = (0,−t2, t) ∈ VQ \ S and yn = (0, t, 0) ∈ S .
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fonction algébrique”. Enseignement Math. (2) 10 (1964), pp. 267–
270 (cit. on p. 72).

[Com74] L. Comtet. Advanced combinatorics. Enlarged edition. Dordrecht:
D. Reidel Publishing Co., 1974, pp. xi+343 (cit. on pp. 40, 267,
423).

[Con78a] C. Conley. Isolated invariant sets and the Morse index. Vol. 38.
CBMS Regional Conference Series in Mathematics. Berlin: Springer-
Verlag, 1978 (cit. on p. 220).



556 REFERENCES

[Con78b] J. B. Conway. Functions of one complex variable. Second edi-
tion. Vol. 11. Graduate Texts in Mathematics. New York: Springer-
Verlag, 1978, pp. xiii+317 (cit. on pp. 24, 78, 180, 366).

[Cox20] D. Cox. “Reflections on elimination theory”. In: ISSAC’20—
Proceedings of the 45th International Symposium on Symbolic
and Algebraic Computation. ACM, New York, 2020, pp. 1–4
(cit. on p. 260).

[CS98] F. Chyzak and B. Salvy. “Non-commutative elimination in Ore
algebras proves multivariate identities”. J. Symbolic Comput. 26.
(1998), pp. 187–227 (cit. on p. 63).

[dALN15] R. F. de Andrade, E. Lundberg, and B. Nagle. “Asymptotics of
the extremal excedance set statistic”. European J. Combin. 46
(2015), pp. 75–88 (cit. on p. vii).

[dBru81] N. G. de Bruijn. Asymptotic methods in analysis. Third edition.
New York: Dover Publications Inc., 1981, pp. xii+200 (cit. on
pp. 22, 28, 128).

[DeV10] T. DeVries. “A case study in bivariate singularity analysis”. In:
Algorithmic probability and combinatorics. Vol. 520. Contemp.
Math. Providence, RI: Amer. Math. Soc., 2010, pp. 61–81 (cit.
on pp. 26, 286).

[DeV11] T. DeVries. “Algorithms for bivariate singularity analysis”. PhD
thesis. University of Pennsylvania, 2011 (cit. on pp. 278, 285).

[DH02] E. Delabaere and C. J. Howls. “Global asymptotics for multiple
integrals with boundaries”. Duke Math. J. 112. (2002), pp. 199–
264 (cit. on p. 439).

[DJ21] S. T. Dinh and Z. Jelonek. “Thom isotopy theorem for nonproper
maps and computation of sets of stratified generalized critical
values”. Discrete Comput. Geom. 65. (2021), pp. 279–304 (cit.
on pp. 243, 534).

[DL87] J. Denef and L. Lipshitz. “Algebraic power series and diago-
nals”. J. Number Theory 26. (1987), pp. 46–67 (cit. on pp. 66,
72, 447).

[DL93] R. A. DeVore and G. G. Lorentz. Constructive approximation.
Vol. 303. Grundlehren der Mathematischen Wissenschaften. Berlin:
Springer-Verlag, 1993, pp. x+449 (cit. on p. 347).
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J. Math. Pure et Appliquées 4 (1885), pp. 167–244 (cit. on p. 462).

[Pól69] G. Pólya. “On the number of certain lattice polygons”. J. Com-
binatorial Theory 6 (1969), pp. 102–105 (cit. on p. 422).

[Poo60] E. G. C. Poole. Introduction to the theory of linear differential
equations. Dover Publications, Inc., New York, 1960 (cit. on
p. 257).

[PPT13] M. Passare, D. Pochekutov, and A. Tsikh. “Amoebas of complex
hypersurfaces in statistical thermodynamics”. Math. Phys. Anal.
Geom. 16. (2013), pp. 89–108 (cit. on p. 181).

