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This is a collection of (mostly multivariate) algebraic generating functions gleaned from the combinatorial
literature, which we hope will be useful for future work. Most of them were found by Google Scholar
keyword search. We intend to update the list regularly, and it will be available at the ACSV project website
https://acsvproject.org.

1 Analysis of a random tree algorithm

Saunders [16] analyses a class of random recursive trees with deletion, by means of the GF

P (z, u) =
q(1− u)zP 〈0〉(z)− u
qz − u(1− puz)

where

P 〈0〉(z) =
2

1− 2qz +
√

1− 4pqz2
.

2 Bilateral Schröder paths

The number of bilateral Schröder paths (see https://oeis.org/A063007) from (0, 0) to (n, n) having k
North steps is enumerated by

G(t, z) =
1√

1− 2z − 4tz + z2.

3 Orthogonal polynomials

For α ∈ R, the Gegenbauer polynomials C
(α)
n are orthogonal polynomials on [−1, 1] with respect to the

weight function (1− x2)α−1/2. The generating function is

Fα(t, x) =
1

(1− 2xt+ t2)
α =

∑
n≥0

C(α)
n (x)tn =

∑
n,k≥0

ankt
nxk.

If α is a rational number (resp. integer) then Fα is algebraic (resp. rational). When α = 1 we obtain the
Chebyshev polynomials, and when α = 1/2 we get Legendre polynomials.

Note: The Gegenbauer polynomials are a specialization of the Jacobi polynomials, which also yield
algebraic GFs.
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4 Parametrized univariate GF

Callan [7] describes the parametrized GF

f(x, a, b) =
1− ax−

√
1− 2ax+ (a2 − 4b)x2

2bx2
.

Special cases of this yield shifted Catalan numbers, Motzkin numbers, little Schröder numbers. For each
value of parameter the GF can be interpreted in terms of colored walks.

5 Edge flipping in the complete graph

Butler, Chung, Cummings, Graham [12] analyse the stationary distribution of a random walk on a state
space of red/blue colorings of the complete graph, and obtain

f(x, y) =
1− x(1 + y)√

1− 2x(1 + y)− x2(1− y)2
.

6 Ising model integrals

Bostan et al. [10] consider many integrals associated with analysis of the n-particle contribution to the
magnetic susceptibility of the Ising model. Among them we find [10, Eq. C.17]

1− 2w +
√

(1− 2w)2 − 4w2t2

2
√

1− t2
√

(1− 2w)2 − 4w2t2
− 1

2
.

7 Generalization of Catalan numbers

Cossali [3] presents the following array. Let g(n,m) = (2n+m)!
m!n!(n+1)! . Then (bottom of page 5)

L(x, z) :=

∞∑
q=0

∞∑
m=0

g(m, q)xmzq =
(1− z)−

√
(1− z)2 − 4x

2x
.

Note that L(x, 0) encodes the Catalan numbers. Other fragments of this array encode triangular numbers
and other known sequences.

8 A refinement of noncrossing partitions

Eu [1] presents this example. A partition of {1, 2, . . . , n} is non-crossing if whenever 1 ≤ a < b < c < d ≤ n
and whenever a, c are in the same block and b, d are in the same block, then a, b, c, and d are all in the same
block. A partition is non-singleton if every block has size at least 2.

For linear representations of partitions, consider drawing the numbers {1, 2, . . . , n} in a line and then
drawing arcs connecting the numbers when they are in the same block. A block is called visible if it has
no arcs from other blocks above it. So, in the partition {1, 2, 6}, {3, 4, 5}, {7, 8}, {9, 14}{10, 13}, {11, 12}, the
blocks {1, 2, 6}, {7, 8}, and {9, 14} are visible. Let a(n, k) be the non-singleton non-crossing partitions of [n]
with k visible blocks. Then, by Theorem 60 (page 105),

A(z, u) :=
∑
u,k≥0

an,ku
kzn =

u(1− z − 2uz2 −
√

1− 2z − 3z2)

2(1− u+ zu+ z2u2)
.
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For circular representations of partitions, all blocks are visible. Thus, if bn,k is the number of circular
non-crossing non-singleton partitions with k (visible) blocks, then by Proposition 63 (page 107),

B(x, u) :=
∑
n,k≥0

bn,ku
kxn =

1 + x−
√

1− 2x+ x2 − 4x2u

2x(1 + xu)
.