[PS05] T. K. Petersen and D. Speyer. “An arctic circle theorem for Groves”.
J. Combin. Theory Ser. A 111. (2005), pp. 137–164 (cit. on p. 387).
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Gülen, O., 365, 560

Handelsman, R. A., 29, 128, 147,
553

Hardy, G. H., 100, 561
Harris, J., 480, 558
Harris, P. E., 429, 561
Harrow, A. W., 406, 557
Hatcher, A., 484–486, 491, 492,

497, 560
Hauenstein, J. D., 253, 343, 560,

561
Hautus, M. L. J., 63, 560



AUTHOR INDEX 573

Hayman, W. K., x, 94, 100, 560
Helmer, M., 243, 534, 535, 560
Henrici, P., 24, 100, 128, 560
Hironaka, H., 534, 560
Hirsch, M., 220, 561
Hirsch, M. W., 502, 560
Hitczenko, P., 440, 553
Howls, C. J., 439, 556
Hubert, E., 452, 560
Huh, J., 447, 561
Hwang, H.-K., 403, 561
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Szegö, G., 385, 393, 568
Tahi, F., 425, 567
Teissier, B., 243, 537, 563, 568
Terao, H., 313, 328, 565
Theobald, T., 181, 568
Timme, S., 181, 568
Tsikh, A., 159, 181, 558, 566
Tu, L. W., 466, 480, 568
Van der Hoeven, J., 278, 557
Van Lint, J. H., 33, 568
Varchenko, A., 320, 568
Varchenko, A. N., 446, 568
Vidunas, R., vii, 568
Viola, C., 147, 566
Voisin, C., 496, 497, 569
Wagner, D. G., 396, 569

Wang, H.-Y., 290, 292, 569
Ward, M., 101, 569
Warner, F. W., 474, 475, 480, 569
Waterman, M. S., 425, 569
Weispfenning, V., 242, 555
Whitney, H., 142, 534, 540, 555,

569
Wilf, H. S., 28, 33, 73, 422, 566,

569
Willenbring, J. F., 429, 561
Williamson, S. G., 25, 554
Wilson, M. C., vii, 26, 31, 146,

235, 305, 333, 335, 353, 405,
428, 438, 565–567, 569

Wilson, R. M., 33, 568
Wimp, J., 73, 569
Woerdeman, H. J., vii, 560
Wong, C. Y., vii, 560
Wong, R., 128, 147, 569

Yakovlev, A., 26, 562
Yuzhakov, A. P., 25, 344, 353,

508, 509, 530, 551

Zahabi, A., vii, 428, 567
Zeilberger, D., 72, 73, 393, 438,

559, 562, 566, 569
Zelevinsky, A. V., xi, 180, 181,

259, 558





Subject Index

(zi, z j)-elementary diagonal, 62
CM-smooth, 111
C∞, 121, 125
I-decomposition, 534
M-diagonal, 66
∆-complex, 485
∆-domain, 87
χ-independent, 328
π

rational approximations to, 101
s-diagonal, 61
z-constant term, 63
d-manifold with boundary, 532
d-manifold with corners, 533
k-cell, 520

topological, 520
k-cells, 485
k-form, 469
n-boundaries, 482
n-chains, 482
n-coboundaries, 494
n-cochains, 494
n-cocycles, 494
n-cycles, 482
n-skeleton, 485
nth cohomology group, 494

nth singular cohomology group,
494

nth singular homology group, 483

affine critical points, 230
Airy function, 129, 443
algebraic dual polynomial, 180
algebraic generating function, 57,

59, 419
algebraic hypersurface, 157, 181
algebraic power series, 47
algebraic singularity, 86, 90, 419
algebraic tangent cone, xiv, 178,

339, 367
algebraic variety, 238, 370, 535
algebraic variety defined by f , 157
algebraico-logarithmic singularity,

25
amoeba, 157

contour of, see contour of an
amoeba

amplitude, xiii, 105, 130
analytic continuation, 79
analytic hypersurface, 181, 504
annulus, 64, 157, 270
aperiodic, 174

577



578 SUBJECT INDEX

arrangement point, 226, 313, 313,
337, 341

asymptotic development, 21
asymptotic expansion, 21

multivariate, see multivariate
asymptotic expansion

asymptotic scale, 21
asymptotic series, 21, 85, 110,

116, 118, 127, 129, 293, 350,
416

atlas, 460
atomic class, 67

labeled, see labeled atomic
class

attachment, 493
attachment data, 493, 525
augmented lognormal matrix, 511

basepoint, 462
Bessel function, 74, 129
bi-colored supertree, 212, 286
Big-O Lemma, 109, 123, 136, 381
binomial coefficients, 37, 77, 187,

209, 246, 266, 267, 306, 409,
453

Birkhoff polytope, 354
boundary, 481
boundary conditions, 48
boundary locations, 50
boundary operator, 472, 482
boundary point, 533
boundary values, 50
broken circuit, 327
bundle, 461

cotangent, see cotangent bundle
exterior k-algebra, see exterior

k-algebra bundle
tangent, see tangent bundle

Camembert-shaped region, 87

Catalan numbers, 47, 56, 65, 90,
420

Cauchy Integral Formula, 64, 79,
152, 379, 457, 478

Cauchy-Riemann equations, 93
cell complex, 485
cellular chain complex, 491
cellular homology groups, 491
central hyperplane arrangement,

312
Central Limit Theorem, 25, 38,

430, 433
Local, see Local Central Limit

Theorem
chain, 139–142, 156, 160, 199,

231, 276, 317, 320, 472
chain complex, 482
chain homotopy equivalence, 484
chain map, 483
chart, 458
chart map, 458
chart of dimension d, 459
Chebyshev polynomials, 267
circuits, 327
class

combinatorial, see
combinatorial class

cycle, see cycle class
labeled, see labeled

combinatorial class
neutral, see neutral class
set, see set class

class CM , 111
closed form, 481
CLT, see Central Limit Theorem
cochain complex, 494
codimension, 244
codimension of the stratum S , 213
coefficient of zr in F, 33
cohomology, 494



SUBJECT INDEX 579

combinatorial class, 36
atomic, see atomic class

combinatorial series, 172
compatible, 459
complete intersection, 308, 316
complex d-manifold, 460
complex link, 546
Complex Morse Lemma, 137,

148, 444
complex phase, 113, 147
complex projective d-space, 460
composition class, 44
computational algebra, 57
cone

algebraic tangent, see algebraic
tangent cone

convex, see convex cone
normal, see normal cone
recession, see recession cone
tangent, see tangent cone

cone of hyperbolicity, xiv, 357,
365, 365, 366, 367, 367, 368,
372, 374, 386, 388

consistent, 461
constant coefficient, 33
contains, 459
contour of an amoeba, 176
contravariant, 461
contributing multiple points, 319
contributing point, 262, 419, 443,

453
controlled, 541
convergent Laurent series, 152,

152
convex combination, 152
convex cone, 166
convex dual, 181
convex hull, 158
convex set, 152

convolution, 33, 38, 46, 58, 306,
391, 425, 433, 436

coordinate slice, 432
cotangent bundle, 467
cotangent space, 467
covariant, 461
CPAI, see critical point at infinity
critical

finitely, see finitely critical
critical point, xiv, 94, 119, 123,

129, 146, 148, 214, 247, 273,
278, 285, 286, 301, 304, 306,
320, 349, 412, 413, 416, 420,
440, 518–523, 527, 530–532,
544, 545, 547, 548

affine, see affine critical points
at infinity, see critical point at

infinity
smooth, see smooth critical

point
critical point (in the stratified

sense), 132
critical point at infinity, 230
critical point of the height

function h on the stratified
space X, 537

critical points of the height
function h, 519

critical value at infinity (CVAI),
231

critical values of the height
function h, 519

cube grove, 228
cup product, 495
CW approximation theorem, 485
CW-complex, 485
cycle, 481
cycle class, 69

D-finite sequence, 60



580 SUBJECT INDEX

D-finite series, 58, 61, 73
Darboux’s Theorem, 85, 86
de Rham complex, 495
decay

exponential, see exponentially
decaying

rapid, see rapidly decreasing
super-exponential, see

super-exponentially
decaying

deformation retract, see strong
deformation retract, 484

degree of degeneracy, 281
Delannoy numbers, 40, 64, 74,

209, 246, 266, 409, 416, 442
dependent sets, 327
derivation, 463
diagonal

M, see M-diagonal
s, see s-diagonal
elementary, see elementary

diagonal
generalized, see generalized

diagonal
main, see main diagonal

diagonal method, 439
diagonal slice, 431
differential k-form, 470
differential 1-form, 468
differential of f , 468
differential of f at p, 464
differential operator, 474
differentially algebraic, 73
dimension of an ideal, 242
dimension of the cell complex X,