9 RNA secondary structures

Došlic, Svrtan & Veljan [4] discss RNA secondary structures. An RNA secondary structure can be viewed
as a partial non-crossing pairing of the numbers {1, 2, . . . , n}. Let n be the size of the secondary structure.
We sometimes add the condition that pairings must be distance ` apart, in which case we call ` the rank.
Finally, let k be called the order of the secondary structure, corresponding to the total number of pairs in

the structure. Fix a rank `, and let S
(`)
k (n) be the number of secondary structures of size n and order k. By

Theorem 3.18 (page 80)

S`(x, y) :=
∑
k,n≥0

S
(`)
k (n)ykxn =

1

2x2y

[
Ω`(x, y)−

√
Ω2
`(x, y)− 4x2y

]
where

Ω`(x, y) = (1− x)(1− y)− yω`(x),

ω`(x) = x− 1− x2 · 1− x`

1− x
.

10 Dissections

Drmota [8, p. 376] presents a generating function A(x, y) counting a certain type of graph (“dissections”)
with n nodes and m edges. It is given by the relation

A(x, y) = xy2(1 +A(x, y))2 + xy(1 +A(x, y)) ·A(x, y).

11 Ascents in Schröder paths

In Roitner’s [15, Section 4.2] paper we find the bivariate GF that enumerates Schröder paths by semilength
and number of ascents:

E(x, v) =
1− xv −

√
1− 2x(v + 2) + x2(v − 2)2

2x(1 + x(v − 1))
.

12 Patterns in lattice paths

Asinowski and Banderier [13] discuss occurrences of very general patterns in lattice paths. Excursions,
bridges, and meanders with marked patterns are encoded by algebraic generating functions. In Example 11
(page 7), they find the generating function encoding Dyck walks terminating on the x-axis with total steps
marked by t, the number of occurrences of the pattern of steps p1 = udu marked by v1, and the pattern
p2 = dud marked by v2:

B(t, v1, v2) =

√
1 + (1− v1v2)t2 + (1− v1)(1− v2)t4

1 + (−3− v1v2)t2 + (1− v1)(1− v2)t4
.
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13 Patterns in trees

Patterns within binary plane unlabelled trees where z and u track the size of the tree and number of
occurrences of the pattern of length m, respectively, are given by [9, p. 680]

F (z, u) =
1

2z

(
1−

√
1− 4z − 4(u− 1)zm+1

)
.

14 Narayana numbers

These enumerate noncrossing partitions by set size and number of blocks, rooted ordered trees by edges and
leaves, Dyck paths by semilength and number of peaks, etc (see https://oeis.org/A001263).

The bivariate sequence

N(n, k) :=
1

n

(
n

k

)(
n

k − 1

)
is encoded in

F (x, t) =
1− x− xt−

√
(1− x− xt)2 − 4x2t

2x
.

15 Assembly trees

Bona and Vince [11] define the concept of assembly tree of a graph and show that the generating function
for the number of assembly trees of the complete bipartite graph Krs is given by∑

rs

arsx
rys = 1−

√
(1− x)2 + (1− y)2 − 1.

16 New and old leaves

The Narayana numbers can be further refined by considering different types of leaves in a rooted ordered
tree. [6] call a leaf of such a tree old if it is the leftmost child of its parent, and young otherwise. They
enumerate such trees according to the number of old leaves, number of young leaves and number of edges,
finding the algebraic equation

G(x, y, z) = 1 +
z(G(x, y, z)− 1 + x)

1− z(G(x, y, z)− 1 + y)
.

17 Schröder trees by leaves and vertices

V (x, y) = xy +
y(V (x, y))2

1− V (x, y)

18 Degree of symmetry of lattice paths

In [14, Lemma 2.1], Elizalde derives the generating function for bicolored Motzkin paths. Here, such a path
starts and ends at the x-axis, never passes below the x-axis, and takes steps U = (1, 1), D = (1,−1), and
two (colored) types of horizontal steps, H1 = (1, 0) and H2 = (1.0). Let am,n be the number of such paths
with m total U or H1 steps and n total D or H2 steps. Then

M(x, y) :=

∞∑
m,n=0

am,nx
myn =

1− x− y −
√

(1− x− y)2 − 4xy

2xy
.
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19 Bar graphs

Bousquet-Mélou & Rechnitzer [2] show that the bivariate GF B(x, y) enumerating bar graphs by horizontal
external edges and vertical external edges satisfies B(0, 0) = 0 and P (x, y,B) = 0, where P (x, y, Y ) =
Y − xy − (x+ y + xy)Y + xY 2.

20 Planar maps and the quadratic method

Goulden & Jackson [5, Sec. 2.9.9] present the GF M(x, y) enumerating rooted planar maps, where x marks
edges in the outer face and y marks edges. They show the defining equation

(1− x) (Y − 1) = x2yY 2 + xy (h(y)− xY )

where h(y) := M(1, y). The quadratic method is used to express h(y) in the form (1− 4β)(1− 3β)−2 where
the algebraic univariate GF β is defined by β(y) = y(1 − 3β)−1. They note that “no convenient expression
has been obtained for [xnym]M(x, y)”.
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