485
dimension of the stratum S , 213
direct analytic continuation, 79
direction, 22
disjoint union

labeled, see labeled disjoint
union

disjoint union class, 36
divisors, 308
domain of

analyticity/holomorphicity,
187

domain of convergence of a
Laurent series, 152

downward gradient flow, 132
dual

algebraic, see algebraic dual
polynomial

projective, see projective dual
variety

dual cone, 166, 381, 386, 387, 390
dual rate, 164

embedded complex d-manifold,
458

embedded normal space, 501
embedded real d-manifold, 458
embedded tangent space, 501
enumerates, 36
essential singularity, 94
Eulerian numbers, 423
exact form, 481
exact sequence, 487
excision property, 490
exponential generating function,

67, 86, 94, 99, 100
exponential growth rate, 79
exponential torus, 151
exponentially decaying, 21, 181,

294, 387–389, 391
exterior k-algebra bundle, 470
exterior algebra, 469
exterior derivative operator, 475
extreme points, 158



SUBJECT INDEX 581

feasible velocity region of the
QRW, 302

field of formal Laurent series, xiii,
58

figure eight, 312, 336
filtered space, 525
finite criticality, 305
finitely critical, 274
finitely minimal point, 171
first Whitney condition, 534
flat torus, 358
flow, see vector flow
form

holomorphic, see holomorphic
form

volume, see holomorphic
volume form

top level, see top level form
formal Laurent series, see field of

formal Laurent series
formal partial derivative operator,

34
formal power series, 33, 35, 37,

43, 45, 47, 49, 51, 52, 58, 60,
61, 66, 336, 408

fortress, 389, 391
Fourier transform, 122, 357,

382–385, 389, 391
Fourier-Laplace integral, xiii, 105,

145, 148, 346, 347
multivariate, 130

function
Airy, see Airy function
Bessel, see Bessel function
meromorphic, see meromorphic

function
of class CM , see class CM

rate, see rate function
rational, see rational function

functor

contravariant, see contravariant
covariant, see covariant

functorial, 461

Galton-Watson process, 45
Gamma function, 85, 87, 108,

112, 126, 293–295, 348, 383
Gauss map, xiv, 297, 303, 412,

414, 415, 434, 443
Gaussian curvature, 297, 299,

301, 304, 414, 416, 434
Gaussian distribution, 25, 96, 97,

135, 304, 351, 402, 403, 405,
406, 430

generalized diagonal, 66
generalized Dyck paths, 54
generating function, 34

algebraic, see algebraic
generating function

D-finite, see D-finite series
exponential, see exponential

generating function
rational, see rational generating

function
semi-exponential, see

semi-exponential
generating function

spacetime, see spacetime
generating function, 414

generating function of the
combinatorial classA, 36

generating set, 238
generic direction, 308
generic property, 237
germ

smooth, see smooth germ
GF-sequence method, 24, 403
gluing maps, 485
goes to infinity in the direction,

163



582 SUBJECT INDEX

Gröbner basis, 240
gradient

logarithmic, see logarithmic
gradient

grand measure, 429
growth rate, 163

Hadamard product, 63
Hausdorff metric, 179
height function, 199
Hessian, 130, 131, 137, 138, 145,

297–299, 349, 350, 430, 434,
435, 437, 519, 520

Hessian matrix, 537
holomorphic de Rham complex,

496
holomorphic form, 477
holomorphic function, 476
holomorphic volume form, 477
homogeneous part, 178
homogeneous polynomial, 249
homogenization of a polynomial,

249
homogenization of an ideal, 249
homologous, 482, 504
homology, 271, 481, 503, 518,

524–527, 531, 548, 549
homology group, 482
homology with coefficients in C,

482
homotopic, 115, 283, 382, 506,

507, 521, 524
homotopic maps, 484
homotopic spaces, 484
homotopy, 140, 300, 360, 484,

504, 506, 507, 511, 518–520,
522–525, 527, 530, 531, 538,
545–548

homotopy equivalence, 484, 489

horizontally convex polyominoes,
422

Hurwitz’s Theorem, 180, 366
hyperbolic polynomial, 365
hyperbolicity

cone of, see cone of
hyperbolicity

radius, see radius of strong
hyperbolicity

strong, see strongly hyperbolic,
368, 369, 371

weak, see weakly hyperbolic,
368, 397

hyperplane
supporting, see supporting

hyperplane
tangent, see tangent hyperplane

hyperplane arrangement, 309
hypersurface, 297, 298, 431, 434

algebraic, see algebraic
hypersurface

analytic, see analytic
hypersurface

ideal
dimension of, see dimension of

an ideal
generating set of, see

generating set
polynomial, see polynomial

ideal
prime decomposition of, see

prime decomposition
radical of, see radical

ideal quotient, 242
ideal saturation, 242
imaginary fiber, 320
implied constant, 21
induced map, 461
integral
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Cauchy, see Cauchy Integral
Formula

Fourier-Laplace, see
Fourier-Laplace integral

one-sided, see one-sided
integral

two-sided, see two-sided
integral

interior point, 533
intersection

complete, see complete
intersection, 334

partial, see partial
intersectionpartial
intersection317

intersection class, 502
involution, 71, 99
inward-facing normal, 175
irreducible decomposition, 242
irreducible variety, 242, 260
iterated residue, 351, 353, 354,

512, 513

Jacobian, 137, 297, 303, 434, 465,
511

kernel method, 48

labeled atomic class, 67
labeled combinatorial class, 67
labeled disjoint union, 67
labeled neutral class, 67
labeled product, 68
lacuna, 393, 393
Lagrange inversion formula, 407
Laplace transform, 32, 118
lattice of flats, 313
lattice paths with steps in S , 40
Laurent expression, see space of

formal Laurent expressions
Laurent polynomial, 151, 367,

369–371, 381–383, 386

support of, see support of the
Laurent polynomial f

Laurent polynomial ring, see ring
of Laurent polynomials

Laurent series, 64, 150, 153, 155,
156, 181, 187, 381, 432

convergent, see convergent
Laurent series

LCLT, see Local Central Limit
Theorem

leading term of an asymptotic
expansion, 22

leading term of the polynomial p,
239

Legendre transform, 181
Leray residue, see residue of ω
lexicographic term order, 239
linking torus, 320
Local Central Limit Theorem, 25,

430, 433, 438
local cycle, 548
local monodromy group, 342
local ring, 34
local ring of analytic germs, 336
localization, 121–123, 273
locally minimal, 359
logarithmic convexity, 155
logarithmic domain of

convergence, 434, 435
logarithmic gradient, 175, 426,

511
logarithmic locally minimal

arguments, 359
logarithmic singularity, 91
lognormal cone, 319
long exact sequence, 488
long exact sequence of the pair,

490
Lorentzian quadratic, 367, 382,

383, 385, 388, 392, 393
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standard, see standard
Lorentzian quadratic

lower halflink, 544
lower semi-continuous, 357

main diagonal, 62
manifold

complex, see complex
d-manifold

embedded complex, see
embedded complex
d-manifold

embedded real, see embedded
real d-manifold

orientable, see orientable
manifold

real, see real d-manifold
smooth, see smooth manifold

manifold point, 533
map, 483

chart, see chart map
induced, see induced map
smooth, see smooth map
transition, see transition maps

matrix
Hessian, see Hessian
transfer, see transfer matrix
unimodular, see unimodular

matrix
matroid, 327, 426
Mayer-Vietoris sequence, 492
meromorphic function, 80
method

of steepest descent, 119
saddle point, see saddle point

method
transfer matrix, see transfer

matrix method
minimal point, 171

finitely, see finitely minimal
point

strictly, see strictly minimal
point

minimal torus, 276
monodromy group, 342
monomial order, 239, 240
Morse data, 220, 525

normal, see normal Morse data
tangential, see tangential Morse

data
Morse filtration, 527
Morse function, 519, 537
Morse function with distinct

critical values, 519, 537
Morse height function, 201
Morse index of h at p, 520
Morse Lemma, 518, 519, 522, 538
Morse Lemma, Complex, see

Complex Morse Lemma
Morse Lemma, Stratified, see

Sratified Morse Lemma538
Motzkin paths, 56
multinomial distribution, 432
multiple point, 307, 309, 312, 337,

339–342, 352–354, 368, 372,
397

multivariate asymptotic
expansion, 23

multivariate Fourier-Laplace
integrals, 130

Narayana numbers, 65, 74, 420
natural, 505
neighborhood, 34
neighborhood growth rate, 163
neutral class, 67

labeled, see labeled neutral
class

Newton diagrams, 50
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Newton polytope, 159
non-obstructed direction, 375
nondegenerate, 201, 220, 262
nondegenerate critical point for h,

519
nondegenerate phase, 130
normal

inward-facing, see
inward-facing normal

outward-facing, see
outward-facing normal

normal cone, 166
normal crossing, 397, 446
normal density, 434
normal link, 220, 543
normal Morse data, 220, 543
normal plane, 220
normal slice, 220, 543, 547
numbers

Catalan, see Catalan numbers
Delannoy, see Delannoy

numbers
Eulerian, see Eulerian numbers
Narayana, see Narayana

numbers
Stirling, see Stirling numbers

one-sided Fourier-Laplace
integral, 116

one-sided integral, 114
order map, 159
order of vanishing, 178
ordinary points of the ODE, 257
orientable manifold, 461
orientation, 461
Ornstein-Zernike, 430, 433
outward-facing normal, 175

P-recursive sequence, 59, 60
multivariate, 60

pair complex, 488

pair labeled, 68
pair map, 488
pair of spaces, 488
Paley-Wiener theorem, 386
partial fraction decomposition, 76
phase, xiii, 105, 106, 109, 130,

130, 293, 301, 352, 397, 412
complex, see complex phase
nondegenerate, see

nondegenerate phase
standard, see standard phase

point
contributing, see contributing

point
multiple, see multiple point

transverse, see transverse
multiple point

nondegenerate, see
nondegenerate critical
point

pole, 80
simple, see simple pole

polyannulus, 479
polydisk, 34, 478
polynomial ideal, 238
polyradius, 34
polytope, 158

convex, see convex polytope
vertices of, see vertices of a

polytope
positively oriented simplex, 474
power series

homogeneous part, see
homogeneous part of
power series

order of vanishing, see order of
vanishing

prime decomposition, 241
principal kth root, 114
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probability generating function,
38

product
labeled, see labeled product
wedge, see wedge product

product class, 38
product complex, 492
projective dual variety, 180
projective space

complex, see complex
projective space

real, see real projective d-space
projective vector field, 397
proper Morse function, 519, 537
pullback, 468
pullback of ω, 471
Pushing Down Lemma, 525

quantum random walk, 301, 411,
443

quantum walk, 301, 414
quasi-local cycle, 548
quasi-powers, 403

radical, 241
radius of convergence, 79, 270,

404–406, 408, 432
radius of strong hyperbolicity, 368
random walk, 45, 48, 91, 353,

411, 436
rapidly decreasing, 21, 107, 122,

123, 125, 127
rate function, 181, 435
rational function, 53, 57, 58, 66,

73, 75, 354, 411
rational generating function, 50,

186
real d-manifold, 460
real projective d-space, 460
real projective variety, 460
real root property, 396

real stable polynomial, 396
recession cone, 166
reduced Gröbner basis, 240
reduced homology group, 490
reduction map, 68
relative boundaries, 488
relative cycles, 488, 504, 525, 548
relative homology, 488
relative intersection class, 504
Relog map, xiv, 151
represented, 485
residue, 64, 80, 273, 287

Leray, see residue of ω
multivariate, see residue of ω

residue class, 508
residue of ω, 505
resolution of singularities, 397
Riemann surface, 120
ring

Laurent polynomial, see ring of
Laurent polynomials

local, see local ring
ring of formal power series, 33
ring of germs of analytic

functions, 35, 47
local, see local ring of analytic

germs
ring of Laurent polynomials, xiv,

151
Riordan arrays, 403

saddle point, 93, 94, 120, 278,
318, 521

multivariate, 130
saddle point method, 93, 119
Schröder paths, 56
secant cone, 179
second Whitney condition, 534
section of a bundle, 462
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semi-continuity, 357, 368, 370,
372

semi-exponential generating
function, 70

sequence class, 38
series

asymptotic, see asymptotic
series

formal power, see formal power
series

Laurent, see Laurent series
Taylor, see Taylor series

set class, 69
set partitions, 71, 100
short exact sequence, 487
short exact sequence of chain

complexes, 488
signed intersection number, 288
simple pole, 80
simple poles, 505
simplex

positively oriented, see
positively oriented simplex

standard, see standard
p-simplex in Rp

simplicial complex, 485
simplicial homology, 486
singular n-chain, 482
singular n-cochains, 494
singular n-simplex, 482
singular points of the ODE, 257
singular variety, xiv, 169, 187
singularity, 79, 169

algebraic, see algebraic
singularity

algebraico-logarithmic, see
algebraico-logarithmic
singularity

cone point, see cone point
singularity

essential, see essential
singularity

logarithmic, see logarithmic
singularity

size, 36
slice

coordinate, see coordinate slice
diagonal, see diagonal slice
normal, see normal slice

slit plane, 114
Smirnov words, 44
smooth, 198
smooth p-simplex, 472
smooth analytic hypersurface, 504
smooth analytic hypersurface at

w, 504
smooth critical point, 200
smooth critical point equations,

200
smooth germ, 463
smooth map, 461
smooth partitions, 534
smooth point, 198, 261, 293, 295,

298, 303, 305, 309, 367, 368,
398, 430, 452, 547

smooth poles of order k, 505
smooth vector field, 466
smooth within strata and

continuous across strata, 540
snaps, 418
space Cp(M) of p-chains, 472
space of formal Laurent

expressions, 151
spacetime generating function,

302, 412, 433, 436, 443
square-free, 180, 198, 237, 245,

251, 278, 341
square-free at p, 339
square-free part, 198
standard p-simplex in Rp, 472
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standard basis for TpM, 467
standard basis for TpM, 464
standard Lorentzian quadratic,

365, 368
standard phase, 131
standard quadratic, 130
Stirling numbers of the first kind,

71
Stirling numbers of the second

kind, 71
Stokes phenomenon, 208
stratification of the pair (X,Y), 536
Stratified Morse Lemma, 538
stratified Morse theory, 532
stratified space, 536–538, 545,

546, 548
stratum, 245, 247, 317, 339, 370,

372, 397, 510, 513, 518, 537,
545, 546

strictly minimal point, 171
strong deformation retract, 484
strong torality hypothesis, 273
strongly hyperbolic, 368
super-exponentially decaying, 21,

285
support of a rational function, 328
support of the Laurent polynomial

f , 158
supported on a set, 472
supporting hyperplane, 175, 176,

177
surgery method, 190, 266, 269,

351
surjection of size n, 72

tangent bundle, 465
tangent cone, 166, 370, 386, 397
tangent hyperplane, 180
tangent space, 463
tangent vector, 463

tangential Morse data, 543
Taylor series, 93, 127, 130
teardrop, 388
tensor product complex, 492
top level form, 470
topological k-cell, 520
topological map, 483
topological method, 190
torality

strong, see strong torality
hypothesis

torus, 27, 34, 156, 412, 415, 434,
478, 521, 527

total attachment pair, 216
total degree term order, 239
total space of the normal bundle,

501
transfer matrix, 302, 400, 410
transfer matrix method, 42
transform

Fourier, see Fourier transform
Laplace, see Laplace transform
Legendre, see Legendre

transform
transition maps, 459
transverse

arrangement, 313
intersection, 502

transverse analytic hypersurface,
510

transverse multiple point, 308,
310, 329, 339, 340, 349, 510,
510, 513

transverse pole, 510
transverse simple point, 510
transverse simple pole, 510
triangulation, 474, 485
tube around γ, 501
tubular neighborhood, 192
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two-sided integral, 108, 116, 121,
127

uniform asymptotic expansion, 23
unimodular matrix, 66
unit d-sphere, 458
unit torus, 459
upward gradient flow, 132
valley, 49
variety

algebraic, see algebraic variety
analytic, see analytic variety
irreducible decomposition of,

see irreducible
decomposition

real projective, see real
projective variety

zero-dimensional, see
zero-dimensional variety

vector field

smooth, see smooth vector field
vector flow, 122, 132, 143
vertices of a polytope, 158

walk
quantum, see quantum walk
random, see random walk

Watson’s Lemma, 118, 128
weak deformation retract, 484
weak hyperbolicity, 357
weakly hyperbolic, 368
wedge, 523
wedge product, 469
weight map, 36
Whitney stratification, 212, 534,

537, 549
Whitney stratified space, 534
Whitney Umbrella, 549

zero-dimensional variety, 260
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